

JAVA
T M

PROGRAMMING

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

JAVA
T M

PROGRAMMING

JOYCE FARRELL

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

E I G H T H E D I T I O N

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to

remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by

ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Java Programming,
Eighth Edition
Joyce Farrell

Product Director:
Kathleen McMahon

Senior Content Developer:
Alyssa Pratt

Development Editor: Dan Seiter

Marketing Manager: Eric LaScola

Manufacturing Planner:
Julio Esperas

Art Director: Jack Pendleton

Production Management,
Copyediting, Composition,
Proofreading, and Indexing:
Integra Software Services Pvt. Ltd.

Cover Photo:
©Maram/Shutterstock.com

© 2016, 2014, 2012 Cengage Learning

WCN: 02-200-203

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or
by any means graphic, electronic, or mechanical, including but not
limited to photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage and
retrieval systems, except as permitted under Section 107 or 108 of the
1976 United States Copyright Act, without the prior written
permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,

submit all requests online at www.cengage.com/permissions.

Further permissions questions can be emailed to

permissionrequest@cengage.com.

Library of Congress Control Number: 2014956152

ISBN: 978-1-285-85691-9

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning
solutions with office locations around the globe, including Singapore,
the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your
local office at www.cengage.com/global.

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

All images © 2016 Cengage Learning®. All rights reserved.

To learn more about Cengage Learning Solutions, visit
www.cengage.com.

Purchase any of our products at your local college store
or at our preferred online store www.cengagebrain.com.

Printed in the United States of America
Print Number: 01 Print Year: 2015

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Brief Contents

Preface . xxi

CHAPTER 1 Creat ing Java Programs 1

CHAPTER 2 Using Data . 53

CHAPTER 3 Using Methods, Classes, and Objects 119

CHAPTER 4 More Object Concepts 183

CHAPTER 5 Making Decis ions 245

CHAPTER 6 Looping . 301

CHAPTER 7 Characters, Strings, and the StringBuilder . . . 353

CHAPTER 8 Arrays . 393

CHAPTER 9 Advanced Array Concepts 439

CHAPTER 10 Introduct ion to Inheritance 491

CHAPTER 11 Advanced Inheri tance Concepts 537

CHAPTER 12 Except ion Handl ing 593

CHAPTER 13 Fi le Input and Output 665

CHAPTER 14 Introduct ion to Swing Components 729

CHAPTER 15 Advanced GUI Topics 791

CHAPTER 16 Graphics . 861

APPENDIX A Working with the Java Platform 919

APPENDIX B Data Representat ion 925

APPENDIX C Formatt ing Output 931

APPENDIX D Generat ing Random Numbers 941

APPENDIX E Javadoc . 949

Glossary . 957

Index . 979

v

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents

Preface xxi

CHAPTER 1 Creating Java Programs 1

Learning Programming Terminology 2
Comparing Procedural and Object-Oriented

Programming Concepts 6
Procedural Programming 6
Object-Oriented Programming 6
Understanding Classes, Objects, and Encapsulation 7
Understanding Inheritance and Polymorphism 9

Features of the Java Programming Language 11
Java Program Types . 12

Analyzing a Java Application that Produces Console Output 13
Understanding the Statement that Produces the Output 14
Understanding the First Class 15
Indent Style . 18
Understanding the main() Method 19
Saving a Java Class . 21

Compiling a Java Class and Correcting Syntax Errors 23
Compiling a Java Class 23
Correcting Syntax Errors 24

Running a Java Application and Correcting Logic Errors 29
Running a Java Application 29
Modifying a Compiled Java Class 30
Correcting Logic Errors 31

Adding Comments to a Java Class 32
Creating a Java Application that Produces GUI Output 35
Finding Help . 38
Don’t Do It . 39
Key Terms . 41

vi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary . 45
Review Questions . 46
Exercises . 48

Programming Exercises 48
Debugging Exercises 50
Game Zone . 50
Case Problems . 51

CHAPTER 2 Using Data 53

Declaring and Using Constants and Variables 54
Declaring Variables . 55
Declaring Named Constants 56
The Scope of Variables and Constants 58
Concatenating Strings to Variables and Constants 58
Pitfall: Forgetting that a Variable Holds

One Value at a Time 60
Learning About Integer Data Types 64
Using the boolean Data Type 70
Learning About Floating-Point Data Types 71
Using the char Data Type 72
Using the Scanner Class to Accept Keyboard Input 78

Pitfall: Using nextLine() Following One of the
Other Scanner Input Methods 81

Using the JOptionPane Class to Accept GUI Input 87
Using Input Dialog Boxes 87
Using Confirm Dialog Boxes 91

Performing Arithmetic . 93
Associativity and Precedence 95
Writing Arithmetic Statements Efficiently 96
Pitfall: Not Understanding Imprecision

in Floating-Point Numbers 96
Understanding Type Conversion 101

Automatic Type Conversion 101
Explicit Type Conversions 102

Don’t Do It . 106
Key Terms . 107

vii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary . 111
Review Questions . 111
Exercises . 114

Programming Exercises 114
Debugging Exercises 116
Game Zone . 117
Case Problems . 118

CHAPTER 3 Using Methods, Classes, and Objects 119

Understanding Method Calls and Placement 120
Understanding Method Construction 123

Access Specifiers . 123
Return Type . 124
Method Name . 125
Parentheses . 125

Adding Parameters to Methods 129
Creating a Method that Receives a Single Parameter 130
Creating a Method that Requires Multiple Parameters 133

Creating Methods that Return Values 136
Chaining Method Calls 138

Learning About Classes and Objects 142
Creating a Class . 145
Creating Instance Methods in a Class 147

Organizing Classes 150
Declaring Objects and Using their Methods 154

Understanding Data Hiding 156
An Introduction to Using Constructors 159
Understanding that Classes Are Data Types 163
Don’t Do It . 168
Key Terms . 168
Chapter Summary . 170
Review Questions . 171
Exercises . 174

Programming Exercises 174
Debugging Exercises 177
Game Zone . 178
Case Problems . 179

viii

C O N T E N T S

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 4 More Object Concepts 183

Understanding Blocks and Scope 184
Overloading a Method 192

Automatic Type Promotion in Method Calls 194
Learning About Ambiguity 199
Creating and Calling Constructors with Parameters 200

Overloading Constructors 201
Learning About the this Reference 205

Using the this Reference to Make Overloaded Constructors
More Efficient . 209

Using static Fields 213
Using Constant Fields 215

Using Automatically Imported, Prewritten Constants
and Methods . 220
The Math Class . 221
Importing Classes that Are Not Imported Automatically 223
Using the LocalDate Class 224

Understanding Composition and Nested Classes 230
Composition . 230
Nested Classes . 232

Don’t Do It . 234
Key Terms . 234
Chapter Summary . 236
Review Questions . 236
Exercises . 239

Programming Exercises 239
Debugging Exercises 242
Game Zone . 242
Case Problems . 243

CHAPTER 5 Making Decisions 245

Planning Decision-Making Logic 246
The if and if…else Statements 248

The if Statement . 248
Pitfall: Misplacing a Semicolon in an if Statement 249
Pitfall: Using the Assignment Operator Instead

of the Equivalency Operator 250

ix

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Pitfall: Attempting to Compare Objects
Using the Relational Operators 251

The if…else Statement 251
Using Multiple Statements in if and if…else Clauses 254
Nesting if and if…else Statements 260
Using Logical AND and OR Operators 263

The AND Operator . 263
The OR Operator . 265
Short-Circuit Evaluation 266

Making Accurate and Efficient Decisions 269
Making Accurate Range Checks 270
Making Efficient Range Checks 272
Using && and || Appropriately 273

Using the switch Statement 274
Using the Conditional and NOT Operators 280

Using the NOT Operator 281
Understanding Operator Precedence 282
Adding Decisions and Constructors

to Instance Methods 285
Don’t Do It . 289
Key Terms . 289
Chapter Summary . 291
Review Questions . 291
Exercises . 294

Programming Exercises 294
Debugging Exercises 297
Game Zone . 297
Case Problems . 299

CHAPTER 6 Looping 301

Learning About the Loop Structure 302
Creating while Loops 303

Writing a Definite while Loop 303
Pitfall: Failing to Alter the Loop Control Variable

Within the Loop Body 305
Pitfall: Unintentionally Creating a Loop with

an Empty Body . 306

x

C O N T E N T S

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Altering a Definite Loop’s Control Variable 307
Writing an Indefinite while Loop 308
Validating Data . 310

Using Shortcut Arithmetic Operators 314
Creating a for Loop 319

Unconventional for Loops 320
Learning How and When to Use a do…while Loop 325
Learning About Nested Loops 328
Improving Loop Performance 333

Avoiding Unnecessary Operations 333
Considering the Order of Evaluation of Short-Circuit

Operators . 334
Comparing to Zero 334
Employing Loop Fusion 336
Using Prefix Incrementing Rather than Postfix

Incrementing . 337
A Final Note on Improving Loop Performance 338

Don’t Do It . 342
Key Terms . 342
Chapter Summary . 344
Review Questions . 344
Exercises . 347

Programming Exercises 347
Debugging Exercises 350
Game Zone . 350
Case Problems . 352

CHAPTER 7 Characters, Strings, and
the StringBuilder 353

Understanding String Data Problems 354
Using Character Class Methods 355
Declaring and Comparing String Objects 359

Comparing String Values 359
Empty and null Strings 363

Using Other String Methods 365
Converting String Objects to Numbers 369

xi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning About the StringBuilder
and StringBuffer Classes 374

Don’t Do It . 381
Key Terms . 382
Chapter Summary . 382
Review Questions . 383
Exercises . 385

Programming Exercises 385
Debugging Exercises 388
Game Zone . 388
Case Problems . 391

CHAPTER 8 Arrays 393

Declaring Arrays . 394
Initializing an Array . 399
Using Variable Subscripts with an Array 402

Using the Enhanced for Loop 403
Using Part of an Array 404

Declaring and Using Arrays of Objects 406
Using the Enhanced for Loop with Objects 408
Manipulating Arrays of Strings 408

Searching an Array and Using Parallel Arrays 414
Using Parallel Arrays 415
Searching an Array for a Range Match 418

Passing Arrays to and Returning Arrays from Methods 422
Returning an Array from a Method 426

Don’t Do It . 428
Key Terms . 428
Chapter Summary . 429
Review Questions . 430
Exercises . 433

Programming Exercises 433
Debugging Exercises 435
Game Zone . 435
Case Problems . 438

xii

C O N T E N T S

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 9 Advanced Array Concepts 439

Sorting Array Elements Using the Bubble Sort Algorithm 440
Using the Bubble Sort Algorithm 440
Improving Bubble Sort Efficiency 442
Sorting Arrays of Objects 443

Sorting Array Elements Using the Insertion Sort Algorithm 448
Using Two-Dimensional and Other Multidimensional Arrays 452

Passing a Two-Dimensional Array to a Method 454
Using the length Field with a Two-Dimensional Array 455
Understanding Ragged Arrays 456
Using Other Multidimensional Arrays 456

Using the Arrays Class 459
Using the ArrayList Class 467
Creating Enumerations 472
Don’t Do It . 479
Key Terms . 479
Chapter Summary . 480
Review Questions . 481
Exercises . 484

Programming Exercises 484
Debugging Exercises 486
Game Zone . 487
Case Problems . 490

CHAPTER 10 Introduction to Inheritance 491

Learning About the Concept of Inheritance 492
Diagramming Inheritance Using the UML 492
Inheritance Terminology 495

Extending Classes . 496
Overriding Superclass Methods 502

Using the @Override Tag 504
Calling Constructors During Inheritance 507

Using Superclass Constructors that
Require Arguments 508

Accessing Superclass Methods 513
Comparing this and super 515

Employing Information Hiding 516

xiii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Methods You Cannot Override 518
A Subclass Cannot Override static Methods in

Its Superclass . 518
A Subclass Cannot Override final Methods in

Its Superclass . 522
A Subclass Cannot Override Methods

in a final Superclass 523
Don’t Do It . 525
Key Terms . 525
Chapter Summary . 526
Review Questions . 527
Exercises . 530

Programming Exercises 530
Debugging Exercises 533
Game Zone . 534
Case Problems . 535

CHAPTER 11 Advanced Inheritance Concepts 537

Creating and Using Abstract Classes 538
Using Dynamic Method Binding 547

Using a Superclass as a Method Parameter Type 549
Creating Arrays of Subclass Objects 551
Using the Object Class and Its Methods 554

Using the toString() Method 556
Using the equals() Method 559

Using Inheritance to Achieve Good Software Design 564
Creating and Using Interfaces 565

Creating Interfaces to Store Related Constants 570
Creating and Using Packages 574
Don’t Do It . 580
Key Terms . 580
Chapter Summary . 581
Review Questions . 582
Exercises . 585

Programming Exercises 585
Debugging Exercises 589
Game Zone . 590
Case Problems . 590

xiv

C O N T E N T S

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 12 Exception Handling 593

Learning About Exceptions 594
Trying Code and Catching Exceptions 599

Using a try Block to Make Programs “Foolproof” 604
Declaring and Initializing Variables in try…catch Blocks . . . 606

Throwing and Catching Multiple Exceptions 609
Using the finally Block 615
Understanding the Advantages of Exception Handling 618
Specifying the Exceptions that a Method Can Throw 621
Tracing Exceptions Through the Call Stack 626
Creating Your Own Exception Classes 630
Using Assertions . 634
Displaying the Virtual Keyboard 650
Don’t Do It . 653
Key Terms . 654
Chapter Summary . 655
Review Questions . 656
Exercises . 659

Programming Exercises 659
Debugging Exercises 662
Game Zone . 662
Case Problems . 663

CHAPTER 13 File Input and Output 665

Understanding Computer Files 666
Using the Path and Files Classes 667

Creating a Path . 668
Retrieving Information About a Path 669
Converting a Relative Path to an Absolute One 670
Checking File Accessibility 671
Deleting a Path . 673
Determining File Attributes 674

File Organization, Streams, and Buffers 678
Using Java’s IO Classes 680

Writing to a File . 683
Reading from a File 685

xv

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating and Using Sequential Data Files 687
Learning About Random Access Files 693
Writing Records to a Random Access Data File 697
Reading Records from a Random Access Data File 704

Accessing a Random Access File Sequentially 704
Accessing a Random Access File Randomly 705

Don’t Do It . 719
Key Terms . 719
Chapter Summary . 720
Review Questions . 721
Exercises . 724

Programming Exercises 724
Debugging Exercises 726
Game Zone . 727
Case Problems . 727

CHAPTER 14 Introduction to Swing Components 729

Understanding Swing Components 730
Using the JFrame Class 731

Customizing a JFrame’s Appearance 734
Using the JLabel Class 738

Changing a JLabel’s Font 740
Using a Layout Manager 743
Extending the JFrame Class 746
Adding JTextFields, JButtons, and Tool Tips to a
JFrame . 748
Adding JTextFields 748
Adding JButtons 750
Using Tool Tips . 752

Learning About Event-Driven Programming 755
Preparing Your Class to Accept Event Messages 756
Telling Your Class to Expect Events to Happen 757
Telling Your Class How to Respond to Events 757
An Event-Driven Program 757
Using Multiple Event Sources 759
Using the setEnabled() Method 761

Understanding Swing Event Listeners 764

xvi

C O N T E N T S

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the JCheckBox, ButtonGroup, and JComboBox
Classes . 767
The JCheckBox Class 767
The ButtonGroup Class 771
The JComboBox Class 772

Don’t Do It . 780
Key Terms . 780
Chapter Summary . 781
Review Questions . 783
Exercises . 785

Programming Exercises 785
Debugging Exercises 787
Game Zone . 787
Case Problems . 788

CHAPTER 15 Advanced GUI Topics 791

Understanding the Content Pane 792
Using Color . 795
Learning More About Layout Managers 797

Using BorderLayout 798
Using FlowLayout 800
Using GridLayout 802
Using CardLayout 803
Using Advanced Layout Managers 805

Using the JPanel Class 813
Creating JScrollPanes 821
A Closer Look at Events and Event Handling 824

An Event-Handling Example: KeyListener 827
Using AWTEvent Class Methods 830

Understanding x- and y-Coordinates 832
Handling Mouse Events 832
Using Menus . 837

Using Specialized Menu Items 841
Using addSeparator() 843
Using setMnemonic() 843

Don’t Do It . 848
Key Terms . 849

xvii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary . 850
Review Questions . 851
Exercises . 853

Programming Exercises 853
Debugging Exercises 855
Game Zone . 855
Case Problems . 859

CHAPTER 16 Graphics 861

Learning About Rendering Methods 862
Drawing Strings . 865

Repainting . 867
Setting a Font . 869
Using Color . 870

Drawing Lines and Shapes 874
Drawing Lines . 874
Drawing Unfilled and Filled Rectangles 875
Drawing Clear Rectangles 875
Drawing Rounded Rectangles 876
Drawing Shadowed Rectangles 878
Drawing Ovals . 879
Drawing Arcs . 880
Creating Polygons . 881
Copying an Area . 883
Using the paint() Method with JFrames 883

Learning More About Fonts 891
Discovering Screen Statistics 893
Discovering Font Statistics 894

Drawing with Java 2D Graphics 898
Specifying the Rendering Attributes 899
Setting a Drawing Stroke 901
Creating Objects to Draw 902

Don’t Do It . 910
Key Terms . 911
Chapter Summary . 911
Review Questions . 912
Exercises . 915

C O N T E N T S

xviii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Programming Exercises 915
Debugging Exercises 916
Game Zone . 916
Case Problems . 918

APPENDIX A Working with the Java Platform 919

Learning about the Java SE Development Kit 920
Configuring Windows to Use the JDK 920

Finding the Command Prompt 921
Command Prompt Anatomy 921
Changing Directories 921
Setting the class and classpath Variables 922
Changing a File’s Name 922

Compiling and Executing a Java Program 923
Key Terms . 923

APPENDIX B Data Representation 925

Understanding Numbering Systems 926
Representing Numeric Values 927
Representing Character Values 929
Key Terms . 930

APPENDIX C Formatting Output 931

Rounding Numbers . 932
Using the printf() Method 933

Specifying a Number of Decimal Places to
Display with printf() 936

Specifying a Field Size with printf() 937
Using the Optional Argument Index with printf() 938

Using the DecimalFormat Class 939
Key Terms . 940

APPENDIX D Generating Random Numbers 941

Understanding Computer-Generated Random Numbers 942
Using the Math.random() Method 943
Using the Random Class 944
Key Terms . 947

xix

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

APPENDIX E Javadoc 949

The Javadoc Documentation Generator 950
Javadoc Comment Types 950
Generating Javadoc Documentation 952

Specifying Visibility of Javadoc Documentation 955
Key Terms . 956

Glossary 957

Index 979

xx

C O N T E N T S

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface

Java Programming, Eighth Edition, provides the beginning programmer with a guide to
developing applications using the Java programming language. Java is popular among
professional programmers because it can be used to build visually interesting graphical user
interface (GUI) and Web-based applications. Java also provides an excellent environment for
the beginning programmer—a student can quickly build useful programs while learning the
basics of structured and object-oriented programming techniques.

This textbook assumes that you have little or no programming experience. It provides a solid
background in good object-oriented programming techniques and introduces terminology
using clear, familiar language. The programming examples are business examples; they do not
assume a mathematical background beyond high-school business math. In addition, the
examples illustrate only one or two major points; they do not contain so many features that
you become lost following irrelevant and extraneous details. Complete, working programs
appear frequently in each chapter; these examples help students make the transition from the
theoretical to the practical. The code presented in each chapter can also be downloaded from
the publisher’s Web site, so students can easily run the programs and experiment with
changes to them.

The student using Java Programming, Eighth Edition, builds applications from the bottom up
rather than starting with existing objects. This facilitates a deeper understanding of the
concepts used in object-oriented programming and engenders appreciation for the existing
objects students use as their knowledge of the language advances. When students complete
this book, they will know how to modify and create simple Java programs, and they will have
the tools to create more complex examples. They also will have a fundamental knowledge of
object-oriented programming, which will serve them well in advanced Java courses or in
studying other object-oriented languages such as C++, C#, and Visual Basic.

Organization and Coverage
Java Programming, Eighth Edition, presents Java programming concepts, enforcing good
style, logical thinking, and the object-oriented paradigm. Objects are covered right from the
beginning, earlier than in many other textbooks. You create your first Java program in
Chapter 1. Chapters 2, 3, and 4 increase your understanding of how data, classes, objects,
and methods interact in an object-oriented environment.

Chapters 5 and 6 explore input and repetition structures, which are the backbone of
programming logic and essential to creating useful programs in any language. You learn the
special considerations of string and array manipulation in Chapters 7, 8, and 9.

xxi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapters 10, 11, and 12 thoroughly cover inheritance and exception handling. Inheritance is
the object-oriented concept that allows you to develop new objects quickly by adapting the
features of existing objects; exception handling is the object-oriented approach to handling
errors. Both are important concepts in object-oriented design. Chapter 13 provides
information on handling files so you can permanently store and retrieve program output.

Chapters 14, 15, and 16 introduce GUI Swing components (Java’s visually pleasing,
user-friendly widgets), their layout managers, and graphics.

Features
The following features are new for the Eighth Edition:

JAVA 8E: All programs have been tested using Java 8e, the newest edition of Java.

WINDOWS 8.1: All programs have been tested in Windows 8.1, and all screen shots have
been taken in this new environment.

DATE AND TIME CLASSES: This edition provides thorough coverage of the java.time
package, which is new in Java 8e.

ON-SCREEN KEYBOARD: This edition provides instructions for displaying and using an
on-screen keyboard with either a touch screen or a standard screen.

MODERNIZED GRAPHICS OUTPUT: The chapter on graphics (Chapter 16) has been
completely rewritten to focus on Swing component graphics production using the
paintComponent() method.

MODERNIZED OVERRIDING: The @Override tag is introduced.

EXPANDED COVERAGE OF THE EQUALS() METHOD: The book provides a thorough
explanation of the difference between overloading and overriding the equals() method.

PROGRAMMING EXERCISES: Each chapter contains several new programming exercises
not seen in previous editions. All exercises and their solutions from the previous edition
that were replaced in this edition are still available in the Instructor’s Resource Kit.

Additionally, Java Programming, Eighth Edition, includes the following features:

OBJECTIVES: Each chapter begins with a list of objectives so you know the topics that will
be presented in the chapter. In addition to providing a quick reference to topics covered,
this feature provides a useful study aid.

YOU DO IT: In each chapter, step-by-step exercises help students create multiple working
programs that emphasize the logic a programmer uses in choosing statements to include.
These sections provide a means for students to achieve success on their own—even those
in online or distance learning classes.

NOTES: These highlighted tips provide additional information—for example, an
alternative method of performing a procedure, another term for a concept, background
information on a technique, or a common error to avoid.

xxii

P R E F A C E Features

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EMPHASIS ON STUDENT RESEARCH: The student frequently is directed to the Java Web
site to investigate classes and methods. Computer languages evolve, and programming
professionals must understand how to find the latest language improvements. This book
encourages independent research.

FIGURES: Each chapter contains many figures. Code figures are most frequently 25 lines
or fewer, illustrating one concept at a time. Frequent screen shots show exactly how
program output appears. Callouts appear where needed to emphasize a point.

COLOR: The code figures in each chapter contain all Java keywords in blue. This helps
students identify keywords more easily, distinguishing them from programmer-selected
names.

FILES: More than 200 student files can be downloaded from the publisher’s Web site. Most
files contain the code presented in the figures in each chapter; students can run the code for
themselves, view the output, and make changes to the code to observe the effects. Other
files include debugging exercises that help students improve their programming skills.

TWO TRUTHS & A LIE: A short quiz reviews each chapter section, with answers provided.
This quiz contains three statements based on the preceding section of text—two
statements are true and one is false. Over the years, students have requested answers to
problems, but we have hesitated to distribute them in case instructors want to use
problems as assignments or test questions. These true–false quizzes provide students with
immediate feedback as they read, without “giving away” answers to the multiple-choice
questions and programming exercises.

DON’T DO IT: This section at the end of each chapter summarizes common mistakes and
pitfalls that plague new programmers while learning the current topic.

KEY TERMS: Each chapter includes a list of newly introduced vocabulary, shown in the
order of appearance in the text. The list of key terms provides a short review of the major
concepts in the chapter.

SUMMARIES: Following each chapter is a summary that recaps the programming
concepts and techniques covered in the chapter. This feature provides a concise means for
students to check their understanding of the main points in each chapter.

REVIEW QUESTIONS: Each chapter includes 20 multiple-choice questions that serve as a
review of chapter topics.

GAME ZONE: Each chapter provides one or more exercises in which students can create
interactive games using the programming techniques learned up to that point; 70 game
programs are suggested in the book. The games are fun to create and play; writing them
motivates students to master the necessary programming techniques. Students might
exchange completed game programs with each other, suggesting improvements and
discovering alternate ways to accomplish tasks.

CASES: Each chapter contains two running case problems. These cases represent projects
that continue to grow throughout a semester using concepts learned in each new chapter.
Two cases allow instructors to assign different cases in alternate semesters or to divide
students in a class into two case teams.

xxiii

Features

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GLOSSARY: This edition contains an alphabetized list of all key terms identified in the
book, along with their definitions.

APPENDICES: This edition includes useful appendices on working with the Java platform,
data representation, formatting output, generating random numbers, and creating Javadoc
comments.

QUALITY: Every program example, exercise, and game solution was tested by the author
and then tested again by a quality assurance team using Java Standard Edition (SE) 8, the
most recent version available.

CourseMate
The more you study, the better the results. Make the most of your study time by accessing
everything you need to succeed in one place. Read your textbook, take notes, review
flashcards, watch videos, and take practice quizzes online. CourseMate goes beyond the book
to deliver what you need! Learn more at www.cengage.com/coursemate.

The Java Programming CourseMate includes:

Debugging Exercises: Four error-filled programs accompany each chapter. By
debugging these programs, students can gain expertise in program logic in general and
the Java programming language in particular.

Video Lessons: Each chapter is accompanied by at least three video lessons that help to
explain important chapter concepts. These videos were created and narrated by the
author.

Interactive Study Aids: An interactive eBook, quizzes, flashcards, and more!

Instructors may add CourseMate to the textbook package, or students may purchase
CourseMate directly at www.CengageBrain.com.

Instructor Resources
The following teaching tools are available for download at our Instructor Companion Site.
Simply search for this text at sso.cengage.com. An instructor login is required.

Electronic Instructor’s Manual: The Instructor’s Manual that accompanies this
textbook contains additional instructional material to assist in class preparation,
including items such as Overviews, Chapter Objectives, Teaching Tips, Quick
Quizzes, Class Discussion Topics, Additional Projects, Additional Resources, and Key
Terms. A sample syllabus is also available. Additional exercises in the Instructor’s
Manual include:

Tough Questions: Two or more fairly difficult questions that an applicant
might encounter in a technical job interview accompany each chapter. These
questions are often open-ended; some involve coding and others might involve
research.

xxiv

P R E F A C E Instructor Resources

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Up for Discussion: A few thought-provoking questions concerning programming in
general or Java in particular supplement each chapter. The questions can be used to
start classroom or online discussions, or to develop and encourage research, writing,
and language skills.

Programming Exercises and Solutions: Each chapter is accompanied by several
programming exercises to supplement those offered in the text. Instructors can use
these exercises as additional or alternate assignments, or as the basis for lectures.

Test Bank: Cengage Learning Testing Powered by Cognero is a flexible, online system
that allows you to:

Author, edit, and manage test bank content from multiple Cengage Learning
solutions.

Create multiple test versions in an instant.

Deliver tests from your LMS, your classroom, or anywhere you want.

PowerPoint Presentations: This text provides PowerPoint slides to accompany each
chapter. Slides may be used to guide classroom presentations, to make available to
students for chapter review, or to print as classroom handouts. Files are provided for every
figure in the text. Instructors may use the files to customize PowerPoint slides, illustrate
quizzes, or create handouts.

Solutions: Solutions to “You Do It” exercises and all end-of-chapter exercises are
available. Annotated solutions are provided for some of the multiple-choice Review
Questions. For example, if students are likely to debate answer choices or not understand
the choice deemed to be the correct one, a rationale is provided.

Acknowledgments
I would like to thank all of the people who helped to make this book a reality, including Dan
Seiter, Development Editor; Alyssa Pratt, Senior Content Developer; Carmel Isaac, Content
Project Manager; and Chris Scriver and Danielle Shaw, quality assurance testers. I am lucky to
work with these professionals who are dedicated to producing high-quality instructional
materials.

I am also grateful to the reviewers who provided comments and encouragement during this
book’s development, including Bernice Cunningham, Wayne County Community College
District; Bev Eckel, Iowa Western Community College; John Russo, Wentworth Institute of
Technology; Leslie Spivey, Edison Community College; and Angeline Surber, Mesa
Community College.

Thanks, too, to my husband, Geoff, for his constant support and encouragement. Finally, this
book is dedicated to the newest Farrell, coming March 2015. As this book goes to production,
I don’t know your name or even your gender, but I do know that I love you.

Joyce Farrell

xxv

Acknowledgments

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Read This Before
You Begin
The following information will help you as you prepare to use this textbook.

To the User of the Data Files
To complete the steps and projects in this book, you need data files that have been created
specifically for this book. Your instructor will provide the data files to you. You also can
obtain the files electronically from www.CengageBrain.com. Find the ISBN of your title on the
back cover of your book, then enter the ISBN in the search box at the top of the Cengage
Brain home page. You can find the data files on the product page that opens. Note that
you can use a computer in your school lab or your own computer to complete the exercises
in this book.

Using Your Own Computer
To use your own computer to complete the steps and exercises, you need the following:

Software: Java SE 8, available from www.oracle.com/technetwork/java/index.html. Although
almost all of the examples in this book will work with earlier versions of Java, this book was
created using Java 8. The book clearly points out the few cases when an example is based on
Java 7 and will not work with earlier versions of Java. You also need a text editor, such as
Notepad. A few exercises ask you to use a browser for research.

Hardware: If you are using Windows 8, the Java Web site suggests at least 128 MB of
memory and at least 181 MB of disk space. For other operating system requirements, see
http://java.com/en/download/help.

xxvi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Features
This text focuses on helping students become better programmers and understand
Java program development through a variety of key features. In addition to Chapter
Objectives, Summaries, and Key Terms, these useful features will help students
regardless of their learning styles.

YOU DO IT sections walk
students through program
development step by step.

The author does an awesome
job: the examples, problems,
and material are very easy to
understand!
—Bernice Cunningham,
Wayne County Community
College District

VIDEO LESSONS help
explain important chapter
concepts. Videos are part
of the text’s enhanced
CourseMate site.

NOTES provide
additional information—
for example, another
location in the book that
expands on a topic, or a
common error to watch
out for.

xxvii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

THE DON’T DO IT ICON illustrates
how NOT to do something—for
example, having a dead code
path in a program. This icon
provides a visual jolt to the student,

are NOT to be emulated and making
students more careful to recognize
problems in existing code.

TWO TRUTHS & A LIE quizzes appear
after each chapter section, with
answers provided. The quiz contains
three statements based on the preceding
section of text—two statements are
true and one is false. Answers give
immediate feedback without “giving away”
answers to the multiple-choice questions
and programming problems later in
the chapter. Students also have the option
to take these quizzes electronically
through the enhanced CourseMate site.

DON'T DO IT sections at the end
of each chapter list advice for
avoiding common programming errors.

xxviii

F E A T U R E S

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Assessment
I found the author’s explanation of
difficult topics to be very clear and
thorough.

—Leslie Spivey,
Edison Community College

PROGRAMMING EXERCISES provide
opportunities to practice concepts. These
exercises increase in difficulty and allow
students to explore each major
programming concept presented in the
chapter. Additional programming
exercises are available in the Instructor's
Resource Kit.

REVIEW QUESTIONS test
student comprehension of the
major ideas and techniques
presented. Twenty questions
follow each chapter.

xxix

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

DEBUGGING EXERCISES are
included with each chapter because
examining programs critically and
closely is a crucial programming skill.
Students can download these exercises
at www.CengageBrain.com and through
the CourseMate available for this text.
These files are also available to
instructors through sso.cengage.com.

GAME ZONE EXERCISES are included
at the end of each chapter. Students can
create games as an additional entertaining
way to understand key programming
concepts.

CASE PROBLEMS provide opportunities
to build more detailed programs that
continue to incorporate increasing
functionality throughout the book.

xxx

A S S E S S M E N T

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1
Creating Java
Programs

In this chapter, you will:

Define basic programming terminology

Compare procedural and object-oriented programming

Describe the features of the Java programming language

Analyze a Java application that produces console output

Compile a Java class and correct syntax errors

Run a Java application and correct logic errors

Add comments to a Java class

Create a Java application that produces GUI output

Find help

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning Programming Terminology
A computer program is a set of instructions that you write to tell a computer what to do.
Computer equipment, such as a monitor or keyboard, is hardware, and programs are
software. A program that performs a task for a user (such as calculating and producing
paychecks, word processing, or playing a game) is application software; a program that
manages the computer itself (such as Windows or Linux) is system software. The logic
behind any computer program, whether it is an application or system program, determines
the exact order of instructions needed to produce desired results. Much of this book describes
how to develop the logic to create application software.

All computer programs ultimately are converted to machine language. Machine language,
or machine code, is the most basic set of instructions that a computer can execute. Each type
of processor (the internal hardware that handles computer instructions) has its own set of
machine language instructions. Programmers often describe machine language using 1s and
0s to represent the on-and-off circuitry of computer systems.

The system that uses only 1s and 0s is the binary numbering system. Appendix B describes the binary
system in detail. Later in this chapter, you will learn that bytecode is the name for the binary code created
when Java programs are converted to machine language.

Machine language is a low-level programming language, or one that corresponds closely to a
computer processor’s circuitry. Low-level languages require you to use memory addresses for
specific machines when you create commands. This means that low-level languages are
difficult to use and must be customized for every type of machine on which a program runs.

Fortunately, programming has evolved into an easier task because of the development of
high-level programming languages. A high-level programming language allows you to use
a vocabulary of reasonable terms, such as read, write, or add, instead of the sequences of
1s and 0s that perform these tasks. High-level languages also allow you to assign single-word,
intuitive names to areas of computer memory where you store data. This means you can use
identifiers such as hoursWorked or rateOfPay, rather than having to remember their memory
locations. Currently, over 2,000 high-level programming languages are available to
developers; Java is one of them.

Each high-level language has its own syntax, or rules about how language elements are
combined correctly to produce usable statements. For example, depending on the specific
high-level language, you might use the verb print or write to produce output. All languages
have a specific, limited vocabulary (the language’s keywords) and a specific set of rules for
using that vocabulary. When you are learning a computer programming language, such as
Java, C++, or Visual Basic, you really are learning the vocabulary and syntax for that language.

Using a programming language, programmers write a series of program statements, similar
to English sentences, to carry out the tasks they want the program to perform. Program
statements are also known as commands because they are orders to the computer, such as
“output this word” or “add these two numbers.”

C H A P T E R 1 Creating Java Programs

2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After the program statements are written, high-level language programmers use a computer
program called a compiler or interpreter to translate their language statements into machine
language. A compiler translates an entire program before carrying out any statements, or
executing them, whereas an interpreter translates one program statement at a time,
executing a statement as soon as it is translated.

Whether you use a compiler or interpreter often depends on the programming language you use. For
example, C++ is a compiled language, and Visual Basic is an interpreted language. Each type of translator
has its supporters; programs written in compiled languages execute more quickly, whereas programs
written in interpreted languages can be easier to develop and debug. Java uses the best of both technolo-
gies: a compiler to translate your programming statements and an interpreter to read the compiled code line
by line when the program executes (also called at run time).

Compilers and interpreters issue one or more error messages each time they encounter an
invalid program statement—that is, a statement containing a syntax error, or misuse of the
language. Examples of syntax errors include misspelling a keyword or omitting a word that a
statement requires. When a syntax error is detected, the programmer can correct the error
and attempt another translation. Repairing all syntax errors is the first part of the process
of debugging a program—freeing the program of all flaws or errors, also known as bugs.
Figure 1-1 illustrates the steps a programmer takes while developing an executable program.
You will learn more about debugging Java programs later in this chapter.

Learning Programming Terminology

3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As Figure 1-1 shows, you might write a program with correct syntax that still contains logic
errors. A logic error is a bug that allows a program to run, but that causes it to operate
incorrectly. Correct logic requires that all the right commands be issued in the appropriate
order. Examples of logic errors include multiplying two values when you meant to divide

De
bu

gg
in

g
pr

oc
es

s

De
bu

gg
in

g
pr

oc
es

s

Yes

Yes

No

No

Use translating software (a compiler or
interpreter) that translates programming
language statements to machine language

Examine list of
syntax errors

Write program language statements
that correspond to the logic

Examine
program output

Are there runtime
or output errors?

Can all statements
be successfully
translated?

Plan program logic

Execute the program

Figure 1-1 The program development process

C H A P T E R 1 Creating Java Programs

4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

them or producing output prior to obtaining the appropriate input. When you develop a
program of any significant size, you should plan its logic before you write any program
statements.

Correcting logic errors is much more difficult than correcting syntax errors. Syntax errors are
discovered by the language translator when you compile a program, but a program can be free
of syntax errors and execute while still retaining logic errors. Often you can identify logic
errors only when you examine a program’s output. For example, if you know an employee’s
paycheck should contain the value $4,000, but when you examine a payroll program’s output
you see that it holds $40, then a logic error has occurred. Perhaps an incorrect calculation was
performed, or maybe the hours worked value was output by mistake instead of the net pay
value. When output is incorrect, the programmer must carefully examine all the statements
within the program, revise or move the offending statements, and translate and test the
program again.

Just because a program produces correct output does not mean it is free from logic errors. For example,
suppose that a program should multiply two values entered by the user, that the user enters two 2s, and the
output is 4. The program might actually be adding the values by mistake. The programmer would discover
the logic error only by entering different values, such as 5 and 7, and examining the result.

Programmers call some logic errors semantic errors. For example, if you misspell a programming
language word, you commit a syntax error, but if you use a correct word in the wrong context, you commit a
semantic error.

TWO TRUTHS & A LIE

Learning Programming Terminology

In each “Two Truths & a Lie” section, two of the numbered statements are true, and one
is false. Identify the false statement and explain why it is false.

1. Unlike a low-level programming language, a high-level programming language
allows you to use a vocabulary of reasonable terms instead of the sequences of
on-and-off switches that perform the corresponding tasks.

2. A syntax error occurs when you misuse a language; locating and repairing all
syntax errors is part of the process of debugging a program.

3. Logic errors are fairly easy to find because the software that translates a program
finds all the logic errors for you.

.t upt uo s’ mar gor p a gni ni maxe yb yl no der evocsi d eb yll ausu nac
sr orr e ci gol t ub, sr orr e xat nys sdnif r ot al snart egaugnal A. 3# si t ne met at s esl af ehT

Learning Programming Terminology

5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Comparing Procedural and Object-Oriented
Programming Concepts
Two popular approaches to writing computer programs are procedural programming and
object-oriented programming.

Procedural Programming
Procedural programming is a style of programming in which operations are executed one
after another in sequence. In procedural applications, you create names for computer
memory locations that can hold values—for example, numbers and text—in electronic
form. The named computer memory locations are called variables because they hold values
that might vary. For example, a payroll program might contain a variable named rateOfPay.
The memory location referenced by the name rateOfPay might contain different values
(a different value for every employee of the company) at different times. During the execution
of the payroll program, each value stored under the name rateOfPay might have many
operations performed on it—for example, the value might be read from an input device,
be multiplied by another variable representing hours worked, and be printed on paper.

For convenience, the individual operations used in a computer program are often grouped
into logical units called procedures. For example, a series of four or five comparisons and
calculations that together determine a person’s federal withholding tax value might be
grouped as a procedure named calculateFederalWithholding. A procedural program
defines the variable memory locations and then calls a series of procedures to input,
manipulate, and output the values stored in those locations. When a program calls a
procedure, the current logic is temporarily abandoned so that the procedure’s commands can
execute. A single procedural program often contains hundreds of variables and procedure
calls. Procedures are also called modules, methods, functions, and subroutines. Users of
different programming languages tend to use different terms. As you will learn later in this
chapter, Java programmers most frequently use the term method.

Object-Oriented Programming
Object-oriented programming is an extension of procedural programming in which you take
a slightly different approach to writing computer programs. Writing object-oriented
programs involves:

Creating classes, which are blueprints for objects

Creating objects, which are specific instances of those classes

Creating applications that manipulate or use those objects

Programmers use OO as an abbreviation for object-oriented; it is pronounced “oh oh.” Object-oriented
programming is abbreviated OOP, and pronounced to rhyme with soup.

C H A P T E R 1 Creating Java Programs

6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Originally, object-oriented programming was used most frequently for two major types of
applications:

Computer simulations, which attempt to mimic real-world activities so that their
processes can be improved or so that users can better understand how the real-world
processes operate

Graphical user interfaces, or GUIs (pronounced “gooeys”), which allow users to interact
with a program in a graphical environment

Thinking about objects in these two types of applications makes sense. For example, a city
might want to develop a program that simulates traffic patterns to help prevent traffic tie-ups.
Programmers would create classes for objects such as cars and pedestrians that contain their
own data and rules for behavior. For example, each car has a speed and a method for changing
that speed. The specific instances of cars could be set in motion to create a simulation of a real
city at rush hour.

Creating a GUI environment for users is also a natural use for object orientation. It is easy to
think of the components a user manipulates on a computer screen, such as buttons and scroll
bars, as similar to real-world objects. Each GUI object contains data—for example, a button
on a screen has a specific size and color. Each object also contains behaviors—for example,
each button can be clicked and reacts in a specific way when clicked. Some people consider
the term object-oriented programming to be synonymous with GUI programming, but object-
oriented programming means more. Although many GUI programs are object oriented, not
all object-oriented programs use GUI objects. Modern businesses use object-oriented design
techniques when developing all sorts of business applications, whether they are GUI
applications or not. In the first 13 chapters of this book, you will learn object-oriented
techniques that are appropriate for any program type; in the last chapters, you will apply what
you have learned about those techniques specifically to GUI applications.

Understanding object-oriented programming requires grasping three basic concepts:

Encapsulation as it applies to classes as objects

Inheritance

Polymorphism

Understanding Classes, Objects, and Encapsulation
In object-oriented terminology, a class is a term that describes a group or collection of
objects with common properties. In the same way that a blueprint exists before any houses
are built from it, and a recipe exists before any cookies are baked from it, a class definition
exists before any objects are created from it. A class definition describes what attributes its
objects will have and what those objects will be able to do. Attributes are the characteristics
that define an object; they are properties of the object. When you learn a programming
language such as Java, you learn to work with two types of classes: those that have already
been developed by the language’s creators and your own new, customized classes.

Comparing Procedural and Object-Oriented Programming Concepts

7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An object is a specific, concrete instance of a class. Creating an instance is called
instantiation. You can create objects from classes that you write and from classes written by
other programmers, including Java’s creators. The values contained in an object’s properties
often differentiate instances of the same class from one another. For example, the class
Automobile describes what Automobile objects are like. Some properties of the Automobile
class are make, model, year, and color. Each Automobile object possesses the same attributes,
but not necessarily the same values for those attributes. One Automobile might be a 2010
white Ford Taurus and another might be a 2015 red Chevrolet Camaro. Similarly, your dog
has the properties of all Dogs, including a breed, name, age, and whether its shots are current.
The values of the properties of an object are referred to as the object’s state. In other words,
you can think of objects as roughly equivalent to nouns, and of their attributes as similar to
adjectives that describe the nouns.

When you understand an object’s class, you understand the characteristics of the object. If
your friend purchases an Automobile, you know it has a model name, and if your friend gets a
Dog, you know the dog has a breed. Knowing what attributes exist for classes allows you to ask
appropriate questions about the states or values of those attributes. For example, you might
ask how many miles the car gets per gallon, but you would not ask whether the car has had
shots. Similarly, in a GUI operating environment, you expect each component to have
specific, consistent attributes and methods, such as a window having a title bar and a close
button, because each component gains these properties as a member of the general class of
GUI components. Figure 1-2 shows the relationship of some Dog objects to the Dog class.

By convention, programmers using Java begin their class names with an uppercase letter. Thus, the class
that defines the attributes and methods of an automobile would probably be named Automobile, and the
class for dogs would probably be named Dog. However, following this convention is not required to produce
a workable program.

Dog class definition Dog class instances (objects)

Every Dog that is
created will have
a:

Ginger
6
Akita
Up to date

Bowser
2
Retriever
Up to date

Roxy
1
Beagle
Up to date

Name

Age

Breed

Shot status

Figure 1-2 Dog class definition and some objects created from it

C H A P T E R 1 Creating Java Programs

8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Besides defining properties, classes define methods their objects can use. A method is a
self-contained block of program code that carries out some action, similar to a procedure in a
procedural program. An Automobile, for example, might have methods for moving forward,
moving backward, and determining the status of its gas tank. Similarly, a Dog might have
methods for walking, eating, and determining its name, and a program’s GUI components
might have methods for maximizing and minimizing them as well as determining their size.
In other words, if objects are similar to nouns, then methods are similar to verbs.

In object-oriented classes, attributes and methods are encapsulated into objects.
Encapsulation refers to two closely related object-oriented notions:

Encapsulation is the enclosure of data and methods within an object. Encapsulation allows
you to treat all of an object’s methods and data as a single entity. Just as an actual dog
contains all of its attributes and abilities, so would a program’s Dog object.

Encapsulation also refers to the concealment of an object’s data and methods from outside
sources. Concealing data is sometimes called information hiding, and concealing how
methods work is implementation hiding; you will learn more about both terms in the
chapter “Using Methods, Classes, and Objects.” Encapsulation lets you hide specific object
attributes and methods from outside sources and provides the security that keeps data and
methods safe from inadvertent changes.

If an object’s methods are well written, the user can be unaware of the low-level details of how
the methods are executed, and the user must simply understand the interface or interaction
between the method and the object. For example, if you can fill your Automobile with
gasoline, it is because you understand the interface between the gas pump nozzle and the
vehicle’s gas tank opening. You don’t need to understand how the pump works mechanically
or where the gas tank is located inside your vehicle. If you can read your speedometer, it does
not matter how the displayed figure is calculated. As a matter of fact, if someone produces a
superior, more accurate speed-determining device and inserts it in your Automobile, you
don’t have to know or care how it operates, as long as your interface remains the same.
The same principles apply to well-constructed classes used in object-oriented programs—
programs that use classes only need to work with interfaces.

Understanding Inheritance and Polymorphism
An important feature of object-oriented program design is inheritance—the ability to create
classes that share the attributes and methods of existing classes, but with more specific
features. For example, Automobile is a class, and all Automobile objects share many traits and
abilities. Convertible is a class that inherits from the Automobile class; a Convertible is a
type of Automobile that has and can do everything a “plain” Automobile does—but with an
added ability to lower its top. (In turn, Automobile inherits from the Vehicle class.)
Convertible is not an object—it is a class. A specific Convertible is an object—for example,
my1967BlueMustangConvertible.

Inheritance helps you understand real-world objects. For example, the first time you
encounter a convertible, you already understand how the ignition, brakes, door locks, and

Comparing Procedural and Object-Oriented Programming Concepts

9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

other systems work because you realize that a convertible is a type of automobile, so you need
to be concerned only with the attributes and methods that are “new” with a convertible. The
advantages in programming are the same—you can build new classes based on existing classes
and concentrate on the specialized features you are adding.

A final important concept in object-oriented terminology is polymorphism. Literally,
polymorphism means “many forms”—it describes the feature of languages that allows the
same word or symbol to be interpreted correctly in different situations based on the context.
For example, although the classes Automobile, Sailboat, and Airplane all inherit from
Vehicle, turn and stop methods work differently for instances of those classes. The
advantages of polymorphism will become more apparent when you begin to create GUI
applications containing features such as windows, buttons, and menu bars. In a GUI application,
it is convenient to remember one method name, such as setColor or setHeight, and have it
work correctly no matter what type of object you are modifying.

When you see a plus sign (+) between two numbers, you understand they are being added.
When you see it carved in a tree between two names, you understand that the names are
linked romantically. Because the symbol has diverse meanings based on context, it is
polymorphic. Chapters 10 and 11 provide more information about inheritance and
polymorphism and how they are implemented in Java.

Watch the video Object-Oriented Programming.

TWO TRUTHS & A LIE

Comparing Procedural and Object-Oriented
Programming Concepts

1. An instance of a class is a created object that possesses the attributes and
methods described in the class definition.

2. Encapsulation protects data by hiding it within an object.

3. Polymorphism is the ability to create classes that share the attributes and methods
of existing classes, but with more specific features.

. snoi t ca el pi tl u mesuac ot mr et eno esu ot ytili ba eht sebi r csed msi hpr o myl op
; ser ut aef cifi ceps er o mhti wt ub, sessal c gni t si xef o sdoht e mdna set ubi rtt a eht
er ahs t aht sessal c et aer c ot ytili ba eht si ecnati r ehnI . 3# si t ne met at s esl af ehT

C H A P T E R 1 Creating Java Programs

10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Features of the Java Programming Language
Java was developed by Sun Microsystems as an object-oriented language for general-purpose
business applications and for interactive, World Wide Web-based Internet applications.
(Sun was later acquired by Oracle Corporation.) Some of the advantages that make Java
a popular language are its security features and the fact that it is architecturally neutral:
Unlike other languages, you can use Java to write a program that runs on any operating
system (such as Windows, Mac OS, or Linux) or device (such as PCs, phones, and tablet
computers).

Java can be run on a wide variety of computers and devices because it does not execute
instructions on a computer directly. Instead, Java runs on a hypothetical computer known as
the Java Virtual Machine (JVM). When programmers call the JVM hypothetical, they mean it
is not a physical entity created from hardware, but is composed only of software.

Figure 1-3 shows the Java environment. Programming statements written in a high-level
programming language are source code. When you write a Java program, you first
construct the source code using a text editor such as Notepad or a development
environment and source code editor such as jGRASP, which you can download from the
Web for free. A development environment is a set of tools that help you write programs by
providing such features as displaying a language’s keywords in color. The statements are
saved in a file; then, the Java compiler converts the source code into a binary program of
bytecode. A program called the Java interpreter then checks the bytecode and
communicates with the operating system, executing the bytecode instructions line by line
within the Java Virtual Machine. Because the Java program is isolated from the operating
system, it is also insulated from the particular hardware on which it is run. Because of this
insulation, the JVM provides security against intruders accessing your computer’s hardware
through the operating system. Therefore, Java is more secure than other languages.
Another advantage provided by the JVM means less work for programmers—when using
other programming languages, software vendors usually have to produce multiple versions
of the same product (a Windows version, Macintosh version, UNIX version, Linux version,
and so on) so all users can run the program. With Java, one program version runs on all
these platforms. “Write once, run anywhere” (WORA) is the slogan developed by Sun
Microsystems to describe the ability of one Java program version to work correctly on
multiple platforms.

Java also is simpler to use than many other object-oriented languages. Java is modeled after
C++. Although neither language is easy to read or understand on first exposure, Java does
eliminate some of the most difficult-to-understand features in C++, such as pointers and
multiple inheritance.

Features of the Java Programming Language

11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Java Program Types
You can write two kinds of programs using Java:

Applets are programs that are embedded in a Web page. You can read about applets in a
special section at the end of this chapter.

Java applications are stand-alone programs. Java applications can be further subdivided
into console applications, which support character or text output to a computer screen,
and windowed applications, which create a GUI with elements such as menus, toolbars,
and dialog boxes. Console applications are the easier applications to create; you start using
them in the next section.

Java Source Code

Source code is
stored on a disk in
a file with a name

ending in .java

Compiler creates
bytecode that
is stored on a

disk in a file with
a name ending in

.class

JVM (named java.exe)
performs security checks
and translates bytecode to
machine language, which

executes

Java Compiler

Java Virtual Machine

Java Interpreter

Computer Operating
System

Figure 1-3 The Java environment

C H A P T E R 1 Creating Java Programs

12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Features of the Java Programming Language

1. Java was developed to be architecturally neutral, which means that anyone can
build an application without extensive study.

2. After you write a Java program, the compiler converts the source code into a binary
program of bytecode.

3. Java programs that are embedded in a Web page are called applets, while stand-
alone programs are called Java applications.

. mr oft al p yna no nur lli wt aht mar gor p a eti r w ot avaJ esu nac uoy t aht snae m
hci h w,l art uen yll ar ut ceti hcr a eb ot depol eved sa wavaJ . 1# si t ne met at s esl af ehT

Analyzing a Java Application that Produces
Console Output
At first glance, even the simplest Java application involves a fair amount of confusing syntax.
Consider the application in Figure 1-4. This program is written on seven lines, and its only
task is to display “First Java application” on the screen.

public class First
{

public static void main(String[] args)
{

System.out.println("First Java application");
}

}

Figure 1-4 The First class

In program code in figures in this book, Java keywords as well as true, false, and null are blue, and all
other program elements are black. A complete list of Java keywords is shown later in this chapter.

The code for every complete program shown in this book is available in a set of student files you can
download so that you can execute the programs on your own computer.

Analyzing a Java Application that Produces Console Output

13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding the Statement that Produces the Output
Although the program in Figure 1-4 occupies several lines, it contains only one Java
programming statement. The statement System.out.println("First Java
application"); does the actual work in this program. Like all Java statements, this one
ends with a semicolon. Most Java programming statements can be spread across as
many lines as you choose, as long as you place line breaks in appropriate places. For
example, in the program in Figure 1-4, you could place a line break before or after the
opening parenthesis, or before or after the closing parenthesis. However, you usually
want to place a short statement on a single line.

The text “First Java application” is a literal string of characters—a series of characters that
will appear in output exactly as entered. Any literal string in Java is written between
double quotation marks. In Java, a literal string cannot be broken and placed on multiple
lines. Figure 1-5 labels this string and the other parts of the statement.

The string “First Java application” appears within parentheses because the string is an
argument to a method, and arguments to methods always appear within parentheses.
Arguments are pieces of information that are sent into a method. The act of sending
arguments to a method is called passing arguments to the method. As an analogy, consider
placing a catalog order with a company that sells sporting goods. Processing a catalog order is
a method that consists of a set of standard procedures—recording the order, checking the
availability of the item, pulling the item from the warehouse, and so on. Each catalog order
also requires a set of data items, such as which item number you are ordering and the
quantity of the item desired; these data items can be considered the arguments to the
order-processing method. If you order two of item 5432 from a catalog, you expect different
results than if you order 1,000 of item 9008. Likewise, if you pass the argument “Happy
Holidays” to a Java display method, you expect different results than if you pass the argument
“First Java application”.

System.out.println("First Java application");

System is a class.
out is a property of the
System class.

Dots separate classes,
objects, and methods.

Every Java statement ends
with a semicolon.

println() is a method.
Method names are always
followed by parentheses.

"First Java application"
is a literal string that is the argument
to the println() method.

Figure 1-5 Anatomy of a Java statement

C H A P T E R 1 Creating Java Programs

14

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Within the statement System.out.println("First Java application");, the method to
which you are passing "First Java application" is named println(). The Java methods
println() and print() both produce output. With println(), after the output is displayed,
the insertion point moves to the following line so that subsequent output appears on a
new line. With print(), however, the insertion point does not advance to a new line, so
subsequent output appears at the end of the current line.

When you call a method, you always use parentheses following the method name. In this
book, you will learn about many methods that require arguments between their parentheses,
and many others for which you leave the parentheses empty. The println() method can be
used with no arguments when you want to output a blank line. Later in this chapter, you will
learn about a method named showMessageDialog() that requires two arguments. Other
methods require more.

Within the statement System.out.println("First Java application");, out is an object
that is a property of the System class that refers to the standard output device for a system,
normally the monitor. The out object itself is an instance of the PrintStream class, which
contains several methods, including println(). Technically, you could create the out object
and write the instructions within the println()method yourself, but it would be time
consuming, and the creators of Java assumed you frequently would want to display output on
a screen. Therefore, the System and PrintStream classes, the out object, and the println()

method were created as a convenience to the programmer.

Within the statement System.out.println("First Java application");, System is a class.
Therefore, System defines attributes for System objects, just as the Dog class defines the
attributes for Dog objects. One of the System attributes is out. (You can probably guess that
another attribute is in and that it represents an input device.)

The dots (periods) in System.out.println() are used to separate the names of the
components in the statement. You will use this format repeatedly in your Java programs.

Java is case sensitive; the class named System is a completely different class from one named
system, SYSTEM, or even sYsTeM, and out is a different object from one named Out or OUT. You
must pay close attention to using correct uppercase and lowercase values when you write Java
programs.

So, the statement that displays the string “First Java application” contains a class, an object
reference, a method call, a method argument, and a statement-ending semicolon, but the
statement cannot stand alone; it is embedded within a class, as shown in Figure 1-4.

Understanding the First Class
Everything that you use within a Java program must be part of a class. When you write
public class First, you are defining a class named First. You can define a Java class using
any name or identifier you need, as long as it meets the following requirements:

A Java identifier must begin with a letter of the English alphabet, a non-English letter
(such as α or π), an underscore, or a dollar sign. A class name cannot begin with a digit.

A Java identifier can contain only letters, digits, underscores, or dollar signs.

Analyzing a Java Application that Produces Console Output

15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Java identifier cannot be a reserved keyword, such as public or class. (See Table 1-1
for a list of reserved keywords.)

A Java identifier cannot be one of the following values: true, false, or null. These are not
keywords (they are primitive values), but they are reserved and cannot be used.

Java is based on Unicode, which is an international system of character representation. The term letter
indicates English-language letters as well as characters from Arabic, Greek, and other alphabets. You can
learn more about Unicode in Appendix B.

Although const and goto are reserved as keywords, they are not used in Java programs, and they have no
function. Both words are used in other languages and were reserved in case developers of future versions of
Java wanted to implement them.

It is a Java standard, although not a requirement, to begin class identifiers with an uppercase
letter and employ other uppercase letters as needed to improve readability. (By contrast,
method identifiers, like println(), conventionally begin with a lowercase letter.) The style
that joins words in which each word begins with an uppercase letter is called Pascal casing,
or sometimes upper camel casing. You should follow established conventions for Java so
your programs will be easy for other programmers to interpret and follow. This book uses
established Java programming conventions.

Table 1-2 lists some valid and conventional class names that you could use when writing
programs in Java. Table 1-3 provides some examples of class names that could be used in Java
(if you use these class names, the class will compile) but that are unconventional and not
recommended. Table 1-4 provides some class name examples that are illegal.

abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

Table 1-1 Java reserved keywords

C H A P T E R 1 Creating Java Programs

16

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 1-4 (and again in Figure 1-6), the line public class First is the class header; it
contains the keyword class, which identifies First as a class. The reserved word public is an
access specifier. An access specifier defines the circumstances under which a class can be
accessed and the other classes that have the right to use a class. Public access is the most
liberal type of access; you will learn about public access and other types of access in the
chapter “Using Methods, Classes, and Objects.”

Class Name Description

Employee Begins with an uppercase letter

UnderGradStudent Begins with an uppercase letter, contains no spaces, and emphasizes each
new word with an initial uppercase letter

InventoryItem Begins with an uppercase letter, contains no spaces, and emphasizes the
second word with an initial uppercase letter

Budget2016 Begins with an uppercase letter and contains no spaces

Table 1-2 Some valid class names in Java

Class Name Description

Undergradstudent New words are not indicated with initial uppercase letters, making this
identifier difficult to read

Inventory_Item Underscore is not commonly used to indicate new words

BUDGET2016 Using all uppercase letters for class identifiers is not conventional

budget2016 Conventionally, class names do not begin with a lowercase letter

Table 1-3 Legal but unconventional and nonrecommended class names in Java

Class Name Description

Inventory Item Space character is illegal in an identifier

class class is a reserved word

2016Budget Class names cannot begin with a digit

phone# The number symbol (#) is illegal in an identifier

Table 1-4 Some illegal class names in Java

Analyzing a Java Application that Produces Console Output

17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After the class header, you enclose the contents of a class within curly braces ({ and }); any data
items and methods between the curly braces make up the class body. A class body can be
composed of any number of data items and methods. In Figure 1-4 (and again in Figure 1-6),
the class First contains only one method within its curly braces. The name of the method is
main(), and the main() method, like the println() method, includes its own set of
parentheses. The main() method in the First class contains only one statement—the
statement that uses the println() method. The main() method does not contain any other
methods, but it calls the println() method.

Indent Style
In general, whitespace is optional in Java. Whitespace is any combination of nonprinting
characters. You use whitespace to organize your program code and make it easier to read.
You can insert whitespace between words or lines in your program code by typing spaces,
tabs, or blank lines because the compiler ignores these extra spaces. However, you cannot use
whitespace within an identifier or keyword, or surrounding the dots in any class-object-
method combination.

For every opening curly brace ({) in a Java program, there must be a corresponding closing
curly brace (}), but the placement of the opening and closing curly braces is not important to
the compiler. For example, the following class executes in exactly the same way as the one
shown in Figure 1-4. The only difference is the layout of the braces—the line breaks occur in
different locations.

public class First{
public static void main(String[] args){

System.out.println("First Java application");
}

}

The indent style shown in the preceding example, in which opening braces do not stand alone
on separate lines, is known as the K & R style and is named for Kernighan and Ritchie, who
wrote the first book on the C programming language. The indent style shown in Figure 1-4

{
 public static void main(String[] args)
 {
 System.out.println("First Java application");
 }
}

public class First

public is an access
specifier.

The keyword class
identifies First as
a class.

First is the name of
the class.

Everything
between the
curly braces is
the class body.

This line is
the class
header.

Figure 1-6 The parts of a typical class

C H A P T E R 1 Creating Java Programs

18

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and used throughout this book, in which curly braces are aligned and each occupies its own
line, is called the Allman style and is named for Eric Allman, a programmer who popularized
the style. Java programmers use a variety of indent styles, and all can produce workable Java
programs. When you write your own code, you should develop a consistent style. In school,
your instructor might have a preferred style, and when you get a job as a Java programmer,
your organization most likely will have a preferred style. With many development
environments, indentations are made for you automatically as you type.

Most programmers indent a method’s statements a few spaces more than its curly braces.
Some programmers indent two spaces, some three, and some four. Some programmers use
the Tab key to create indentations, but others are opposed to this practice because the Tab
key can indicate different indentation sizes on different systems. Some programmers don’t
care whether tabs or spaces are used, as long as you don’t mix them in the same program. The
Java compiler does not care how you indent. Again, the most important rule is to develop a
consistent style of which your organization approves.

Understanding the main() Method
The method header for the main() method is quite complex. Figure 1-7 shows the parts of
the main() method.

public class First
{

 public static void main(String[] args)

 {
 System.out.println("First Java application");
 }

}

public is an access specifier.

args is the identifier of the array of
Strings that is the argument to
this method.

This line is the
method header.

Everything between
the curly braces is the
method body.

static means this method works without
instantiating an object of the class.

void is the method’s return type.

The square brackets mean the
argument to this method is an
array of Strings. Chapters 8
and 9 provide more information
about Strings and arrays.

String is a class. Any
arguments to this method
must be String objects.

Figure 1-7 The parts of a typical main() method

Analyzing a Java Application that Produces Console Output

19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The meaning and purpose of each of the terms used in the method header will become clearer
as you complete this textbook; a brief explanation will suffice for now.

In the method header public static void main(String[] args), the word public is an
access specifier, just as it is when you use it to define the First class.

In Java, the reserved keyword static means that a method is accessible and usable even
though no objects of the class exist.

The keyword void used in the main() method header indicates that the main() method
does not return any value when it is called. This doesn’t mean that main() doesn’t
produce output—in fact, the method in Figure 1-4 (and in Figure 1-7) does. It only means
that the main() method does not send any value back to any other method that might use
it. You will learn more about return values in the chapter “Methods, Classes, and Objects.”

The name of the method is main(). As is the convention with Java methods, its identifier
begins with a lowercase letter. Not all classes have a main() method; in fact, many do not.
All Java applications, however, must include a class containing a public method named
main(), and most Java applications have additional classes and methods. When you
execute a Java application, the JVM always executes the main() method first.

In the method header public static void main(String[] args), the contents between
the parentheses, String[] args, represent the type of argument that can be passed to the
main() method, just as the string "First Java application" is an argument passed to the
println() method. String is a Java class that can be used to hold character strings
(according to Java convention, it begins with an uppercase letter, like other classes). The
identifier args is used to hold any String objects that might be sent to the main()
method. The main() method could do something with those arguments, such as display
them, but in Figure 1-4, the main() method does not actually use the args identifier.
Nevertheless, you must place an identifier within the main() method’s parentheses. The
identifier does not need to be named args—it could be any legal Java identifier—but the
name args is traditional.

In this book, you won’t pass any arguments to the main() method, but when you run a program, you could.
Even though you pass no arguments, the main() method must contain String[] and a legal identifier
(such as args) within its parentheses. When you refer to the String class in the main()method header,
the square brackets indicate an array of String objects. You will learn more about the String class and
arrays in Chapters 7, 8, and 9.

The simple application shown in Figure 1-4 has many pieces to remember. However, for now
you can use the Java code shown in Figure 1-8 as a shell, in which you replace AnyClassName
with a class name you choose and the line /******/ with any statements that you want to
execute.

Watch the video A Java Program.

C H A P T E R 1 Creating Java Programs

20

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class AnyClassName
{

public static void main(String[] args)
{

/******/
}

}

Figure 1-8 Shell code

Saving a Java Class
When you write a Java class, you must save it using a writable storage medium such as a disk,
DVD, or USB device. In Java, if a class is public (that is, if you use the public access specifier
before the class name), you must save the class in a file with exactly the same name and a .java
extension. For example, the First class must be stored in a file named First.java. The class
name and filename must match exactly, including the use of uppercase and lowercase
characters. If the extension is not .java, the Java compiler does not recognize the file as
containing a Java class. Appendix A contains additional information on saving a Java
application.

TWO TRUTHS & A LIE

Analyzing a Java Application that Produces Console Output

1. In the method header public static void main(String[] args), the word
public is an access specifier.

2. In the method header public static void main(String[] args), the word
static means that a method is accessible and usable, even though no objects
of the class exist.

3. In the method header public static void main(String[] args), the word
void means that the main() method is an empty method.

. dell ac si ti neh weul av yna nr ut er
t on seod doht e m)(niam eht t aht snae mdiov dr oweht ,)sgra][gnirtS(niam diov

citats cilbup r edaeh doht e meht nI . 3# si t ne met at s esl af ehT

Analyzing a Java Application that Produces Console Output

21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Your First Application

Now that you understand the basics of an application written in Java, you are ready to
enter your own Java application into a text editor. It is a tradition among program-
mers that the first program you write in any language produces “Hello, world!” as its
output. You will create such a program now. You can use any text editor, such as
Notepad or TextPad, or a development environment, such as jGRASP.

It is best to use the simplest available text editor when writing Java programs. Multifeatured
word-processing programs save documents as much larger files because of all the built-in features,
such as font styles and margin settings, which the Java compiler cannot interpret.

1. Start the text editor, and then open a new document.

2. Type the class header as follows:

public class Hello

In this example, the class name is Hello. You can use any valid name you
want for the class. If you choose Hello, you always must refer to the class as
Hello, and not as hello, because Java is case sensitive.

3. Press Enter once, type {, press Enter again, and then type }. You will add the
main() method between these curly braces. Although it is not required, the
convention used in this book is to place each curly brace on its own line and to
align opening and closing curly brace pairs with each other. Using this format
makes your code easier to read.

4. As shown in the shaded portion of Figure 1-9, add the main() method header
between the curly braces, and then type a set of curly braces for main().

public class Hello
{

public static void main(String[] args)
{
}

}

Figure 1-9 The main() method shell for the Hello class

(continues)

C H A P T E R 1 Creating Java Programs

22

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Next, add the statement within the main() method that will produce the
output “Hello, world!”. Use Figure 1-10 as a guide for adding the shaded
println() statement to the main() method.

public class Hello
{

public static void main(String[] args)
{

System.out.println("Hello, world!");
}

}

Figure 1-10 Complete Hello class

6. Save the application as Hello.java. The class name and filename must match
exactly, and you must use the .java extension.

Compiling a Java Class and Correcting Syntax Errors
After you write and save an application, two steps must occur before you can view the
application’s output.

1. You must compile the class you wrote (called the source code) into bytecode.

2. You must use the Java interpreter to translate the bytecode into executable statements.

Compiling a Java Class
If you are using a development environment such as jGRASP, you can compile your program
by clicking the Compile button, or by clicking the Build menu and selecting Compile. If you
are using a text editor such as Notepad, you can compile your source code file from the
command line. Your prompt should show the folder or directory where your program file is
stored. Then, you type javac followed by the name of the file that contains the source code.
For example, to compile a file named First.java, you type the following and then press Enter:

javac First.java

Compiling the program will produce one of three outcomes:

You receive a message such as 'javac' is not recognized as an internal or external
command, operable program or batch file.

You receive one or more programming language error messages.

You receive no messages, which means that the application compiled successfully.

(continued)

Compiling a Java Class and Correcting Syntax Errors

23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When compiling, if the source code file is not in the current path, you can type a full path with the filename.
For example:
javac c:\java\MyClasses\Chapter.01\First.java

In a DOS environment, you can change directories using the cd command. For example, to change from the
current directory to a subdirectory named MyClasses, you type cd MyClasses and press Enter. Within
any directory, you can back up to the root directory by typing cd\ and pressing Enter.

If you receive an error message that the command is not recognized, it might mean one of the
following:

You misspelled the command javac.

You misspelled the filename.

You are not within the correct subfolder or subdirectory on your command line.

Java was not installed properly. (See Appendix A for information on installation.)

If you receive a programming language error message, there are one or more syntax errors in
the source code. Recall that a syntax error is a programming error that occurs when you
introduce typing errors into your program or use the programming language incorrectly. For
example, if your class name is first (with a lowercase f) in the source code but you saved the
file as First.java (with an uppercase F), you will receive an error message when you compile
the application. The error message will be similar to class first is public, should be

declared in a file named first.java because first and First are not the same in a case-
sensitive language. If this error occurs, you must reopen the text file that contains the source
code and make the necessary corrections, and then save the file and attempt to compile it
again.

Appendix A contains information on troubleshooting, including how to change filenames in a Windows
environment.

If you receive no error messages after compiling the code in a file named First.java, the
application compiled successfully. In that case, a file named First.class is created and saved in
the same folder as the text file that holds the source code. After a successful compile, you can
execute the program (run the class file) on any computer that has a Java language interpreter.

Correcting Syntax Errors
Frequently, you might make typing errors as you enter Java statements into your text editor.
When you issue the command to compile a class containing errors, the Java compiler
produces one or more error messages. The exact error message that appears varies depending
on the compiler you are using.

The FirstWithMissingSemicolon class shown in Figure 1-11 contains an error—the
semicolon is missing from the end of the println() statement. (Of course, this class has been
helpfully named to alert you to the error.) When you compile this class, an error message
similar to the one shown in Figure 1-12 is displayed.

C H A P T E R 1 Creating Java Programs

24

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The first line of the error message in Figure 1-12 displays the name of the file in which the
error was found (FirstWithMissingSemicolon.java), the line number in which it was found
(5), and the nature of the error (’;’ expected). The next line of the error message displays the
statement that contains the error, including a caret that points to the exact location where
the error was first discovered. As you will see when you write and compile Java programs, the
place where an error is discovered is not necessarily where the error was made. Sometimes, it
takes a little detective work to interpret an error message and determine its cause.

Finally, the message generated in Figure 1-12 includes a count of the number of errors
found—in this case, there is just one error. This is an example of a compile-time error, or
one in which the compiler detects a violation of language syntax rules and is unable to
translate the source code to machine code.

When you compile a class, the compiler reports as many errors as it can find so that you can
fix as many errors as possible. Sometimes, one error in syntax causes multiple error messages
that normally would not be errors if the first syntax error did not exist, so fixing one error
might eliminate multiple error messages. Sometimes, when you fix a compile-time error and
recompile a program, new error messages are generated. That’s because when you fix the first
error, the compiler can proceed beyond that point and possibly discover new errors. Of
course, no programmer intends to type a program containing syntax errors, but when you do,
the compiler finds them all for you.

public class FirstWithMissingSemicolon
{

 public static void main(String[] args)

 {
 System.out.println("First Java application")
 }

}

The statement-ending
semicolon has been
omitted.

Figure 1-11 The FirstWithMissingSemicolon class

Figure 1-12 Error message generated when the FirstWithMissingSemicolon class is compiled

Compiling a Java Class and Correcting Syntax Errors

25

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Compiling a Java Class and Correcting Syntax Errors

1. After you write and save an application, you can compile the bytecode to create
source code.

2. When you compile a class, you create a new file with the same name as the original
file but with a .class extension.

3. Syntax errors are compile-time errors.

. edocet yb et aer c ot edoc ecr uos eht
eli p moc nac uoy , noi t acil ppa na evas dna eti r wuoy r etf A. 1# si t ne met at s esl af ehT

You Do It

Compiling a Java Class

You are ready to compile the Hello class that you created in the previous “You Do It”
section.

1. If it is not still open on your screen, open the Hello.java file that you saved in
the previous “You Do It” section.

2. If you are using jGRASP or another similar development environment, you can
compile a program by clicking the Compile button. Otherwise, you can
compile a program from the command prompt. Go to the command-line
prompt for the drive and folder or subdirectory in which you saved Hello.java.
At the command line, type:
javac Hello.java

After a few moments, you should return to the command prompt. If you see error
messages instead, reread the previous section to discover whether you can determine
the source of the error.

If the error message indicates that the command was not recognized, make sure that
you spelled the javac command correctly, including using the correct case. Also, make
sure you are using the correct directory or folder where the Hello.java file is stored.

If the error message indicates a language error, check your file against Figure 1-10,
making sure it matches exactly. Fix any errors, and compile the application again. If
errors persist, read through the next section to see if you can discover the solution.

(continues)

C H A P T E R 1 Creating Java Programs

26

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Correcting Syntax Errors

In this section, you examine error messages and gain firsthand experience with
syntax errors.

1. If your version of the Hello class did not compile successfully, examine the
syntax error messages. Now that you know the messages contain line numbers
and carets to pinpoint mistakes, it might be easier for you to fix problems. After
you determine the nature of any errors, resave the file and recompile it.

2. Even if your Hello class compiled successfully, you need to gain
experience with error messages. Your student files contain a file named
HelloErrors.java. Find this file and open it in your text editor. If you do not
have access to the student files that accompany this book, you can type
the file yourself, as shown in Figure 1-13.

public class HelloErrors
{

public static void main(String[] args)
{

System.out.println("Hello");
System.out.println("This is a test");

}
}

Figure 1-13 The HelloErrors class

3. Save the file as HelloErrors.java in the folder in which you want to work. Then
compile the class using the following command to confirm that it compiles
without error:

javac HelloErrors.java

4. In the first line of the file, remove the c from class, making the first line read
public lass HelloErrors. Save the file and compile the program. Error
messages are generated similar to those shown in Figure 1-14. Even though
you changed only one keystroke in the file, four error messages appear. The
first indicates that class, enum, or interface is expected in line 1. You haven’t
learned about the Java keywords enum or interface yet, but you know that
you caused the error by altering the word class. The next three errors in lines
3, 6, and 7 show that the compile is continuing to look for one of the three
keywords, but fails to find them.

(continued)

(continues)

Compiling a Java Class and Correcting Syntax Errors

27

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Repair the program by reinserting the c in class. Save the file and compile it
again. The program should compile successfully. In this case, when you fix
one error, four error messages are removed.

6. Next, remove the word void from the third line of the program. Save the file
and compile it. Figure 1-15 shows the error message, which indicates that a
return type is required. The message does not indicate that void is missing
because Java supports many return types for methods. In this case, however,
void is the correct return type, so reinsert it into the correct place in the
program, and then save and recompile the file.

7. Remove the final closing curly brace from the HelloErrors program. Save the
file and recompile it. Figure 1-16 shows the generated message “reached end
of file while parsing.” Parsing is the process the compiler uses to divide your
source code into meaningful portions; the message means that the compiler

Figure 1-14 Error messages generated when class is misspelled in the HelloErrors program

(continued)

Figure 1-15 Error message generated when void is omitted from the main() method
header in the HelloErrors program

(continues)

C H A P T E R 1 Creating Java Programs

28

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

was in the process of analyzing the code when the end of the file was
encountered prematurely. If you repair the error by reinserting the closing
curly brace, saving the file, and recompiling it, you remove the error message.

8. Continue to introduce errors in the program by misspelling words, omitting
punctuation, and adding extraneous keystrokes. Remember to save each pro-
gram version before you recompile it; otherwise, you will recompile the previous
version. When error messages are generated, read them carefully and try to
understand their meaning in the context of the error you purposely caused.
Occasionally, even though you inserted an error into the program, no error
messages will be generated. That does not mean your program is correct. It
only means that the program contains no syntax errors. A program can be free
of syntax errors but still not be correct, as you will learn in the next section.

Running a Java Application and Correcting Logic Errors
After a program compiles with no syntax errors, you can execute it. However, just because a
program compiles and executes, that does not mean the program is error free.

Running a Java Application
To run an application from jGRASP, you can
click the Run button or click the Build menu
and then click Run. To run the First
application in Figure 1-4 from the command
line, you type the following:

java First

Figure 1-17 shows the application’s output in
the command window. In this example, you
can see that the First class is stored in a Figure 1-17 Output of the First application

Figure 1-16 Error message generated when the closing curly brace is omitted from the
HelloErrors program

(continued)

Running a Java Application and Correcting Logic Errors

29

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

folder named Java on the C drive. After you type the java command to execute the program,
the literal string in the call to the println() method is output, so First Java application
appears on the screen. Control then returns to the command prompt.

The procedure to confirm the storage location of your First.java class varies depending on your operating
system. In a Windows operating system, for example, you can open Windows Explorer, locate the icon
representing the storage device you are using, find the folder in which you have saved the file, and expand
the folder. You should see the First.java file.

When you run a Java application using the java command, do not add the .class extension to
the filename. If you type java First, the interpreter looks for a file named First.class. If you
type java First.class, the interpreter looks for a file named First.class.class.

Modifying a Compiled Java Class
After viewing the application output, you might decide to modify the class to get a different
result. For example, you might decide to change the First application’s output from First

Java application to the following:

My new and improved
Java application

To produce the new output, first you must modify the text file that contains the existing class.
You need to change the existing literal string, and then add an output statement for another
text string. Figure 1-18 shows the class that changes the output.

public class First
{

public static void main(String[] args)
{

System.out.println("My new and improved");
System.out.println("Java application");

}
}

Figure 1-18 First class containing output modified from the original version

The changes to the First class include the addition of the statement System.out.println
("My new and improved"); and the removal of the word First from the string in the other
println() statement.

If you make changes to the file, as shown in Figure 1-18, and save the file without recompiling it,
then when you execute the program by typing javaFirst at the command line, you will not see
the new output—you will see the old output without the added line. Even though you save a
text file that contains the modified source code for a class, the class in the already-compiled
class file executes. After you save the file named First.java, the old compiled version of the class

C H A P T E R 1 Creating Java Programs

30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

with the same name is still stored on your computer. Before the new source code can execute,
you must do the following:

1. Save the file with the changes (using the same filename).

2. Recompile the class with the javac command.

3. Interpret the class bytecode and execute the class using the java command.

Figure 1-19 shows the new output.

When you recompile a class, the original
version of the compiled file with the .class
extension is replaced, and the original
version no longer exists. When you modify a
class, you must decide whether you want to
retain the original version. If you do, you
must give the new version a new class name
and a new filename.

Once in a while, when you make a change to a Java class and then recompile and execute it, the old version
still runs. The simplest solution is to delete the .class file and compile again. Programmers call this creating a
clean build.

Watch the video Compiling and Executing a Program.

Correcting Logic Errors
Besides syntax errors, a second kind of error occurs when the syntax of the program is
correct and the program compiles but produces incorrect results when you execute it. This
type of error is a logic error, which is often more difficult to find and resolve. For example,
Figure 1-20 shows the output of the execution of a successfully compiled program
named FirstBadOutput. If you glance at the output too quickly, you might not notice that
Java is misspelled. The compiler does not find spelling errors within a literal string; it is
legitimate to produce any combination of letters
as output. Other examples of logic errors include
multiplying two values when you meant to add,
printing one copy of a report when you meant
to print five, or forgetting to produce a total at
the end of a business report when a user has
requested one. Errors of this type must be
detected by carefully examining the program
output. It is the responsibility of the program
author to test programs and find any logic
errors.

Figure 1-19 Execution of modified First class

Figure 1-20 Output of FirstBadOutput
program

Running a Java Application and Correcting Logic Errors

31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You have already learned that syntax errors are compile-time errors. A logic error is a type of
run-time error—an error not detected until the program asks the computer to do something
wrong, or even illegal, while executing. Not all run-time errors are the fault of the
programmer. For example, a computer’s hardware might fail while a program is executing.
However, good programming practices can help to minimize errors.

The process of fixing computer errors has been known as debugging since a large moth was found wedged
into the circuitry of a mainframe computer at Harvard University in 1947. See these Web sites for interesting
details and pictures: www.jamesshuggins.com/h/tek1/first_computer_bug.htm and www.history.navy.mil/
photos/images/h96000/h96566kc.htm.

TWO TRUTHS & A LIE

Running a Java Application and Correcting Logic Errors

1. In Java, if a class is public, you must save the class in a file with exactly the same
name and a .java extension.

2. To compile a file named MyProgram.java, you type java MyProgram, but to execute
the program you type java MyProgram.java.

3. When you compile a program, sometimes one error in syntax causes multiple
error messages.

margorPyM avaj
: gni woll of eht epyt uoy mar gor p eht et ucexe ot t ub, avaj.margorPyM cavaj

epyt uoy , avaj. mar gor Py Mde man elif a eli p moc oT. 2# si t ne met at s esl af ehT

Adding Comments to a Java Class
As you can see, even the simplest Java class requires several lines of code and contains
somewhat perplexing syntax. Large applications that perform many tasks include much more
code, and as you write larger applications it becomes increasingly difficult to remember why
you included steps or how you intended to use particular variables. Documenting your
program code helps you remember why you wrote lines of code the way you did. Program
comments are nonexecuting statements that you add to a program for the purpose of
documentation. In other words, comments are designed for people reading the source code
and not for the computer executing the program.

Programmers use comments to leave notes for themselves and for others who might read
their programs in the future. At the very least, your Java class files should include comments
indicating the author, the date, and the class name or function. The best practice dictates that
you also include a brief comment to describe the purpose of each method you create within a
class.

C H A P T E R 1 Creating Java Programs

32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As you work through this book, add comments as the first lines of every file. The comments
should contain the class name and purpose, your name, and the date. Your instructor might
ask you to include additional comments.

Turning some program statements into comments can sometimes be useful when you are
developing an application. If a program is not performing as expected, you can “comment
out” various statements and subsequently run the program to observe the effect. When you
comment out a statement, you turn it into a comment so the compiler does not translate it,
and the JVM does not execute its command. This can help you pinpoint the location of errant
statements in malfunctioning programs.

There are three types of comments in Java:

Line comments start with two forward slashes (//) and continue to the end of the current
line. A line comment can appear on a line by itself or at the end (and to the right) of a line
following executable code. Line comments do not require an ending symbol.

Block comments start with a forward slash and an asterisk (/*) and end with an asterisk
and a forward slash (*/). A block comment can appear on a line by itself, on a line before
executable code, or on a line after executable code. Block comments also can extend
across as many lines as needed.

Javadoc comments are a special case of block comments called documentation
comments because they are used to automatically generate nicely formatted program
documentation with a program named javadoc. Javadoc comments begin with a forward
slash and two asterisks (/**) and end with an asterisk and a forward slash (*/). Appendix
E teaches you how to create javadoc comments.

The forward slash (/) and the backslash (\) characters often are confused, but they are two distinct
characters. You cannot use them interchangeably.

The Java Development Kit (JDK) includes the javadoc tool, which you can use when writing programs in Java.
The tool produces HTML pages that describe classes and their contents.

Figure 1-21 shows how comments are used in code. In this example, the only statement that
executes is the System.out.println("Hello"); statement; everything else (all the shaded
parts) is a comment.

// Demonstrating comments
/* This shows

that these comments
don’t matter */

System.out.println("Hello"); // This line executes
// up to where the comment started

/* Everything but the println()
is a comment */

Figure 1-21 A program segment containing several comments

Adding Comments to a Java Class

33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You might want to create comments simply for aesthetics. For example, you might want to
use a comment that is simply a row of dashes or asterisks to use as a visual dividing line
between parts of a program.

When a program is used in a business setting, the program frequently is modified over time because of
changing business needs. If a programmer changes code but does not change the comments that go with it,
it’s very possible that people who read the program in the future will be confused or misled. When you modify
a program, it’s important to change any relevant comments.

TWO TRUTHS & A LIE

Adding Comments to a Java Class

1. Line comments start with two forward slashes (//) and end with two backslashes
(\\); they can extend across as many lines as needed.

2. Block comments start with a forward slash and an asterisk (/*) and end with
an asterisk and a forward slash (*/); they can extend across as many lines as
needed.

3. Javadoc comments begin with a forward slash and two asterisks (/**) and end
with an asterisk and a forward slash (*/); they are used to generate documenta-
tion with a program named javadoc.

.l ob mys gni dne na eri uqer t on od yeht ; enil t nerr uc eht f o dne eht ot euni t noc dna) //(
sehsal s dr a wr of owt hti wtr at s st ne mmoc eni L. 1# si t ne met at s esl af ehT

You Do It

Adding Comments to a Class

In this exercise, you add comments to your Hello.java application and save it as a new
class named Hello2 so that you can retain copies of both the original and modified
classes.

1. Open the Hello.java file you created earlier in this chapter. Enter the following
comments at the top of the file, inserting your name and today’s date where
indicated.
// Filename Hello2.java
// Written by <your name>
// Written on <today’s date> (continues)

C H A P T E R 1 Creating Java Programs

34

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Change the class name to Hello2, and then type the following block comment
after the class header:
/* This class demonstrates the use of the println()
method to print the message Hello, world! */

3. Save the file as Hello2.java. The file must be named Hello2.java because the
class name is Hello2.

4. Go to the command-line prompt for the drive and folder or subdirectory in
which you saved Hello2.java, and type the following command to compile the
program:
javac Hello2.java

5. When the compile is successful, execute your application by typing java
Hello2 at the command line. The comments have no effect on program
execution; the output should appear on the next line.

After the application compiles successfully, a file named Hello2.class is created and stored in the
same folder as the Hello2.java file. If your application compiled without error but you receive an
error message, such as “Exception in thread ‘main’ java.lang.NoClassDefFoundError,” when you try
to execute the application, you probably do not have your class path set correctly. See Appendix A
for details.

Creating a Java Application that Produces GUI Output
Besides allowing you to use the System class to produce command window output, Java
provides built-in classes that produce GUI output. For example, Java contains a class named
JOptionPane that allows you to produce dialog boxes. A dialog box is a GUI object
resembling a window in which you can place messages you want to display. Figure 1-22 shows
a class named FirstDialog. The FirstDialog class contains many elements that are familiar
to you; only the two shaded lines are new.

import javax.swing.JOptionPane;
public class FirstDialog
{

public static void main(String[] args)
{

JOptionPane.showMessageDialog(null, "First Java dialog");
}

}

Figure 1-22 The FirstDialog class

(continued)

Creating a Java Application that Produces GUI Output

35

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In older versions of Java, any application that used a JOptionPane dialog was required to end with a
System.exit(0); statement or the application would not terminate. You can add this statement to your
programs, and they will work correctly, but it is not necessary. However, you might see this line when
examining programs written by others.

In Figure 1-22, the first shaded line is an import statement. You use an import statement
when you want to access a built-in Java class that is contained in a group of classes called
a package. To use the JOptionPane class, you must import the package named
javax.swing.JOptionPane. Any import statement you use must be placed outside of any
class you write in a file. You will learn more about import statements in general, and the
javax.swing packages in particular, as you continue to study Java.

You do not need to use an import statement when you use the System class (as with the
System.out.println() method) because the System class is contained in the package
java.lang, which is automatically imported in every Java program. You could include the statement
import java.lang; at the top of any file in which you use the System class, but you are not
required to do so.

The second shaded statement in the FirstDialog class in Figure 1-22 uses the
showMessageDialog() method that is part of the JOptionPane class. Like the println()

method that is used for console output, the showMessageDialog() method starts with a
lowercase letter and is followed by a set of parentheses. However, whereas the println()

method requires only one argument between its parentheses to produce an output string, the
showMessageDialog() method requires two arguments. Whenever a method requires
multiple arguments, they are separated by commas. When the first argument to
showMessageDialog() is null, as it is in the class in Figure 1-22, it means the output message
box should be placed in the center of the screen. (You will learn more about dialog boxes,
including how to position them in different locations and how to add more options to them,
in Chapter 2.) The second argument, after the comma, is the literal string that is displayed.

Earlier in this chapter, you learned that true, false, and null are all reserved words that
represent values.

When a user executes the FirstDialog class, the
dialog box in Figure 1-23 is displayed. The user
must click the OK button or the Close button to
dismiss the dialog box. If the user has a touch
screen, the user can touch the OK button or the
Close button.

Figure 1-23 Output of the FirstDialog

application

C H A P T E R 1 Creating Java Programs

36

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Creating a Java Application that Produces GUI Output

1. A dialog box is a GUI object resembling a window, in which you can place messages
you want to display.

2. You use an append statement when you want to access a built-in Java class that is
contained in a group of classes called a package.

3. Different methods can require different numbers of arguments.

. egakcap a dell ac sessal cf o puor g a ni deni at noc si t aht ssal c avaJ ni- tli ub a
ssecca ot t na wuoy neh wt ne met at s tropmi na esu uoY. 2# si t ne met at s esl af ehT

You Do It

Creating a Dialog Box

Next, you write a Java application that produces output in a dialog box.

1. Open a new file in your text editor. Type comments similar to the following,
inserting your own name and today’s date where indicated.
// Filename HelloDialog.java
// Written by <your name>
// Written on <today’s date>

2. Enter the import statement that allows you to use the JOptionPane class:
import javax.swing.JOptionPane;

3. Enter the HelloDialog class:
public class HelloDialog
{

public static void main(String[] args)
{

JOptionPane.showMessageDialog(null, "Hello, world!");
}

}

(continues)

Creating a Java Application that Produces GUI Output

37

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Save the file as HelloDialog.java. Compile the class using the following
command:
javac HelloDialog.java

If necessary, eliminate any syntax
errors, resave the file, and recompile.
Then execute the program using
the following command:
java HelloDialog

The output appears as shown
in Figure 1-24.

5. Click OK to dismiss the dialog box.

Finding Help
As you write Java programs, you can frequently consult this book as well as other Java
documentation. A great wealth of helpful material exists at the Java Web site, www.oracle
.com/technetwork/java/index.html. Of particular value is the Java application programming
interface, more commonly referred to as the Java API. The Java API is also called the Java
class library; it contains information about how to use every prewritten Java class, including
lists of all the methods you can use with the classes.

Also of interest at the Java Web site are frequently asked questions (FAQs) that provide brief
answers to many common questions about Java software and products. You can also find
several versions of the Java Development Kit (JDK) that you can download for free. The JDK is
an SDK—a software development kit that includes tools used by programmers. Versions are
available for Windows, Linux, and Solaris operating systems. You can search and browse
documentation online or you can download the documentation file for the JDK and install it
on your computer. After it is installed, you can search and browse documentation locally.

A downloadable set of lessons titled “The Java Tutorial” with hundreds of complete working
examples is available from http://docs.oracle.com/javase/tutorial/. The tutorial is organized
into trails—groups of lessons on a particular subject. You can start the tutorial at the
beginning and navigate sequentially to the end, or you can jump from one trail to another. As
you study each chapter in this book, you are encouraged to make good use of these support
materials.

Figure 1-24 Output of HelloDialog
application

(continued)

C H A P T E R 1 Creating Java Programs

38

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Exploring the Java Web Site

In this section, you explore some of the material at the Java Web site.

1. Open an Internet browser and navigate to www.oracle.com/technetwork/
java/index.html.

2. Oracle could change the layout of its Web site after this book is published.
However, you should be able to find and click a link for Java APIs and then
another for Java SE 8. (If you are using an older version of Java, you can
select that version instead.)

3. All the Java classes are listed in a panel labeled All Classes. Scroll until you
can select the System class. The largest panel on the page should display
details about the System class.

4. You can see that the System class contains three fields. You are already
familiar with the out field, and you can see that it is an object of type
PrintStream. Click the hypertext for the PrintStream type to be taken to
a new page with details about that class.

5. Scroll through the methods of the PrintStream class. Notice that the class
contains several versions of the print() and println() methods. Find the
version of the println() method that accepts a String argument. Click the
link to the method to read details about it, such as that it “prints a String and
then terminates the line.”

6. Many parts of the Java documentation won’t mean much to you until you study
data types and methods in more detail in the next few chapters of this book.
For now, you can explore the Java Web site to get an idea of the wealth of
classes that have been created for you.

Don’t Do It
At the end of each chapter, a Don’t Do It list will alert you to common mistakes made by
beginning programmers.

Don’t forget that in Java, a public file’s name must match the name of the class it contains.
For example, if a file is named Program1.java, you can’t simply rename it
Program1BackUp.java and expect it to compile unless you change the class name within
the file.

Don’t Do It

39

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t confuse the terms parentheses, braces, brackets, curly braces, square brackets, and
angle brackets. When you are writing a program or performing some other computerized
task and someone tells you, “Now, type some braces,” you might want to clarify which
term is meant. Table 1-5 summarizes these punctuation marks.

Don’t forget to end a block comment. Every /* must have a corresponding */, even if it
is several lines later. It’s harder to make a mistake with line comments (those that start
with //), but remember that nothing on the line after the // will execute.

Don’t forget that Java is case sensitive.

Don’t forget to end every statement with a semicolon, but not to end class or method
headers with a semicolon.

Don’t forget to recompile a program to which you have made changes. It can be very
frustrating to fix an error, run a program, and not understand why you don’t see evidence
of your changes. The reason might be that the .class file does not contain your changes
because you forgot to recompile.

Punctuation Name Typical use in Java Alternate names

() Parentheses Follows method names as
in println()

Parentheses can be
called round brackets,
but such usage is
unusual

{ } Curly braces A pair surrounds a class
body, a method body, and
a block of code; when you
learn about arrays in
Chapter 8, you will find that
curly braces also surround
lists of array values

Curly braces might also
be called curly brackets

[] Square brackets A pair signifies an array;
arrays are covered in
Chapter 8

Square brackets might
be called box brackets or
square braces

< > Angle brackets Angle brackets are used
with generic arguments in
parameterized classes;
you won’t use them in
this book

When angle brackets
appear with nothing
between them, they are
called a chevron

Table 1-5 Braces and brackets used in Java

C H A P T E R 1 Creating Java Programs

40

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t panic when you see a lot of compiler error messages. Often, fixing one will fix
several.

Don’t think your program is perfect when all compiler errors are eliminated. Only by
running the program multiple times and carefully examining the output can you be
assured that your program is logically correct.

Key Terms
A computer program is a set of instructions that you write to tell a computer what to do.

Hardware is the general term for computer equipment.

Software is the general term for computer programs.

Application software performs tasks for users.

System software manages the computer.

The logic behind any program involves executing the various statements and procedures in
the correct order to produce the desired results.

Machine language is a circuitry-level language that represents a series of on and off switches.

Machine code is another term for machine language.

A low-level programming language is written to correspond closely to a computer
processor’s circuitry.

A high-level programming language allows you to use an English-like vocabulary to write
programs.

Syntax refers to the rules that define the ways language elements are used together correctly
to create usable statements.

Keywords are the words that are part of a programming language.

Program statements are similar to English sentences; they carry out the tasks that programs
perform.

Commands are program statements.

A compiler is a program that translates language statements into machine code; it translates
an entire program at once before any part of the program can execute.

An interpreter is a program that translates language statements into machine code; it
translates one statement at a time, allowing a program to execute partially.

Executing a statement or program means to carry it out.

At run time is a phrase that describes the period of time during which a program executes.

Key Terms

41

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A syntax error is a programming error that occurs when you introduce typing errors into
your program or use the programming language incorrectly; a program containing syntax
errors cannot be translated into an executable program.

Debugging a program is the process that frees it of all errors.

A bug is a flaw or mistake in a computer program.

A logic error is a programming bug that allows a source program to be translated to an
executable program successfully, but that produces incorrect results.

Semantic errors occur when you use a correct word in the wrong context in program code.

Procedural programming is a style of programming in which sets of operations are executed
one after another in sequence.

Variables are named computer memory locations that hold values that might vary.

Procedures are sets of operations performed by a computer program.

To call a procedure is to temporarily abandon the current logic so that the procedure’s
commands can execute.

Writing object-oriented programs involves creating classes, creating objects from those
classes, and creating applications that use those objects.

Computer simulations are programs that attempt to mimic real-world activities so that their
processes can be improved or so that users can better understand how the real-world
processes operate.

Graphical user interfaces, or GUIs (pronounced “gooeys”), allow users to interact with a
program in a graphical environment.

A class is a group or collection of objects with common properties.

A class definition describes what attributes its objects will have and what those objects will be
able to do.

Attributes are the characteristics that define an object as part of a class.

Properties are attributes of a class.

An object is an instance of a class.

An instance of a class is an object.

Instantiation is the process of creating an object.

The state of an object is the set of values for its attributes.

A method is a self-contained block of program code, similar to a procedure.

Encapsulation refers to the enclosure of data and methods within an object.

Inheritance is the ability to create classes that share the attributes and methods of existing
classes, but with more specific features.

C H A P T E R 1 Creating Java Programs

42

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Polymorphism describes the feature of languages that allows the same word to be interpreted
correctly in different situations based on the context.

Java is an object-oriented language used both for general-purpose business applications and
for interactive, World Wide Web-based Internet applications.

Architecturally neutral describes the feature of Java that allows you to write programs that
run on any platform (operating system).

The Java Virtual Machine (JVM) is a hypothetical (software-based) computer on which Java
runs.

Source code consists of programming statements written in a high-level programming
language.

jGRASP is a development environment and source code editor.

A development environment is a set of tools that help you write programs by providing such
features as displaying a language’s keywords in color.

Bytecode consists of programming statements that have been compiled into binary format.

The Java interpreter is a program that checks bytecode and communicates with the
operating system, executing the bytecode instructions line by line within the Java Virtual
Machine.

“Write once, run anywhere” (WORA) is the slogan developed by Sun Microsystems to describe
the ability of one Java program version to work correctly on multiple platforms.

Applets are Java programs that are embedded in a Web page.

Java applications are stand-alone Java programs.

Console applications support character or text output to a computer screen.

Windowed applications create a graphical user interface (GUI) with elements such as menus,
toolbars, and dialog boxes.

A literal string is a series of characters that appear exactly as entered. Any literal string in Java
appears between double quotation marks.

Arguments are information passed to a method so it can perform its task.

Passing arguments is the act of sending them to a method.

The standard output device is normally the monitor.

An identifier is a name of a program component such as a class, object, or variable.

Unicode is an international system of character representation.

Pascal casing is a naming convention in which identifiers start with an uppercase letter and
use an uppercase letter to start each new word.

Upper camel casing is Pascal casing.

Key Terms

43

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An access specifier defines the circumstances under which a class can be accessed and the
other classes that have the right to use a class.

The class body is the set of data items and methods between the curly braces that follow the
class header.

Whitespace is any combination of nonprinting characters, such as spaces, tabs, and carriage
returns (blank lines).

The K & R style is the indent style in which the opening brace follows the header on the same
line; it is named for Kernighan and Ritchie, who wrote the first book on the C programming
language.

The Allman style is the indent style in which curly braces are aligned and each occupies its
own line; it is named for Eric Allman, a programmer who popularized the style.

The keyword static means that a method is accessible and usable even though no objects of
the class exist.

The keyword void, when used in a method header, indicates that the method does not return
any value when it is called.

A compile-time error is one in which the compiler detects a violation of language syntax and
is unable to translate the source code to machine code.

Parsing is the process the compiler uses to divide source code into meaningful portions for
analysis.

A clean build is created when you delete all previously compiled versions of a class before
compiling again.

A run-time error occurs when a program compiles successfully but does not execute.

Program comments are nonexecuting statements that you add to a Java file for the purpose of
documentation.

To comment out a statement is to turn it into a comment so the compiler will not execute its
command.

Line comments start with two forward slashes (//) and continue to the end of the current
line. Line comments can appear on a line by themselves or at the end of a line following
executable code.

Block comments start with a forward slash and an asterisk (/*) and end with an asterisk and
a forward slash (*/). Block comments can appear on a line by themselves, on a line before
executable code, or on a line after executable code. Block comments also can extend across as
many lines as needed.

Javadoc comments are block comments that generate documentation. They begin with a
forward slash and two asterisks (/**) and end with an asterisk and a forward slash (*/).

Documentation comments are comments that automatically generate nicely formatted
program documentation.

C H A P T E R 1 Creating Java Programs

44

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A dialog box is a GUI object resembling a window in which you can place messages you want
to display.

An import statement accesses a built-in Java class that is contained in a package.

A package contains a group of built-in Java classes.

The Java API is the application programming interface, a collection of information about how
to use every prewritten Java class.

FAQs are frequently asked questions.

The JDK is the Java Development Kit.

An SDK is a software development kit, or a set of tools useful to programmers.

Chapter Summary
A computer program is a set of instructions that tells a computer what to do. You can
write a program using a high-level programming language, which has its own syntax, or
rules of the language. After you write a program, you use a compiler or interpreter to
translate the language statements into machine code.

Writing object-oriented programs involves creating classes, creating objects from those
classes, and creating applications—stand-alone executable programs that use those
objects. Object-oriented programming languages support encapsulation, inheritance, and
polymorphism.

A program written in Java is run on a standardized hypothetical computer called the Java
Virtual Machine (JVM). When your class is compiled into bytecode, an interpreter within
the JVM subsequently interprets the bytecode and communicates with your operating
system to produce the program results.

Everything within a Java program must be part of a class and contained within opening
and closing curly braces. Methods within classes hold statements, and every statement
ends with a semicolon. Dots are used to separate classes, objects, and methods in program
code. All Java applications must have a method named main(), and most Java applications
contain additional methods.

To compile your source code from the command line, type javac followed by the name of
the file that contains the source code. The compiler might issue syntax error messages
that you must correct. When you successfully compile your source code, the compiler
creates a file with a .class extension.

You can run a compiled .class file on any computer that has a Java language interpreter by
entering the java command followed by the name of the class file. When you modify a
class, you must recompile it for the changes to take effect. After a program executes, you
must examine the output for logic errors.

Program comments are nonexecuting statements that you add to a file for the purpose of
documentation. Java provides you with three types of comments: line comments, block
comments, and javadoc comments.

Chapter Summary

45

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Java provides you with built-in classes that produce GUI output. For example, Java
contains a class named JOptionPane that allows you to produce dialog boxes.

A great wealth of helpful material exists online at the Java Web site.

Review Questions
1. The most basic circuitry-level computer language is .

a. C++
b. Java

c. high-level language
d. machine language

2. Languages that let you use an easily understood vocabulary of descriptive terms, such
as read, write, or add, are known as languages.

a. procedural
b. machine

c. high-level
d. object-oriented

3. The rules of a programming language constitute its .

a. syntax
b. logic

c. format
d. objects

4. A translates high-level language statements into machine code.

a. programmer
b. syntax detector

c. compiler
d. decipherer

5. Named computer memory locations are called .

a. compilers
b. variables

c. addresses
d. appellations

6. The individual operations used in a computer program are often grouped into logical
units called .

a. procedures
b. variables

c. constants
d. logistics

7. Envisioning program components as objects that are similar to concrete objects in
the real world is the hallmark of .

a. command-line operating systems
b. procedural programming

c. object-oriented programming
d. machine languages

8. The values of an object’s attributes are known as its .

a. state
b. orientation

c. methods
d. condition

C H A P T E R 1 Creating Java Programs

46

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. An instance of a class is a(n) _____________ .

a. method
b. procedure

c. object
d. case

10. Java is architecturally .

a. specific
b. oriented

c. neutral
d. abstract

11. You must compile classes written in Java into .

a. bytecode
b. source code

c. javadoc statements
d. object code

12. All Java programming statements must end with a .

a. period
b. comma

c. semicolon
d. closing parenthesis

13. Arguments to methods always appear within .

a. parentheses
b. double quotation marks

c. single quotation marks
d. curly braces

14. In a Java program, you must use to separate classes, objects,
and methods.

a. commas
b. semicolons

c. dots
d. forward slashes

15. All Java applications must have a method named .

a. method()

b. main()

c. java()

d. Hello()

16. Nonexecuting program statements that provide documentation are
called .

a. classes
b. notes

c. comments
d. commands

17. Java supports three types of comments: , , and
javadoc.

a. line, block
b. string, literal

c. constant, variable
d. single, multiple

18. After you write and save a Java application file, you it.

a. interpret and then compile
b. interpret and then execute

c. compile and then resave
d. compile and then interpret

Review Questions

47

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

19. The command to execute a compiled Java application is .

a. run

b. execute

c. javac

d. java

20. You save text files containing Java source code using the file
extension .

a. .java
b. .class

c. .txt
d. .src

Exercises

Programming Exercises

1. Is each of the following class identifiers (a) legal and conventional, (b) legal but
unconventional, or (c) illegal?

a. associationRules

b. void

c. Golden Retriever

d. Invoice

e. 36542ZipCode

f. Apartment

g. Phone#

h. 8888

i. displayTotal()

j. Accounts_Receivable

2. Is each of the following method identifiers (a) legal and conventional, (b) legal but
unconventional, or (c) illegal?

a. associationRules()

b. void()

c. Golden Retriever()

d. Invoice()

e. 36542ZipCode()

f. Apartment()

g. Phone#()

h. 8888()

i. displayTotal()

j. Accounts_Receivable()

3. Name at least three attributes that might be appropriate for each of the following
classes:
a. Classroom

b. InsurancePolicy

c. CreditCardBill

4. Name at least three real-life objects that are instances of each of the following classes:
a. Movie

b. Team

c. Musician

C H A P T E R 1 Creating Java Programs

48

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Name at least three classes to which each of these objects might belong:
a. mySchoolPlayground

b. shrimpAlfredo

c. grandmasRockingChair

6. Write, compile, and test a class that displays your favorite movie quote on the screen.
Save the class as MovieQuote.java.

As you work through the programming exercises in this book, you will create many files. To organize them,
you might want to create a separate folder in which to store the files for each chapter.

7. Write, compile, and test a class that displays your favorite movie quote, the movie it
comes from, the character who said it, and the year of the movie. Save the class as
MovieQuoteInfo.java.

8. Write, compile, and test a class that displays the following pattern on the screen:

Save the class as TableAndChairs.java.

9. Write, compile, and test a class that displays at least four lines of your favorite song.
Save the class as FavoriteSong.java.

10. Write, compile, and test a class that uses the command window to display the
following statement about comments:

“Program comments are nonexecuting statements you add to a file for the purpose of
documentation.”

Also include the same statement in three different comments in the class; each
comment should use one of the three different methods of including comments in
a Java class. Save the class as Comments.java.

11. Modify the Comments.java program in Exercise 10 so that the statement about
comments is displayed in a dialog box. Save the class as CommentsDialog.java.

Exercises

49

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12. From 1925 through 1963, Burma Shave advertising signs appeared next to highways
all across the United States. There were always four or five signs in a row containing
pieces of a rhyme, followed by a final sign that read “Burma Shave.” For example,
one set of signs that has been preserved by the Smithsonian Institution reads as
follows:

Shaving brushes

You' ll soon see 'em

On a shelf
In some museum

Burma Shave

Find a classic Burma Shave rhyme on the Web. Write, compile, and test a class that
produces a series of four dialog boxes so that each displays one line of a Burma
Shave slogan in turn. Save the class as BurmaShave.java.

Debugging Exercises

1. Each of the following files in the Chapter01 folder in your downloadable student
files has syntax and/or logic errors. In each case, determine the problem and fix the
errors. After you correct the errors, save each file using the same filename preceded
with Fix. For example, DebugOne1.java will become FixDebugOne1.java.

a. DebugOne1.java
b. DebugOne2.java

c. DebugOne3.java
d. DebugOne4.java

When you change a filename, remember to change every instance of the class name within the file so that it
matches the new filename. In Java, the filename and class name must always match.

Game Zone

1. In 1952, A. S. Douglas wrote his University of Cambridge Ph.D. dissertation on
human-computer interaction, and created the first graphical computer game—a
version of Tic-Tac-Toe. The game was programmed on an EDSAC vacuum-tube
mainframe computer. The first computer game is generally assumed to be “Space-
war!”, developed in 1962 at MIT; the first commercially available video game was
“Pong,” introduced by Atari in 1973. In 1980, Atari’s “Asteroids” and “Lunar Lander”
became the first video games to be registered in the U. S. Copyright Office.
Throughout the 1980s, players spent hours with games that now seem very simple
and unglamorous; do you recall playing “Adventure,” “Oregon Trail,” “Where in the
World Is Carmen Sandiego?,” or “Myst”?

Today, commercial computer games are much more complex; they require many
programmers, graphic artists, and testers to develop them, and large management

C H A P T E R 1 Creating Java Programs

50

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and marketing staffs are needed to promote them. A game might cost many millions
of dollars to develop and market, but a successful game might earn hundreds of
millions of dollars. Obviously, with the brief introduction to programming you have
had in this chapter, you cannot create a very sophisticated game. However, you can
get started.

For games to hold your interest, they almost always include some random, unpre-
dictable behavior. For example, a game in which you shoot asteroids loses some of
its fun if the asteroids follow the same, predictable path each time you play the
game. Therefore, generating random values is a key component in creating most
interesting computer games.

Appendix D contains information on generating random numbers. To fully under-
stand the process, you must learn more about Java classes and methods. However,
for now, you can copy the following statement to generate and use a dialog box that
displays a random number between 1 and 10:

JOptionPane.showMessageDialog(null,"The number is "+

(1 + (int)(Math.random() * 10)));

Write a Java application that displays two dialog boxes in sequence. The first asks
you to think of a number between 1 and 10. The second displays a randomly
generated number; the user can see whether his or her guess was accurate. (In
future chapters, you will improve this game so that the user can enter a guess and
the program can determine whether the user was correct. If you wish, you also can
tell the user how far off the guess was, whether the guess was high or low, and
provide a specific number of repeat attempts.) Save the file as RandomGuess.java.

Case Problems

The case problems in this section introduce two fictional businesses. Throughout
this book, you will create increasingly complex classes for these businesses that use
the newest concepts you have mastered in each chapter.

1. Carly’s Catering provides meals for parties and special events. Write a program
that displays Carly’s motto, which is “Carly’s makes the food that makes it a
party.” Save the file as CarlysMotto.java. Create a second program that dis-
plays the motto surrounded by a border composed of asterisks. Save the file as
CarlysMotto2.java.

2. Sammy’s Seashore Supplies rents beach equipment such as kayaks, canoes, beach
chairs, and umbrellas to tourists. Write a program that displays Sammy’s motto,
which is “Sammy’s makes it fun in the sun.” Save the file as SammysMotto.java.
Create a second program that displays the motto surrounded by a border
composed of repeated Ss. Save the file as SammysMotto2.java.

Exercises

51

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A NOTE ON JAVA APPLETS

An applet is a Java program that is called within another application—often a Web
browser. The name applet means “little application.” In other words, an applet is not
a full-blown program; it relies on other programs to execute it.

Many of an applet’s behaviors come from methods that reside in a Java class
named JApplet. You will see a couple of references to this class in this book.

Applets were introduced with the first version of Java released in 1995, and became
very popular immediately because they were considered easier to write than Java
programs. However, applets have caused multiple security problems in recent years,
so most browsers no longer run applets unless they have a signed certificate from an
authority who has verified the sender. A certificate of authority vouches for the applet’s
creator, providing a degree of confidence that the applet can be trusted not to contain
malicious code that can harm the local computer or steal data. Unsigned applets are
no longer accepted by most browsers, so professional applet developers are required
to purchase certificates from authorities and renew them annually.

Because of the difficulties imposed by certificate requirements, applet writing is not
covered in this book. However, after you have learned to write Java applications,
learning to write applets is relatively easy because they use the same syntax, contain
many of the same elements, are saved using the same .java file extension, and are
compiled in the same way. If you encounter an applet on the job, you can recognize
it because of the following features in the code:

The phrase extends JApplet appears after the class name.

Unlike the applications introduced in this chapter, applets do not contain a main()

method. Instead, they contain one or more of the following method identifiers:
init(), start(), paint(), stop(), and destroy().

52

C H A P T E R 1 Creating Java Programs

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2
Using Data

In this chapter, you will:

Declare and use constants and variables

Use integer data types

Use the boolean data type

Use floating-point data types

Use the char data type

Use the Scanner class to accept keyboard input

Use the JOptionPane class to accept GUI input

Perform arithmetic

Understand type conversion

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Declaring and Using Constants and Variables
A data item is constant when its value cannot be changed while a program is running. For
example, when you include the following statement in a Java class, the number 459 is a constant:
System.out.println(459);

Every time an application containing the constant 459 is executed, the value 459 is displayed.
Programmers refer to a number like 459 in several ways:

It is a literal constant because its value is taken literally at each use.

It is a numeric constant as opposed to a character or string constant.

It is an unnamed constant as opposed to a named one, because no identifier is associated
with it.

Instead of using constant data, you can set up a data item to be variable. A variable is a named
memory location that can store a value. A variable can hold only one value at a time, but the value
it holds can change. For example, if you create a variable named ovenTemperature, it might hold
0 when the application starts, later be altered to hold 350, and still later be altered to hold 400.

Whether a data item is variable or constant, in Java it always has a data type. An item’s
data type describes the type of data that can be stored there, how much memory the item
occupies, and what types of operations can be performed on the data. Java provides for
eight primitive types of data. A primitive type is a simple data type. Java’s eight data types
are described in Table 2-1. Later in this chapter, you will learn more specific information
about several of these data types.

The eight data types in Table 2-1 are called primitive because they are simple
and uncomplicated. Primitive types also serve as the building blocks for more complex data
types, called reference types, which hold memory addresses. The classes you will begin
creating in Chapter 3 are examples of reference types, as are the System class you used
in Chapter 1 and the Scanner class you will use later in this chapter.

Keyword Description

byte Byte-length integer

short Short integer

int Integer

long Long integer

float Single-precision floating point

double Double-precision floating point

char A single character

boolean A Boolean value (true or false)

Table 2-1 Java primitive data types

C H A P T E R 2 Using Data

54

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Declaring Variables
A variable declaration is a statement that reserves a named memory location and includes
the following:

A data type that identifies the type of data that the variable will store

An identifier that is the variable’s name

An optional assignment operator and assigned value, if you want a variable to contain an
initial value

An ending semicolon

Variable names must be legal Java identifiers. (You learned the requirements for legal identifiers
in Chapter 1.) Basically, a variable name must start with a letter and cannot be a reserved
keyword. You must declare a variable before you can use it. You can declare a variable at any
point before you use it, but it is common practice to declare variables first in a method and to
place executable statements after the declarations. Java is a strongly typed language, or one in
which each variable has a well-defined data type that limits the operations you can perform
with it; strong typing implies that all variables must be declared before they can be used.

Variable names conventionally begin with lowercase letters to distinguish them from class
names. However, as with class names, a program can compile without error even if names are
constructed unconventionally. Beginning an identifier with a lowercase letter and capitalizing
subsequent words within the identifier is a style known as camel casing. An identifier such as
lastName resembles a camel because of the uppercase “hump” in the middle.

For example, the following declaration creates a conventionally named int variable, myAge,
and assigns it an initial value of 25:
int myAge = 25;

This declaration is a complete, executable statement, so it ends with a semicolon. The equal
sign (=) is the assignment operator. Any value to the right of the assignment operator is
assigned to the memory location named on the left. An assignment made when you declare a
variable is an initialization; an assignment made later is simply an assignment. Thus, the first
statement that follows is an initialization, and the second is an assignment:
int myAge = 25;

myAge = 42;

You declare a variable just once in a method, but you might assign new values to it any
number of times.

Note that an expression with a literal to the left of the assignment operator (such as 25 =

myAge) is illegal. The assignment operator has right-to-left associativity. Associativity refers to
the order in which values are used with operators. The associativity of every operator is either
right-to-left or left-to-right. An identifier that can appear on the left side of an assignment
operator sometimes is referred to as an lvalue, and an item that can appear only on the right
side of an assignment operator is an rvalue. A variable can be used as an lvalue or an rvalue,
but a literal constant can only be an rvalue.

Declaring and Using Constants and Variables

55

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you declare a variable within a method but do not assign a value to it, it is an
uninitialized variable. For example, the following variable declaration declares a variable
of type int named myAge, but no value is assigned at the time of creation:
int myAge;

An uninitialized variable contains an unknown value called a garbage value. Java protects
you from inadvertently using the garbage value that is stored in an uninitialized variable. For
example, if you attempt to display garbage or use it as part of a calculation, you receive an
error message stating that the variable might not have been initialized, and the program will
not compile.

When you learn about creating classes in the chapter “Using Methods, Classes, and Objects,” you
will discover that variables declared in a class, but outside any method, are automatically initialized
for you.

You can declare multiple variables of the same type in separate statements. You also can
declare two or more variables of the same type in a single statement by separating the variable
declarations with a comma, as shown in the following statement:

int height = 70, weight = 190;

By convention, many programmers declare each variable in its own separate statement, but
some follow the convention of declaring multiple variables in the same statement if their
purposes are closely related. Remember that even if a statement occupies multiple lines, the
statement is not complete until the semicolon is reached.

You can declare as many variables in a statement as you want, as long as the variables are the
same data type. However, if you want to declare variables of different types, you must use a
separate statement for each type.

Declaring Named Constants
A variable is a named memory location for which the contents can change. If a named
location’s value should not change during the execution of a program, you can create it to be a
named constant. A named constant is also known as a symbolic constant. A named constant
is similar to a variable in that it has a data type, a name, and a value. A named constant differs
from a variable in several ways:

In its declaration statement, the data type of a named constant is preceded by the keyword
final.

A named constant can be assigned a value only once, and then it cannot be changed later
in the program. Usually you initialize a named constant when you declare it; if you do not
initialize the constant at declaration, it is known as a blank final, and you can assign a
value later. Either way, you must assign a value to a constant before it is used.

Although it is not a requirement, named constants conventionally are given identifiers
using all uppercase letters, using underscores as needed to separate words.

C H A P T E R 2 Using Data

56

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, each of the following defines a conventionally named constant:

final int NUMBER_OF_DEPTS = 20;

final double PI = 3.14159;

final double TAX_RATE = 0.015;
final string COMPANY = "ABC Manufacturing";

You can use each of these named constants anywhere you use a variable of the same type,
except on the left side of an assignment statement after the first value has been assigned. In
other words, when it receives a value, a named constant is an lvalue, but after the assignment,
a named constant is an rvalue.

A constant always has the same value within a program, so you might wonder why you should
not use the actual, literal value. For example, why not use the unnamed constant 20 when you
need the number of departments in a company rather than going to the trouble of creating
the NUMBER_OF_DEPTS named constant? There are several good reasons to use the named
constant rather than the literal one:

The number 20 is more easily recognized as the number of departments if it is associated
with an identifier. Using named constants makes your programs easier to read and
understand. Some programmers refer to the use of a literal numeric constant, such as 20,
as using a magic number—a value that does not have immediate, intuitive meaning or a
number that cannot be explained without additional knowledge. For example, you might
write a program that uses the value 7 for several purposes, so you might use constants
such as DAYS_IN_WEEK and NUM_RETAIL_OUTLETS that both hold the value 7 but more
clearly describe the purposes. Avoiding magic numbers helps provide internal
documentation for your programs.

If the number of departments in your organization changes, you would change the value
of NUMBER_OF_DEPTS at one location within your program—where the constant is defined—
rather than searching for every use of 20 to change it to a different number. Being
able to make the change at one location saves you time, and prevents you from
missing a reference to the number of departments.

Even if you are willing to search for every instance of 20 in a program to change it to the
new department number value, you might inadvertently change the value of one instance
of 20 that is being used for something else, such as a payroll deduction value.

Using named constants reduces typographical errors. For example, if you must include 20
at several places within a program, you might inadvertently type 10 or 200 for one of the
instances, and the compiler will not recognize the mistake. However, if you use the
identifier NUMBER_OF_DEPTS, the compiler will ensure that you spell it correctly.

When you use a named constant in an expression, it stands out as different from a
variable. For example, in the following arithmetic statement, it is easy to see which
elements are variable and which are constant because the constants have been named
conventionally using all uppercase letters and underscores to separate words:

double payAmount = hoursWorked * STD_PAY_RATE –

numDependents * DEDUCTION;

Declaring and Using Constants and Variables

57

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Although many programmers use named constants to stand for most of the constant values
in their programs, many make an exception when using 0 or 1.

The Scope of Variables and Constants
A data item’s scope is the area in which it is visible to a program and in which you can refer to it
using its simple identifier. A variable or constant is in scope from the point it is declared until the
end of the block of code in which the declaration lies. A block of code is the code contained
between a set of curly braces. So, if you declare a variable or constant within a method, it can be
used from its declaration until the end of the method unless the method contains multiple sets of
curly braces. Then, a data item is usable only until the end of the block that holds the declaration.

In the chapter “Using Methods, Classes, and Objects,” you will start to create classes that contain multiple
sets of curly braces. In the chapter “More Object Concepts,” you will learn some techniques for using
variables that are not currently in scope.

Concatenating Strings to Variables and Constants
As you learned in Chapter 1, you can use a print() or println() statement for console
output. The only difference between them is that the println() statement starts a new line
after output. You can display a variable or a constant in a print() or println() statement
alone or in combination with a string. For example, the NumbersPrintln class shown in
Figure 2-1 declares an integer billingDate, which is initialized to 5. In the first shaded
statement, the value of billingDate is sent alone to the print() method; in the second
shaded statement, billingDate is combined with, or concatenated to, a String. In Java,
when a numeric variable is concatenated to a String using the plus sign, the entire expression
becomes a String. In Figure 2-1, print() and println() method calls are used to display
different data types, including simple Strings, an int, and a concatenated String. The output
of the application shown in Figure 2-1 appears in Figure 2-2.

public class NumbersPrintln
{

public static void main(String[] args)
{

int billingDate = 5;
System.out.print("Bills are sent on day ");

System.out.print(billingDate);
System.out.println(" of the month");

System.out.println("Next bill: October " +

billingDate);
}

}

Figure 2-1 NumbersPrintln class

C H A P T E R 2 Using Data

58

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The last output statement in Figure 2-1 is spread across two lines because it is relatively long. The statement
could be written on a single line, or it could break to a new line before or after either parenthesis or before or
after the plus sign. When a line is long and contains a plus sign, this book will follow the convention of
breaking the line following the sign. When you are reading a line, seeing a plus sign at the end makes it easier
for you to recognize that the statement continues on the following line.

Later in this chapter, you will learn that a plus sign (+) between two numeric values indicates
an addition operation. However, when you place a string on one or both sides of a plus sign,
concatenation occurs. In Chapter 1, you learned that polymorphism describes the feature of languages
that allows the same word or symbol to be interpreted correctly in different situations based on the
context. The plus sign is polymorphic in that it indicates concatenation when used with strings but
addition when used with numbers.

When you concatenate Strings with numbers, the entire expression is a String. Therefore,
the expression "A" + 3 + 4 results in the String "A34". If your intention is to create the String
"A7", then you could add parentheses to write "A" + (3 + 4) so that the numeric expression is
evaluated first.

The program in Figure 2-1 uses the command line to display output, but you also can use a
dialog box. Recall from Chapter 1 that you can use the showMessageDialog() method with
two arguments: null, which indicates the box should appear in the center of the screen, and
the String to be displayed in the box. Figure 2-3 shows a NumbersDialog class that uses the
showMessageDialog() method twice to display an integer declared as creditDays and
initialized to 30. In each shaded statement in the class, the numeric variable is concatenated
to a String, making the entire second argument a String. In the first shaded statement,
the concatenated String is an empty String (or null String), created by typing a set of
quotes with nothing between them. The application produces the two dialog boxes shown in
Figures 2-4 and 2-5. The first dialog box shows just the value 30; after it is dismissed by
clicking OK, the second dialog box appears.

Figure 2-2 Output of NumbersPrintln application

Declaring and Using Constants and Variables

59

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.JOptionPane;
public class NumbersDialog

{
public static void main(String[] args)
{

int creditDays = 30;
JOptionPane.showMessageDialog(null, "" + creditDays);
JOptionPane.showMessageDialog

(null, "Every bill is due in " + creditDays + " days");
}

}

Figure 2-3 NumbersDialog class

Pitfall: Forgetting that a Variable Holds One Value at a Time
Each variable can hold just one value at a time. Suppose you have two variables, x and y, and x

holds 2 and y holds 10. Suppose further that you want to switch their values so that x holds 10
and y holds 2. You cannot simply make an assignment such as x = y because then both

Figure 2-4 First dialog box created by NumbersDialog application

Figure 2-5 Second dialog box created by NumbersDialog application

C H A P T E R 2 Using Data

60

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

variables will hold 10, and the 2 will be lost. Similarly, if you make the assignment y = x, then
both variables will hold 2, and the 10 will be lost. The solution is to declare and use a third
variable, as in the following sequence of events:
int x = 2, y = 10, z;
z = x;
x = y;
y = z;

In this example, the third variable, z, is used as a temporary holding spot for one of the
original values. The variable z is assigned the value of x, so z becomes 2. Then the value of y,
10, is assigned to x. Finally, the 2 held in z is assigned to y. The extra variable is used because
as soon as you assign a value to a variable, any value that was previously in the memory
location is gone.

Watch the video Declaring Variables and Constants.

TWO TRUTHS & A LIE

Declaring and Using Constants and Variables

1. A variable is a named memory location that you can use to store a value; it can hold
only one value at a time, but the value it holds can change.

2. An item’s data type determines what legal identifiers can be used to describe
variables and whether the variables can occupy memory.

3. A variable declaration is a statement that reserves a named memory location and
includes a data type, an identifier, an optional assignment operator and assigned
value, and an ending semicolon.

. yr o me mypucco sel bai r av
ll a —yr o me mypucco nac sel bai r av r eht eh weni mr et edt on seod epyt at ad eht dna

,r eifi t nedi l agel ar of sel ur eht r etl at on seod epyt at ad ehT. at ad eht no de mr ofr ep eb
nac snoi t ar epof o sepyt t ah w dna, sei pucco meti eht yr o me mhcu m woh, der ot s eb

nact aht at adf o epyt eht sebi r csed epyt at ad s’ meti nA. 2# si t ne met at s esl af ehT

Declaring and Using Constants and Variables

61

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Declaring and Using a Variable

In this section, you write an application to work with a variable and a constant.

1. Open a new document in your text editor. Create a class header and an opening
and closing curly brace for a new class named DataDemo by typing the following:
public class DataDemo
{
}

2. Between the curly braces, indent a few spaces and type the following main()

method header and its curly braces:
public static void main(String[] args)
{
}

3. Between the main()method’s curly braces, type the following variable declaration:
int aWholeNumber = 315;

4. Type the following output statements. The first uses the print() method to
display a string that includes a space before the closing quotation mark and
leaves the insertion point for the next output on the same line. The second
statement uses println() to display the value of aWholeNumber and then
advance to a new line.
System.out.print("The number is ");
System.out.println(aWholeNumber);

5. Save the file as DataDemo.java.

6. Up to this point in the book, every print() and println() statement you have
seen has used a String as an argument. When you added the last two state-
ments to the DataDemo class, you wrote a println() statement that uses an
int as an argument. As a matter of fact, there are many different versions of
print() and println() that use different data types. Go to the Java Web site
(www.oracle.com/technetwork/java/index.html), select Java APIs, and
then select Java SE 8. Scroll through the list of All Classes, and select
PrintStream; you will recall from Chapter 1 that PrintStream is the data type for
the out object used with the println() method. Scroll down to view the list of
methods in the Method Summary, and notice the many versions of the print()

and println() methods, including ones that accept a String, an int, a long,
and so on. In the last two statements you added to this program, one used a
method version that accepts a String and the other used a method version that

(continues)

C H A P T E R 2 Using Data

62

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

accepts an int. Recall that the ability of a method to work appropriately
depending on the context is polymorphism.

7. Compile the file from the command
line by typing javac DataDemo.java.
If necessary, correct any errors,
save the file, and then compile again.

8. Execute the application from the
command line by typing java
DataDemo. The command window
output is shown in Figure 2-6.

Trying to Use an Uninitialized Variable

In this section, you see what happens when a variable is uninitialized.

1. In the DataDemo class, remove the assignment operator and the initialization
value of the aWholeNumber variable so the declaration becomes:
int aWholeNumber;

2. Save the class and recompile it. An error message appears as shown in
Figure 2-7. Notice that the declaration statement does not generate an
error because you can declare a variable without initializing it. However, the
println() statement generates the error message because in Java, you
cannot display an uninitialized variable.

3. Modify the aWholeNumber declaration so that the variable is again initialized to
315. Compile the class, and execute it again.

Adding a Named Constant to a Program

In this section, you add a named constant to the DataDemo program.

1. After the declaration of the aWholeNumber variable in the DataDemo class,
insert a new line in your program and type the following constant declaration:
final int STATES_IN_US = 50;

(continued)

Figure 2-6 Output of the DataDemo

application

Figure 2-7 Error message generated when a variable is not initialized

(continues)

Declaring and Using Constants and Variables

63

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Following the last
println() statement
in the existing
program, add a new
statement to display
a concatenated
string and numeric
constant. The
println() method
call uses the version
that accepts a
String argument.
System.out.println("The number of states is " +

STATES_IN_US);

3. Save the program, and then compile and execute it. The output appears in
Figure 2-8.

Learning About Integer Data Types
In Java, you can use variables of data types byte, short, int, and long to store (or hold) integers;
an integer is a whole number without decimal places.

The int data type is the most commonly used integer type. A variable of type int can hold
any whole number value from –2,147,483,648 to +2,147,483,647. When you assign a value to
an int variable, you do not type any commas or periods. The newest versions of Java allow
underscores in numbers; these typically are used to make long numbers easier to read, as in
the following statement:
corporateBudget = 8_435_000;

However, when you type a number, you usually type only digits and an optional plus or minus
sign to indicate a positive or negative integer.

The data types byte, short, and long are all variations of the integer type. The byte
and short types occupy less memory and can hold only smaller values; the long type
occupies more memory and can hold larger values. Table 2-2 shows the upper and
lower value limits for each of these types. In other programming languages, the format
and size of primitive data types might depend on the platform on which a program is
running. By contrast, Java consistently specifies the size and format of its primitive
data types.

(continued)

Figure 2-8 Output of DataDemo program after recent
changes

C H A P T E R 2 Using Data

64

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

It is important to choose appropriate types for the variables you will use in an application. If
you attempt to assign a value that is too large for the data type of the variable, the compiler
issues an error message, and the application does not execute. If you choose a data type that is
larger than you need, you waste memory. For example, a personnel application might use a
byte variable for number of dependents (because a limit of 127 is more than enough), a short

for hours worked in a month (because 127 isn’t enough), and an int for an annual salary
(because even though a limit of 32,000 might be large enough for your salary, it isn’t enough
for the CEO’s).

Some famous glitches have occurred because programmers did not pay attention to the limits of various
data types. For example, a hospital computer system in Washington, D.C., used the equivalent of a short
to count days elapsed since January 1, 1900. The system collapsed on the 32,768th day (which was in
1989), requiring manual operations for a lengthy period.

If an application uses a literal constant integer, such as 932, the number is an int by default. If
you need to use a constant higher than 2,147,483,647, the letter L must follow the number to
indicate long. For example, the following statement stores a number that is greater than the
maximum limit for the int type.

long mosquitosInTheNorthWoods = 2444555888L;

You can type either an uppercase or a lowercase L after the digits to indicate the long type,
but the uppercase L is preferred to avoid confusion with the number 1. You don’t need any
special notation to store a numeric constant in an int, byte, or a short.

Because integer constants, such as 18, are type int by default, the examples in this book
almost always declare a variable as type int when the variable’s purpose is to hold a whole
number. That is, even if the expected value is less than 128, such as hoursWorkedToday, this
book will declare the variable to be an int. If you are writing an application in which saving
memory is important, you might choose to declare the same variable as a byte. Saving
memory is seldom an issue for an application that runs on a PC. However, when you write
applications for small devices with limited memory, like phones, conserving memory becomes
more important.

Type Minimum Value Maximum Value Size in Bytes

byte −128 127 1

short −32,768 32,767 2

int −2,147,483,648 2,147,483,647 4

long −9,223,372,036,854,775,808 9,223,372,036,854,775,807 8

Table 2-2 Limits on integer values by type

Learning About Integer Data Types

65

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Learning About Integer Data Types

1. A variable of type int can hold any whole number value from approximately
negative two billion to positive two billion.

2. When you assign a value to an int variable, you do not type any commas;
you type only digits and an optional plus or minus sign to indicate a positive
or negative integer.

3. You can use the data types byte or short to hold larger values than can be
accommodated by an int.

. seul avll a ms
yl no dl oh ot deenlli wel bai r av a wonk uoyfi trohs a r o etyb a esu uoy; seul av egr al
yr ev hti w gni kr ow eblli wuoy wonk uoy fi gnol a esu uoY. 3# si t ne met at s esl af ehT

You Do It

Working with Integers
In this section, you work more with integer values.

1. Open a new file in your text editor, and create a shell for an IntegerDemo class
as follows:
public class IntegerDemo
{
}

2. Between the curly braces, indent a few spaces and write the shell for a main()

method as follows:
public static void main(String[] args)
{
}

3. Within the main() method, create four declarations, one each for the four
integer data types.

int anInt = 12;
byte aByte = 12;
short aShort = 12;
long aLong = 12;

(continues)

C H A P T E R 2 Using Data

66

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Next, add four output statements that describe and display each of the
values. The spaces are included at the ends of the string literals so that
the values will be aligned vertically when they are displayed.

System.out.println("The int is " + anInt);
System.out.println("The byte is " + aByte);
System.out.println("The short is " + aShort);
System.out.println("The long is " + aLong);

5. Save the file as IntegerDemo.java. Then compile and execute it. Figure 2-9
shows the output. All the values are legal sizes for each data type, so the
program compiles and executes without error.

6. Change each assigned value in the application from 12 to 1234, and then
save and recompile the program. Figure 2-10 shows the error message
generated because 1234 is too large to be placed in a byte variable. The
message “possible lossy conversion from int to byte” means that if the large
number had been inserted into the small space, the accuracy of the number
would have been compromised. A lossy conversion is one in which some data
is lost. The opposite of a lossy conversion is a lossless conversion—one in
which no data is lost. (The error message differs in other development
environments and in some earlier versions of Java.)

(continued)

Figure 2-9 Output of the IntegerDemo program

(continues)

Learning About Integer Data Types

67

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Change the value of aByte back to 12. Change the value of aShort to 123456.
Save and recompile the program. Figure 2-11 shows the result. The error
message “possible lossy conversion” is the same as when the byte value was
invalid, but the error indicates that the problem is now with the short variable.

8. Change the value of the short variable to 12345, and then save and compile
the program. Now, the program compiles without error. Execute the program,
and confirm that it runs as expected.

9. At the Java Web site (www.oracle.com/technetwork/java/index.html), exam-
ine the list of println() methods in the PrintStream class. Although you can
find versions that accept String, int, and long arguments, you cannot find
ones that accept byte or short values. Yet, the println() statements in the
latest version of the program work correctly. The reason has to do with type
conversion, which you will learn about later in this chapter.

10. Replace the value of aLong with 1234567890987654321. Save the pro-
gram and compile it. Figure 2-12 shows the error message that indicates that
the integer number is too large. The message does not say that the value is
too big for a long type variable. Instead, it means that the literal constant was
evaluated and found to be too large to be a default int before any attempt
was made to store it in the long variable.

Figure 2-11 Error message generated when a value that is too large is assigned to a
short variable

(continued)

Figure 2-10 Error message generated when a value that is too large is assigned to a
byte variable

(continues)

C H A P T E R 2 Using Data

68

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11. Remedy the problem by adding an L to the end of the long numeric value.
Now, the constant is the correct data type that can be assigned to the long

variable. Save, compile, and execute the program; it executes successfully.

12. Watch out for errors that occur when data values are acceptable for a data
type when used alone, but together might produce arithmetic results that are
out of range. To demonstrate, add the following declaration at the end of the
current list of variable declarations in the IntegerDemo program:
int anotherInt = anInt * 10000000;

13. At the end of the current list of output statements, add another output
statement so that you can see the result of the arithmetic:
System.out.println("Another int is " + anotherInt);

Save, compile, and execute the program. The output appears in Figure 2-13.
Although 1234 and 10000000 are both acceptable int values, their product
is out of range for an int, and the resulting int does not appear to have been
calculated correctly. Because the arithmetic result was too large, some
information about the value has been lost, including the result’s sign. If you
see such unreasonable results in your programs, you need to consider using
different data types for your values.

Figure 2-12 Error message generated when a value that is too large is assigned to a long variable

Figure 2-13 Output of the modified IntegerDemo program with an out-of-range integer

Learning About Integer Data Types

69

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the boolean Data Type
Boolean logic is based on true or false comparisons. Whereas an int variable can hold millions
of different values (at different times), a boolean variable can hold only one of two values—true

or false. The following statements declare and assign appropriate values to Boolean variables:

boolean isItPayday = false;

boolean areYouBroke = true;

Although you can use any legal identifier for Boolean variables, they are easily identified as Boolean
if you use a form of to be (such as is or are) as part of the variable name, as in isItPayday.

Besides assigning true and false, you also can assign a value to a Boolean variable based on
the result of a comparison. Java supports six relational operators that are used to make
comparisons. A relational operator compares two items; it is sometimes called a comparison
operator. The value of an expression that contains a relational operator is always true or
false. Table 2-3 describes the relational operators.

When you use Boolean as an adjective, as in Boolean operators, you usually begin with an uppercase B
because the data type is named for Sir George Boole, the founder of symbolic logic, who lived from 1815 to
1864. The Java data type boolean, however, begins with a lowercase b.

When you use any of the operators that have two symbols (==, <=, >=, or !=), you cannot
place any whitespace between the two symbols. You also cannot reverse the order of the
symbols. That is, =<, =>, and =! are all invalid operators.

Legal declaration statements might include the following statements, which compare two
values directly:

boolean isSixBigger = (6 > 5);

// Value stored would be true
boolean isSevenSmallerOrEqual = (7 <= 4);

// Value stored would be false

Boolean expressions are more meaningful when a variable is used for one or both of the
operands in a comparison, as in the following three examples, in which a variable is compared

Operator Description True Example False Example

< Less than 3 < 8 8 < 3

> Greater than 4 > 2 2 > 4

== Equal to 7 == 7 3 == 9

<= Less than or equal to 5 <= 5 8 <= 6

>= Greater than or equal to 7 >= 3 1 >= 2

!= Not equal to 5 != 6 3 != 3

Table 2-3 Relational operators

C H A P T E R 2 Using Data

70

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

to a literal constant (40), a variable is compared to a named constant (HIGH_CUTOFF), and two
variables are compared.

boolean isOvertimePay = (hours > 40);

boolean isTaxBracketHigh = (income > HIGH_CUTOFF);
boolean isFirstScoreHigher = (score1 > score2);

Boolean expressions will become far more useful to you when you learn about decision
making and looping in Chapters 5 and 6.

TWO TRUTHS & A LIE

Using the boolean Data Type

1. A Boolean variable can hold only one of two values—true or false.

2. Java supports six relational operators that are used to make comparisons:
=, <, >, =<, =>, and =!.

3. An expression that contains a relational operator has a Boolean value.

.) ngi sl auqe eht sedecer p
t ni op noi t a mal cxe eht(=! dna,) ngi sl auqe eht sedecer p ngi s naht- r et aer g eht(

=>,) ngi sl auqe eht sedecer p ngi s naht- ssel eht(=<, >, <,) sngi sl auqe owt(==er a
snosi r ap moc eka mot desu sr ot ar epol anoi t al er xi s ehT. 2# si t ne met at s esl af ehT

Learning About Floating-Point Data Types
A floating-point number contains decimal positions. Java supports two floating-point data types:
float and double. A float data type can hold floating-point values of up to six or seven significant
digits of accuracy. A double data type requires more memory than a float, and can hold 14 or 15
significant digits of accuracy. The term significant digits refers to the mathematical accuracy of a
value. For example, a float given the value 0.324616777 is displayed as 0.324617 because the value
is accurate only to the sixth decimal position. Table 2-4 shows the minimum and maximum values
for each floating-point data type. Notice that the maximum value for a double is 3.4 * 10 to the 38th

power, which means 3.4 times 10 with 38 trailing zeros—a very large number.

Depending on the environment in which you run your program, a float given the value 324616777 is
displayed using a decimal point after the 3 and only six or seven digits followed by e+008 or E8. This format
is called scientific notation, and means that the value is approximately 3.24617 times 10 to the 8th power,
or 324617000. The e in the displayed value stands for exponent; the 8 means the true decimal point is eight
positions to the right of where it is displayed, indicating a very large number. (A negative number following the
e would mean that the true decimal point belongs to the left, indicating a very small number.)

A programmer might choose to store a value as a float instead of a double to save memory. However,
if high levels of accuracy are needed, such as in graphics-intensive software, the programmer might choose
to use a double, opting for high accuracy over saved memory.

Learning About Floating-Point Data Types

71

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A value stored in a double is a double-precision floating-point number; a value in a float is a
single-precision floating-point number.

Just as an integer constant, such as 18, is a value of type int by default, a floating-point
constant, such as 18.23, is a double by default. To indicate that a floating-point numeric
constant is a float, you can type the letter F after the number, as in the following:

float pocketChange = 4.87F;

You can type either a lowercase or an uppercase F. You also can type D (or d) after a floating-
point constant to indicate it is a double, but even without the D, the value will be stored as a
double by default. Floating-point numbers can be imprecise, as you will see later in this chapter.

TWO TRUTHS & A LIE

Learning About Floating-Point Data Types

1. Java supports two floating-point data types: float and double. The double

data type requires more memory and can hold more significant digits.

2. A floating-point constant, such as 5.6, is a float by default.

3. As with integers, you can perform the mathematical operations of addition,
subtraction, multiplication, and division with floating-point numbers.

.tl uaf ed
yb elbuod a si , 6. 5 sa hcus,t nat snoct ni op- gni t aolf A. 2# si t ne met at s esl af ehT

Using the char Data Type
You use the char data type to hold any single character. You place constant character values
within single quotation marks because the computer stores characters and integers
differently. For example, the following are typical character declarations:

char middleInitial = 'M';
char gradeInChemistry = 'A';

char aStar = '*';

Type Minimum Maximum Size in Bytes

float –3.4 * 1038 3.4 * 1038 4

double –1.7 * 10308 1.7 * 10308 8

Table 2-4 Limits on floating-point values

C H A P T E R 2 Using Data

72

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Some programmers prefer to pronounce char as care because it represents the first syllable in the word
character. Others prefer to pronounce the word as char to rhyme with car. You should use the preferred
pronunciation in your organization.

A character can be any letter—uppercase or lowercase. It might also be a punctuation mark
or digit. A character that is a digit is represented in computer memory differently than a
numeric value represented by the same digit. For example, the following two statements are
legal:

char aCharValue = '9';

int aNumValue = 9;

If you display each of these values using a println() statement, you see a 9. However, only
the numeric value, aNumValue, can be used to represent the value 9 in arithmetic statements.

A numeric constant can be stored in a character variable and a character that represents a
number can be stored in a numeric variable. For example, the following two statements are
legal, but unless you understand their meanings, they might produce undesirable results:

char aCharValue = 9;

int aNumValue = '9';

If these variables are displayed using println() statements, then the resulting output is a
blank for aCharValue and the number 57 for aNumValue. The unexpected values are Unicode
values. Every computer stores every character it uses as a number; every character is assigned
a unique numeric code using Unicode. Table 2-5 shows some Unicode decimal values and
their character equivalents. For example, the character A is stored using the value 65, and the
character B is stored using the value 66. Appendix B contains more information on Unicode.

Dec Char Dec Char Dec Char Dec Char

0 nul 32 64 @ 96 `

1 soh^A 33 ! 65 A 97 a

2 stx^B 34 “ 66 B 98 b

3 etx^C 35 # 67 C 99 c

4 eot^D 36 $ 68 D 100 d

5 enq^E 37 % 69 E 101 e

6 ask^F 38 & 70 F 102 f

7 bel^G 39 ‘ 71 G 103 g

8 bs^H 40 (72 H 104 h

9 ht^I 41) 73 I 105 i

10 lf^J 42 * 74 J 106 j

Table 2-5 Unicode values 0 through 127 and their character equivalents (continues)

Using the char Data Type

73

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A variable of type char can hold only one character. To store a string of characters, such as a
person’s name, you must use a data structure called a String. In Java, String is a built-in
class that provides you with the means for storing and manipulating character strings. Unlike
single characters, which use single quotation marks, string constants are written between
double quotation marks. For example, the expression that stores the name Audrey as a string
in a variable named firstName is:

String firstName = "Audrey";

You will learn more about strings and the String class in the chapter “Characters, Strings,
and the StringBuilder.”

Dec Char Dec Char Dec Char Dec Char

11 vt^K 43 + 75 K 107 k

12 ff^L 44 , 76 L 108 l

13 cr^M 45 - 77 M 109 m

14 so^N 46 . 78 N 110 n

15 si^O 47 / 79 O 111 o

16 dle^P 48 0 80 P 112 p

17 dc1^Q 49 1 81 Q 113 q

18 dc2^R 50 2 82 R 114 r

19 dc3^S 51 3 83 S 115 s

20 dc4^T 52 4 84 T 116 t

21 nak^U 53 5 85 U 117 u

22 syn^V 54 6 86 V 118 v

23 etb^W 55 7 87 W 119 w

24 can^X 56 8 88 X 120 x

25 em^Y 57 9 89 Y 121 y

26 sub^Z 58 : 90 Z 122 z

27 esc 59 ; 91 [123 {

28 fs 60 < 92 \ 124 |

29 gs 61 = 93] 125 }

30 rs 62 > 94 ^ 126 ~

31 us 63 ? 95 _ 127 del

Table 2-5 Unicode values 0 through 127 and their character equivalents

(continued)

C H A P T E R 2 Using Data

74

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can store any character—including nonprinting characters such as a backspace or a tab—
in a char variable. To store these characters, you can use an escape sequence, which always
begins with a backslash followed by a character—the pair represents a single character. For
example, the following code stores a newline character and a tab character in the char

variables aNewLine and aTabChar:

char aNewLine = '\n';

char aTabChar = '\t';

In the declarations of aNewLine and aTabChar, the backslash and character pair acts as a
single character; the escape sequence serves to give a new meaning to the character. That is,
the literal characters in the preceding code have different values from the “plain” characters
'n' or 't'. Table 2-6 describes some common escape sequences that you can use with
command window output in Java.

When you display values within JOptionPane dialog boxes rather than in a command window, the escape
sequences '\n' (newline), '\"' (double quote), and '\\' (backslash) operate as expected within a
JOptionPane object, but '\t', '\b', and '\r' do not work in the GUI environment.

When you want to produce console output on multiple lines in the command window, you
have two options: You can use the newline escape sequence, or you can use the println()

method multiple times. For example, Figures 2-14 and 2-15 both show classes that produce
the same output: “Hello” on one line and “there” on another. The version you choose to use is
up to you. The example in Figure 2-14 is more efficient—from a typist’s point of view because
the text System.out.println appears only once, and from the compiler’s point of view
because the println() method is called only once. The example in Figure 2-15, however,
might be easier to read and understand. When programming in Java, you will find occasions
when each of these approaches makes sense.

Escape Sequence Description

\b Backspace; moves the cursor one space to the left

\t Tab; moves the cursor to the next tab stop

\n Newline or linefeed; moves the cursor to the beginning of the next line

\r Carriage return; moves the cursor to the beginning of the current line

\" Double quotation mark; displays a double quotation mark

\' Single quotation mark; displays a single quotation mark

\\ Backslash; displays a backslash character

Table 2-6 Common escape sequences

Using the char Data Type

75

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class HelloThereNewLine

{

public static void main(String[] args)
{

System.out.println("Hello\nthere");

}
}

Figure 2-14 HelloThereNewLine class

public class HelloTherePrintlnTwice

{
public static void main(String[] args)

{

System.out.println("Hello");
System.out.println("there");

}
}

Figure 2-15 HelloTherePrintlnTwice class

The println() method uses the local platform’s line terminator character, which might or might not be
the newline character '\n'.

TWO TRUTHS & A LIE

Using the char Data Type

1. You use the char data type to hold any single character; you place constant
character values within single quotation marks.

2. To store a string of characters, you use a data structure called a Text; string
constants are written between parentheses.

3. An escape sequence always begins with a backslash followed by a character; the
pair represents a single character.

. skr a mnoit at ouq el buod neewt eb netti r w er a st nat snoc gni rt s ; gnirtS a dell ac
er ut curt s at ad a esu uoy , sr et car ahcf o gni rt s a er ot s oT. 2# si t ne met at s esl af ehT

C H A P T E R 2 Using Data

76

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Working with the char Data Type

In the steps in this section, you create an application that demonstrates some
features of the char data type.

1. Create the shells for a class named CharDemo and its main() method as
follows:
public class CharDemo
{

public static void main(String[] args)
{
}

}

2. Between the curly braces for the main() method, declare a char variable, and
provide an initialization value:
char initial = 'A';

3. Add two statements. The first displays the variable, and the second demon-
strates some escape sequence characters.
System.out.println(initial);
System.out.print("\t\"abc\\def\bghi\n\njkl");

4. Save the file as CharDemo.java,
and then compile and execute it.
Figure 2-16 shows the output.
The first line of output contains
the value of the char variable.
The next line starts with a tab
created by the escape sequence
\t. The tab is followed by a
quotation mark produced by the
escape sequence \". Then abc

is displayed, followed by the next escape sequence that produces a slash.
The next series of characters to display is def, but because those letters
are followed by a backspace escape sequence, the f is overridden by ghi.
After ghi, two newline escape sequences provide a double-spaced effect.
Finally, the last three characters jkl are displayed.

5. Modify, recompile, and execute the CharDemo program as many times as you
like until you can accurately predict what will be displayed when you use
various combinations of characters and escape sequences.

Figure 2-16 Output of the CharDemo program

Using the char Data Type

77

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Scanner Class to Accept Keyboard Input
Although you can assign values to variables you declare, programs typically become more
useful when a user can supply different values for variables each time a program executes. In
Chapter 1, you learned how to display output on the monitor using the System.out property.
System.out refers to the standard output device, which usually is the monitor. To create
interactive programs that accept input from a user, you can use System.in, which refers to
the standard input device (normally the keyboard).

You have learned that you can use the print() and println() methods to display many data
types; for example, you can use them to display a double, int, or String. The System.in

object is not as flexible; it is designed to read only bytes. That’s a problem, because you often
want to accept data of other types. Fortunately, the designers of Java have created a class
named Scanner that makes System.in more flexible.

To create a Scanner object and connect it to the System.in object, you write a statement
similar to the following:

Scanner inputDevice = new Scanner(System.in);

The portion of the statement to the left of the assignment operator, Scanner
inputDevice, declares an object of type Scanner with the programmer-chosen
name inputDevice, in exactly the same way that int x; declares an integer with
the programmer-chosen name x.

The portion of the statement to the right of the assignment operator, new Scanner(System.in),
creates a Scanner object that is connected to the System.in property. In other words,
the created Scanner object is connected to the default input device. The keyword new is
required by Java; you will use it whenever you create objects that are more complex than
the primitive data types.

In the chapter “More Object Concepts,” you will learn that the second part of the Scanner declaration calls
a special method called a constructor that is part of the prewritten Scanner class. You also will learn more
about the Java keyword new in the next two chapters.

The assignment operator in the Scanner declaration statement assigns the value of the new
object—that is, its memory address—to the inputDevice object in the program.

The Scanner class contains methods that retrieve values from an input device. Each
retrieved value is a token, which is a set of characters that is separated from the next set by
whitespace. Most often, this means that data is accepted when a user presses the Enter key,
but it could also mean that a token is accepted after a space or tab. Table 2-7 summarizes
some of the most useful methods that read different data types from the default input
device. Each retrieves a value from the keyboard and returns it if the next token is the
correct data type.

C H A P T E R 2 Using Data

78

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Scanner class does not contain a nextChar() method. To retrieve a single character from the
keyboard, you can use the nextLine() method and then use the charAt() method. The chapter
“Characters, Strings, and the StringBuilder” provides more details about the charAt() method.

Figure 2-17 contains a program that uses two of the Scanner class methods, and
Figure 2-18 shows a typical execution. The program reads a string and an integer from
the keyboard and displays them. The Scanner class is used in the four shaded statements
in the figure.

The first shaded statement imports the package necessary to use the Scanner class.

The second shaded statement declares a Scanner object named inputDevice.

The third shaded statement uses the nextLine() method to retrieve a line of text from the
keyboard and store it in the name variable.

The last shaded statement uses the nextInt() method to retrieve an integer from the
keyboard and store it in the age variable.

Java programmers would say that the Scannermethods return the appropriate value. That also means that
the value of the method is the appropriate value, and that you can assign the returned value to a variable,
display it, or use it in other legal statements. In the chapter “Using Methods, Classes, and Objects,” you will
learn how to write your own methods that return values.

Method Description

nextDouble() Retrieves input as a double

nextInt() Retrieves input as an int

nextLine() Retrieves the next line of data and returns it as a String

next() Retrieves the next complete token as a String

nextShort() Retrieves input as a short

nextByte() Retrieves input as a byte

nextFloat() Retrieves input as a float. Note that when you enter an input value that will
be stored as a float, you do not type an F. The F is used only with constants
coded within a program.

nextLong() Retrieves input as a long. Note that when you enter an input value that will be
stored as a long, you do not type an L. The L is used only with constants
coded within a program.

Table 2-7 Selected Scanner class methods

Using the Scanner Class to Accept Keyboard Input

79

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you use any of the Scanner methods and the next token cannot be converted to the right
data type, you receive an error message. For example, the program in Figure 2-17 uses
nextInt() to retrieve age, so if the user entered a noninteger value for age, such as the
double 19.5 or the String "nineteen", an error would occur. You will learn how to recover
from this type of error in the chapter “Exception Handling,” but for now, you will have to
trust the user to enter the correct data type.

The literal Strings contained in the print() statements that appear before each input
statement in Figure 2-17 are examples of prompts. A prompt is a message displayed for the
user that requests and describes input. Interactive programs would work without prompts,
but they would not be as user-friendly. Each prompt in the GetUserInfo class ends with two
greater-than signs and a space. This punctuation is not required; it just separates the words in
the prompt from the user’s input value on the screen, improving readability. You might prefer
to use a series of periods, several dashes, or just a few spaces.

import java.util.Scanner;
public class GetUserInfo
{
 public static void main(String[] args)
 {
 String name;
 int age;
 Scanner inputDevice = new Scanner(System.in);
 System.out.print("Please enter your name >> ");
 name = inputDevice.nextLine();
 System.out.print("Please enter your age >> ");
 age = inputDevice.nextInt();
 System.out.println("Your name is " + name +
 " and you are " + age + " years old.");
 }
}

Repeating as output what a user
has entered as input is called
echoing the input. Echoing
input is a good programming
practice; it helps eliminate
misunderstandings when the
user can visually confirm
what was entered.

Figure 2-17 The GetUserInfo class

Figure 2-18 Typical execution of the GetUserInfo program

C H A P T E R 2 Using Data

80

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

It is legal to write a single prompt that requests multiple input values—for example, “Please
enter your age, area code, and zip code >>”. The user could then enter the three values
separated with spaces, tabs, or Enter key presses. The values would be interpreted as separate
tokens and could be retrieved with three separate nextInt() method calls. However, asking a
user to enter multiple values often leads to mistakes. This book will follow the practice of
using a separate prompt for each input value required.

Pitfall: Using nextLine() Following One of the
Other Scanner Input Methods
You can encounter a problem when you use one of the numeric Scanner class retrieval
methods or the next() method before you use the nextLine() method. Consider the
program in Figure 2-19. It is identical to the one in Figure 2-17, except that the user is asked
for an age before being asked for a name. (See shading.) Figure 2-20 shows a typical execution.

import java.util.Scanner;
public class GetUserInfo2
{
 public static void main(String[] args)
 {
 String name;
 int age;
 Scanner inputDevice = new Scanner(System.in);
 System.out.print("Please enter your age >> ");
 age = inputDevice.nextInt();
 System.out.print("Please enter your name >> ");
 name = inputDevice.nextLine();
 System.out.println("Your name is " + name +
 " and you are " + age + " years old.");
 }
}

If you accept numeric input
prior to string input, the
string input is ignored
unless you take special
action.

Don’t Do It

Figure 2-19 The GetUserInfo2 class

Figure 2-20 Typical execution of the GetUserInfo2 program

Using the Scanner Class to Accept Keyboard Input

81

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 2-20, the user is prompted correctly for an age. However, after the user enters an
age and the prompt for the name is displayed, the program does not pause to let the user
enter a name. Instead, the program proceeds directly to the output statement, which does not
contain a valid name.

When you type characters using the keyboard, they are stored temporarily in a location
in memory called the keyboard buffer or the type-ahead buffer. All keystrokes are
stored in the keyboard buffer, including the Enter key. The problem occurs because of a
difference in the way the nextLine() method and the other Scanner retrieval methods
work:

The Scanner methods next(), nextInt(), and nextDouble() retrieve the next token in
the buffer up to the next whitespace, which might be a space, tab, or Enter key.

The nextLine() method reads all data up to the Enter key character.

So, in the execution of the program in Figure 2-20, the user is prompted for an age,
types 28, and presses Enter. The call to the nextInt() method retrieves the 28 and
leaves the Enter key press in the input buffer. Then, the name prompt is displayed and
the call to nextLine() retrieves the waiting Enter key before the user has time to type a
name.

The solution to the problem is simple. After any next(), nextInt(), or nextDouble() call,
you can add an extra nextLine() method call that will retrieve the abandoned Enter key
character. Then, no matter what type of input follows, the program will execute smoothly.
Figure 2-21 shows a program that contains just one change from Figure 2-19—the addition of
the shaded statement that retrieves the abandoned Enter key character from the input buffer.
Although you could assign the Enter key value to a character variable, there is no need to do
so. When you accept an entry and discard it without using it, programmers say that the entry
is consumed. Figure 2-21 shows that the call to nextInt() accepts the integer, the first call to
nextLine() consumes the Enter key that follows the integer entry, and the second nextLine()
call accepts both the entered name and the Enter key that follows it. Figure 2-22 shows that the
revised program executes correctly.

C H A P T E R 2 Using Data

82

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you write programs that accept user input, there is a risk that the user will enter the wrong type of data.
For example, if you include a nextInt() method call in your program, but the user types an alphabetic
character, an error will occur, and your program will stop running. You will learn to handle this type of error
later in this book.

Figure 2-22 Typical execution of the GetUserInfo3 program

import java.util.Scanner;
public class GetUserInfo3
{
 public static void main(String[] args)
 {
 String name;
 int age;
 Scanner inputDevice = new Scanner(System.in);
 System.out.print("Please enter your age >> ");
 age = inputDevice.nextInt();
 inputDevice.nextLine();
 System.out.print("Please enter your name >> ");
 name = inputDevice.nextLine();
 System.out.println("Your name is " + name +
 " and you are " + age + " years old.");
 }
}

This statement gets
the integer.

This statement gets
the name and
discards the Enter
key that follows the
name.

This statement
consumes the Enter
key that follows the
integer.

Figure 2-21 The GetUserInfo3 class

Using the Scanner Class to Accept Keyboard Input

83

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using the Scanner Class to Accept Keyboard Input

1. System.in refers to the standard input device, which normally is the keyboard.

2. System.in is more flexible than System.out because it can read all the basic
Java data types.

3. When a user types data followed by the Enter key, the Enter key character is left in
the keyboard buffer after Scanner class methods retrieve the other keystrokes.

. set yb yl no daer ot dengi sed si ni.metsySt ub, sepyt at ad suoi r av yal psi d nac
tuo.metsyS. tuo.metsyS sa el bi xelf sat on si ni.metsyS. 2# si t ne met at s esl af ehT

You Do It

Accepting User Input

In the next steps you create a program that accepts user input.

1. Open the IntegerDemo.java file you created in a “You Do It” section earlier in
this chapter. Change the class name to IntegerDemoInteractive, and save
the file as IntegerDemoInteractive.java.

2. As the first line in the file, insert an import statement that will allow you to use
the Scanner class:
import java.util.Scanner;

3. Remove the assignment operator and the assigned values from each of the
four numeric variable declarations.

4. Following the numeric variable declarations, insert a Scanner object
declaration:
Scanner input = new Scanner(System.in);

5. Following the variable declarations, insert a prompt for the integer value,
and an input statement that accepts the value, as follows:
System.out.print("Please enter an integer >> ");
anInt = input.nextInt();

(continues)

C H A P T E R 2 Using Data

84

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Then add similar statements for the other three variables:
System.out.print("Please enter a byte integer >> ");
aByte = input.nextByte();
System.out.print("Please enter a short integer >> ");
aShort = input.nextShort();
System.out.print("Please enter a long integer >> ");
aLong = input.nextLong();

7. Save the file, and then compile and execute it. Figure 2-23 shows a typical
execution. Execute the program a few more times, using different values
each time and confirming that the correct values have been accepted from
the keyboard.

Adding String Input

Next, you add String input to the IntegerDemoInteractive program.

1. Change the class name of the IntegerDemoInteractive program to
IntegerDemoInteractiveWithName, and immediately save the file as
IntegerDemoInteractiveWithName.java.

2. Add a new variable with the other variable declarations as follows:
String name;

3. After the last input statement (that gets the value for aLong), add three statements
that prompt the user for a name, accept the name, and use the name as follows:
System.out.print("Please enter your name >> ");
name = input.nextLine();
System.out.println("Thank you, " + name);

(continued)

Figure 2-23 Typical execution of the IntegerDemoInteractive program

(continues)

Using the Scanner Class to Accept Keyboard Input

85

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Save the file, and compile and execute it. Figure 2-24 shows a typical
execution. You can enter the numbers, but when the prompt for the name
appears, you are not given the opportunity to respond. Instead, the string
"Thank you, ", including the ending comma and space, is output immediately,
and the program ends. This output is incorrect because the input statement
that should retrieve the name from the keyboard instead retrieves the Enter
key that was still in the keyboard buffer after the last numeric entry.

5. To fix the problem, insert an extra call to the nextLine() method just before
the statement that accepts the name. This call will consume the Enter key.
You do not need an assignment operator with this statement, because there is
no need to store the Enter key character.
input.nextLine();

(continued)

Figure 2-24 Typical execution of incomplete IntegerDemoInteractiveWithName
application that does not accept a name

(continues)

C H A P T E R 2 Using Data

86

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Save, compile, and execute the program. Figure 2-25 shows a typical
successful execution.

Using the JOptionPane Class to Accept GUI Input
In Chapter 1, you learned how to display output at the command line and how to create GUI
message boxes to display String objects. Earlier in this chapter, you learned to accept input
from the keyboard at the command line. You also can accept input in a GUI dialog box using
the JOptionPane class.

Two dialog boxes that can be used to accept user input are:

InputDialog—Prompts the user for text input

ConfirmDialog—Asks the user a question, providing buttons that the user can click for
Yes, No, and Cancel responses

Using Input Dialog Boxes
An input dialog box asks a question and provides a text field in which the user can enter a
response. You can create an input dialog box using the showInputDialog() method. Six
versions of this method are available, but the simplest version uses a single argument that is the
prompt you want to display within the dialog box. The showInputDialog() method returns a
String that represents a user’s response; this means that you can assign the showInputDialog()
method to a String variable and the variable will hold the value that the user enters.

(continued)

Figure 2-25 Typical successful execution of IntegerDemoInteractiveWithName application

Using the JOptionPane Class to Accept GUI Input

87

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, Figure 2-26 shows an application that creates an input dialog box containing a
prompt for a first name. When the user executes the application, types William, then clicks
the OK button or presses Enter on the keyboard, the result String will contain “William”. In
the application in Figure 2-26, the response is concatenated with a welcoming message and
displayed in a message dialog box. Figure 2-27 shows the dialog box containing a user’s
response, and Figure 2-28 shows the resulting output message box.

import javax.swing.JOptionPane;
public class HelloNameDialog

{

public static void main(String[] args)
{

String result;
result = JOptionPane.showInputDialog(null, "What is your name?");
JOptionPane.showMessageDialog(null, "Hello, " + result + "!");

}
}

Figure 2-26 The HelloNameDialog class

When a computer has a touch screen, you might want the user to be able to use the operating system’s
virtual keyboard to enter data. You will learn how to display the virtual keyboard after you learn about
exception handling in Chapter 12.

Figure 2-28 Output of the HelloNameDialog application

Figure 2-27 Input dialog box of the HelloNameDialog application

C H A P T E R 2 Using Data

88

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A different version of the showInputDialog() method requires four arguments that allow
the programmer flexibility in controlling the appearance of the input dialog box. The four
arguments to showInputDialog() include:

The parent component, which is the screen component, such as a frame, in front of which
the dialog box will appear. If this argument is null, the dialog box is centered on the
screen.

The message the user will see before entering a value. Usually this message is a String,
but it actually can be any type of object.

The title to be displayed in the title bar of the input dialog box.

A class field describing the type of dialog box; it can be one of the following:
ERROR_MESSAGE, INFORMATION_MESSAGE, PLAIN_MESSAGE, QUESTION_MESSAGE, or
WARNING_MESSAGE.

For example, when the following statement executes, it displays the input dialog box shown in
Figure 2-29.

JOptionPane.showInputDialog(null,

"What is your area code?",
"Area code information",

JOptionPane.QUESTION_MESSAGE);

Note that the title bar displays “Area code information,” and the dialog box shows a question
mark icon.

The showInputDialog() method returns a String object that holds the combination of
keystrokes a user types into the dialog box. If the value that the user enters is intended to
be used as a number, as in an arithmetic statement, the returned String must be converted to
the correct numeric type. Later in this chapter, you will learn how to change primitive data
from one data type to another. However, the techniques you will learn only work with
primitive data types—double, int, char, and so on—not with class objects (that are reference
types) such as a String. To convert a String to an integer or double, you must use methods
from the built-in Java classes Integer and Double. Each primitive type in Java has a
corresponding class contained in the java.lang package; like most classes, the names of these
classes begin with uppercase letters. These classes are called type-wrapper classes. They
include methods that can process primitive type values.

Figure 2-29 An input dialog box with a String in the title bar and a question mark icon

Using the JOptionPane Class to Accept GUI Input

89

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 2-30 shows a SalaryDialog application that contains two String objects—
wageString and dependentsString. Two showInputDialog() methods are called, and the
answers are stored in the declared Strings. The shaded statements in Figure 2-30 show how
the Strings are converted to numeric values using methods from the type-wrapper classes
Integer and Double. The double value is converted using the Double.parseDouble()
method, and the integer is converted using the Integer.parseInt() method. Figure 2-31
shows a typical execution of the application.

Remember that in Java, the reserved keyword static means that a method is accessible and usable even
though no objects of the class exist. You can tell that the method Double.parseDouble() is a
static method, because the method name is used with the class name Double—no object is needed.
Similarly, you can tell that Integer.parseInt() is also a static method.

The term parse means to break into component parts. Grammarians talk about “parsing a sentence”—
deconstructing it so as to describe its grammatical components. Parsing a String converts it to its
numeric equivalent.

import javax.swing.JOptionPane;
public class SalaryDialog

{
public static void main(String[] args)
{

String wageString, dependentsString;
double wage, weeklyPay;
int dependents;
final double HOURS_IN_WEEK = 37.5;
wageString = JOptionPane.showInputDialog(null,

"Enter employee's hourly wage", "Salary dialog 1",
JOptionPane.INFORMATION_MESSAGE);

weeklyPay = Double.parseDouble(wageString) *

HOURS_IN_WEEK;

dependentsString = JOptionPane.showInputDialog(null,
"How many dependents?", "Salary dialog 2",
JOptionPane.QUESTION_MESSAGE);

dependents = Integer.parseInt(dependentsString);
JOptionPane.showMessageDialog(null, "Weekly salary is $" +

weeklyPay + "\nDeductions will be made for " +
dependents + " dependents");

}

}

Figure 2-30 The SalaryDialog class

C H A P T E R 2 Using Data

90

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using Confirm Dialog Boxes
Sometimes, the input you want from a user does not have to be typed from the keyboard. When
you present simple options to a user, you can offer buttons that the user can click to confirm a
choice. A confirm dialog box that displays the options Yes, No, and Cancel can be created
using the showConfirmDialog() method in the JOptionPane class. Four versions of the method
are available; the simplest requires a parent component (which can be null) and the String

prompt that is displayed in the box. The showConfirmDialog() method returns an integer
containing one of three possible values: JOptionPane.YES_OPTION, JOptionPane.NO_OPTION, or
JOptionPane.CANCEL_OPTION. Figure 2-32 shows an application that asks a user a question. The
shaded statement displays the dialog box shown in Figure 2-33 and stores the user’s response in
the integer variable named selection.

import javax.swing.JOptionPane;
public class AirlineDialog

{

public static void main(String[] args)
{

int selection;
boolean isYes;
selection = JOptionPane.showConfirmDialog(null,

"Do you want to upgrade to first class?");
isYes = (selection == JOptionPane.YES_OPTION);
JOptionPane.showMessageDialog(null,

"You responded " + isYes);
}

}

Figure 2-32 The AirlineDialog class

Figure 2-31 Sample execution of the SalaryDialog application

Using the JOptionPane Class to Accept GUI Input

91

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After a value is stored in selection, a Boolean variable named isYes is set to the result when
selection and JOptionPane.YES_OPTION are compared. If the user has selected the Yes
button in the dialog box, this variable is set to true; otherwise, the variable is set to false.
Finally, the true or false result is displayed; Figure 2-34 shows the result when a user clicks the
Yes button in the dialog box.

You can also create a confirm dialog box with five arguments, as follows:

The parent component, which can be null

The prompt message

The title to be displayed in the title bar

An integer that indicates which option button will be shown (It should be one of the
constants YES_NO_CANCEL_OPTION or YES_NO_OPTION.)

An integer that describes the kind of dialog box (It should be one of the constants
ERROR_MESSAGE, INFORMATION_MESSAGE, PLAIN_MESSAGE, QUESTION_MESSAGE, or
WARNING_MESSAGE.)

For example, when the following statement is executed, it displays a confirm dialog box, as
shown in Figure 2-35:

JOptionPane.showConfirmDialog(null,

"A data input error has occurred. Continue?",
"Data input error", JOptionPane.YES_NO_OPTION,

JOptionPane.ERROR_MESSAGE);

Figure 2-34 Output of AirlineDialog application when user clicks Yes

Figure 2-33 The confirm dialog box displayed by the AirlineDialog application

C H A P T E R 2 Using Data

92

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Confirm dialog boxes provide more practical uses when your applications can make decisions based on
the users’ responses. In the chapter “Making Decisions,” you will learn how to make decisions within
programs.

TWO TRUTHS & A LIE

Using the JOptionPane Class to Accept GUI Input

1. You can create an input dialog box using the showInputDialog() method; the
method returns a String that represents a user’s response.

2. You can use methods from the Java classes Integer and Double when you want to
convert a dialog box’s returned values to numbers.

3. A confirm dialog box can be created using the showConfirmDialog() method in
the JOptionPane class; a confirm dialog box displays the options Accept, Reject,
and Escape.

.l ecnaC
dna, oN, seY snoi t po eht syal psi d xob gol ai d mrif noc A. 3# si t ne met at s esl af ehT

Watch the video Getting Input.

Performing Arithmetic
Table 2-8 describes the five standard arithmetic operators that you use to perform calculations
with values in your programs. A value used on either side of an operator is an operand. For
example, in the expression 45 + 2, the numbers 45 and 2 are operands. The arithmetic
operators are examples of binary operators, so named because they require two operands.

You will learn about the Java shortcut arithmetic operators in the chapter “Looping.”

Figure 2-35 Confirm dialog box with title, Yes and No buttons, and error icon

Performing Arithmetic

93

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The operators / and % deserve special consideration. Java supports two types of division:

Floating-point division occurs when either or both of the operands are floating-point
values. For example, 45.0 / 2 is 22.5.

Integer division occurs when both of the operands are integers. The result is an integer,
and any fractional part of the result is lost. For example, the result of 45 / 2 is 22. As
another example, 39 / 5 is 7 because 5 goes into 39 seven whole times; 38 / 5, 37 / 5, 36 / 5,
and 35 / 5 all evaluate to 7.

The percent sign is the remainder operator. The remainder operator is most often used
with two integers, and the result is an integer with the value of the remainder after
division takes place. For example, the result of 45 % 2 is 1 because 2 “goes into” 45 twenty-
two times with a remainder of 1. Other examples of remainder operations include the
following:

39 % 5 is 4 because 5 goes into 39 seven times with a remainder of 4.

20 % 3 is 2 because when 20 is divided by 3, the remainder is 2.

36 % 4 is 0 because there is no remainder when 4 is divided into 36.

Note that when you perform paper-and-pencil division, you divide first to determine a
remainder. In Java, you do not need to perform a division operation before you can perform a
remainder operation. A remainder operation can stand alone.

Although the remainder operator is most often used with integers, it is legal but less
often useful to use the operator with floating-point values. In Java, when you use the
% operator with floating-point values, the result is the remainder from a rounded
division.

The remainder operator is also called the modulus operator, or sometimes just mod. Mathematicians
would argue that remainder is the better term because in Java, the result of using the remainder operator
can be negative, but in mathematics, the result of a modulus operation can never be negative.

Operator Description Example

+ Addition 45 + 2, the result is 47

– Subtraction 45 – 2, the result is 43

* Multiplication 45 * 2, the result is 90

/ Division 45.0 / 2, the result is 22.5
45 / 2, the result is 22 (not 22.5)

% Remainder (modulus) 45 % 2, the result is 1 (that is, 45 / 2 = 22 with a
remainder of 1)

Table 2-8 Arithmetic operators

C H A P T E R 2 Using Data

94

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Associativity and Precedence
When you combine mathematical operations in a single statement, you must understand
both associativity and precedence. The associativity of arithmetic operators with the same
precedence is left to right. In a statement such as answer = x + y + z;, the x and y are added
first, producing a temporary result, and then z is added to the temporary sum. After the sum
is computed, the result is assigned to answer.

Operator precedence refers to the rules for the order in which parts of a mathematical
expression are evaluated. The multiplication, division, and remainder operators have the
same precedence, and it is higher than the precedence of the addition and subtraction
operators. In other words, an arithmetic expression is evaluated from left to right, and
any multiplication, division, and remainder operations take place. Then, the expression
is evaluated from left to right again, and any addition and subtraction operations execute.
Table 2-9 summarizes the precedence of the arithmetic operators.

For example, the following statement assigns 14 to result:

int result = 2 + 3 * 4;

The multiplication operation (3 * 4) occurs before adding 2. You can override normal
operator precedence by putting the operation to perform first in parentheses. The following
statement assigns 20 to result:

int result = (2 + 3) * 4;

The addition within the parentheses takes place first, and then the intermediate result (5) is
multiplied by 4. When multiple pairs of parentheses are used in a statement, the innermost
expression surrounded by parentheses is evaluated first. For example, the value of the
following expression is 46:

2 * (3 + (4 * 5))

First, 4 * 5 evaluates to 20, and then 3 is added, giving 23. Finally, the value is multiplied by 2,
giving 46.

Remembering that *, /, and % have the same precedence is important in arithmetic
calculations. These operations are performed from left to right, regardless of the order
in which they appear. For example, the value of the following expression is 9:

25 / 8 * 3

First, 25 is divided by 8. The result is 3 because with integer division, you lose any remainder.
Then 3 is multiplied by 3, giving 9. If you assumed that multiplication was performed before
division, you would calculate an incorrect answer.

Operators Descriptions Relative Precedence

* / % Multiplication, division, remainder Higher

+ – Addition, subtraction Lower

Table 2-9 Relative precedence of arithmetic operators

Performing Arithmetic

95

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You will learn more about operator precedence in the chapter “Making Decisions.”

Writing Arithmetic Statements Efficiently
You can make your programs operate more efficiently if you avoid unnecessary repetition of
arithmetic statements. For example, suppose you know the values for an employee’s hourly
pay and pay rate and you want to compute state and federal withholding tax based on known
rates. You could write two statements as follows:

stateWithholding = hours * rate * STATE_RATE;
federalWithholding = hours * rate * FED_RATE;

With this approach, you perform the multiplication of hours * rate twice. It is more efficient
to perform the calculation once, as follows:

grossPay = hours * rate;
stateWithholding = grossPay * STATE_RATE;

federalWithholding = grossPay * FED_RATE;

The time saved is very small, but these savings would be more important if the calculation
was more complicated or if it was repeated many times in a program. As you think about the
programs you write, remain on the lookout for ways to improve efficiency by avoiding
duplication of operations.

Pitfall: Not Understanding Imprecision in Floating-Point Numbers
Integer values are exact, but floating-point numbers frequently are only approximations. For
example, when you divide 1.0 by 3.0, the mathematical result is 0.3333333…, with the 3s
continuing infinitely. No matter how many decimal places you can store, the result is only an
approximation. Even values that don’t repeat indefinitely in our usual numbering system,
such as 0.1, cannot be represented precisely in the binary format used by computers.
Imprecision leads to several problems:

When you produce floating-point output, it might not look like what you expect or want.

When you make comparisons with floating-point numbers, the comparisons might not be
what you expect or want.

Appendix B provides a more thorough explanation of numbering systems and why fractional values cannot be
represented accurately.

For example, Figure 2-36 shows a class in which an answer is computed as 2.20 – 2.00.
Mathematically, the result should be 0.20. But, as the output in Figure 2-37 shows, the result

C H A P T E R 2 Using Data

96

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

is calculated as a value that is slightly more than 0.20, and when answer is compared to 0.20,
the result is false.

public class ImprecisionDemo
{

public static void main(String[] args)
{

double answer = 2.20 - 2.00;
boolean isEqual = answer == 0.20;
System.out.println("answer is " + answer);
System.out.println("isEqual is " + isEqual);

}

}

Figure 2-36 The ImprecisionDemo program

For now, you might choose to accept the slight imprecisions generated when you use floating-
point numbers. However, if you want to eliminate the imprecisions, you can use one of several
techniques to round values. Appendix C contains directions on how to round numbers and
how to format a floating-point number so it displays the desired number of decimal positions.

Several movies have used the fact that floating-point numbers are not precise as a plot element. For
example, in the movies Superman III and Office Space, thieves round currency values and divert the
remaining fractions of cents to their own accounts.

Watch the video Arithmetic.

Figure 2-37 Execution of the ImprecisionDemo program

Performing Arithmetic

97

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Performing Arithmetic

1. The arithmetic operators are examples of unary operators, which are so named
because they perform one operation at a time.

2. In Java, operator precedence dictates that multiplication, division, and remainder
always take place prior to addition or subtraction in an expression.

3. Floating-point arithmetic might produce imprecise results.

. sdnar epo owt eri uqer yeht esuaceb de man os er a hci h w, sr ot ar epo
yr ani bf o sel p maxe er a sr ot ar epo ci t e mhti r a ehT. 1# si t ne met at s esl af ehT

You Do It

Using Arithmetic Operators

In these steps, you create a program that uses arithmetic operators.

1. Open a new file in your text editor, and type the import statement needed
for interactive input with the Scanner class:
import java.util.Scanner;

2. Type the class header and its curly braces for a class named ArithmeticDemo.
Within the class’s curly braces, enter the main() method header and its braces.
public class ArithmeticDemo
{

public static void main(String[] args)
{
}

}

3. Within the main() method, declare five int variables that will be used to hold
two input values and their sum, difference, and average:
int firstNumber;
int secondNumber;
int sum;
int difference;
int average;

(continues)

C H A P T E R 2 Using Data

98

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Also declare a Scanner object so that keyboard input can be accepted.
Scanner input = new Scanner(System.in);

5. Prompt the user for and accept two integers:
System.out.print("Please enter an integer >> ");
firstNumber = input.nextInt();
System.out.print("Please enter another integer >> ");
secondNumber = input.nextInt();

6. Add statements to perform the necessary arithmetic operations:
sum = firstNumber + secondNumber;
difference = firstNumber - secondNumber;
average = sum / 2;

7. Display the three calculated values:
System.out.println(firstNumber + " + " +

secondNumber + " is " + sum);
System.out.println(firstNumber + " - " +

secondNumber + " is " + difference);
System.out.println("The average of " + firstNumber +

" and " + secondNumber + " is " + average);

8. Save the file as ArithmeticDemo.java, and then compile and execute it.
Enter values of your choice. Figure 2-38 shows a typical execution. Notice
that because integer division was used to compute the average, the answer
is an integer.

9. Execute the program multiple times using various integer values, and confirm
that the results are accurate.

(continued)

Figure 2-38 Typical execution of ArithmeticDemo application

(continues)

Performing Arithmetic

99

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Performing Floating-Point Arithmetic

Next, you will modify the ArithmeticDemo application to work with floating-point
values instead of integers.

1. Within the ArithmeticDemo application, change the class name to
ArithmeticDemo2, and immediately save the file as ArithmeticDemo2.java.
Change all the variables’ data types to double. Change the two prompts to
request double values, and change the two calls to the nextInt() method to
nextDouble(). Save, compile, and execute the program again. Figure 2-39
shows a typical execution. Notice that the average calculation now includes
decimal places.

2. Rerun the program, experimenting with various input values. Some of your
output might appear with imprecisions similar to those shown in Figure 2-40.
If you are not satisfied with the slight imprecisions created when using
floating-point arithmetic, you can round or change the display of the values,
as discussed in Appendix C.

(continued)

Figure 2-39 Typical execution of the ArithmeticDemo2 application

Figure 2-40 Another typical execution of the ArithmeticDemo2 application

C H A P T E R 2 Using Data

100

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Type Conversion
When you perform arithmetic with variables or constants of the same type, the result of the
operation retains the same type. For example, when you divide two ints, the result is an int,
and when you subtract two doubles, the result is a double. Often, however, you might want
to perform mathematical operations on operands with unlike types. The process of
converting one data type to another is type conversion. Java performs some conversions for
you automatically or implicitly, but other conversions must be requested explicitly by the
programmer.

Automatic Type Conversion
When you perform arithmetic operations with operands of unlike types, Java chooses a
unifying type for the result. The unifying type is the type to which all operands in an
expression are converted so that they are compatible with each other. Java performs an
implicit conversion; that is, it automatically converts nonconforming operands to the unifying
type. Implicit conversions also are called promotions. Figure 2-41 shows the order for
establishing unifying types between values.

When two unlike types are used in an expression, the unifying type is the one that is higher in
the list in Figure 2-41. In other words, when an operand that is a type lower on the list is
combined with a type that is higher, the lower-type operand is converted to the higher one.
For example, the addition of a double and an int results in a double, and the subtraction of a
long from a float results in a float.

Boolean values cannot be converted to another type. In some languages, such as C++, Boolean values are
actually numbers. However, this is not the case in Java.

double Highest

float

long

int Lowest

(short and byte are automatically converted to int when used in
expressions)

Figure 2-41 Order for establishing unifying data types

Understanding Type Conversion

101

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, assume that an int, hoursWorked, and a double, payRate, are defined and then
multiplied as follows:

int hoursWorked = 37;

double payRate = 16.73;
double grossPay = hoursWorked * payRate;

The result of the multiplication is a double because when a double and an int are multiplied,
the int is promoted to the higher-ranking unifying type double—the type that is higher in
the list in Figure 2-41. Therefore, assigning the result to grossPay is legal.

The following code will not compile because hoursWorked times payRate is a double, and
Java does not allow the loss of precision that occurs if you try to store the calculated double

result in an int.

int hoursWorked = 37;

double payRate = 16.73;
int grossPay = hoursWorked * payRate;

The data types char, short, and byte all are promoted to int when used in statements with
unlike types. If you perform a calculation with any combination of char, short, and byte

values, the result is an int by default. For example, if you add two bytes, the result is an int,
not a byte.

Explicit Type Conversions
You can purposely override the unifying type imposed by Java by performing a type cast.
Type casting forces a value of one data type to be used as a value of another type. To perform
a type cast, you use a cast operator, which is created by placing the desired result type in
parentheses. Using a cast operator is an explicit conversion. The cast operator is followed by
the variable or constant to be cast. For example, a type cast is performed in the following
code:

double bankBalance = 189.66;

float weeklyBudget = (float) (bankBalance / 4);
// weeklyBudget is 47.415, one-fourth of bankBalance

The cast operator is more completely called the unary cast operator. Unlike a binary operator that
requires two operands, a unary operator uses only one operand. The unary cast operator is followed
by its operand.

In this example, the double value bankBalance is divided by the integer 4, and the result is a
double. Then, the double result is converted to a float before it is stored in weeklyBudget.

C H A P T E R 2 Using Data

102

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Without the conversion, the statement that assigns the result to weeklyBudget would
not compile. Similarly, a cast from a float to an int occurs in this code segment:

float myMoney = 47.82f;

int dollars = (int) myMoney;
// dollars is 47, the integer part of myMoney

In this example, the float value myMoney is converted to an int before it is stored in
the integer variable named dollars. When the float value is converted to an int, the
decimal place values are lost. The cast operator does not permanently alter any variable’s
data type; the alteration is only for the duration of the current operation. In other words,
if myMoney was used again in the previous example, it would still be a float and its value
would still be 47.82.

The word cast is used in a similar fashion when referring to molding metal, as in cast iron. In a Java arithmetic
cast, a value is “molded” into a different type.

It is easy to lose data when performing a cast. For example, the largest byte value is 127 and the largest
int value is 2,147,483,647, so the following statements produce distorted results:

int anOkayInt = 200;

byte aBadByte = (byte)anOkayInt;

A byte is constructed from eight 1s and 0s, or binary digits. The first binary digit, or bit, holds a 0 or 1 to
represent positive or negative. The remaining seven bits store the actual value. When the integer value 200 is
stored in the byte variable, its large value consumes the eighth bit, turning it to a 1, and forcing the
aBadByte variable to appear to hold the value –72, which is inaccurate and misleading.

You do not need to perform a cast when assigning a value to a higher unifying type. For
example, when you write a statement such as the following, Java automatically promotes the
integer constant 10 to be a double so that it can be stored in the payRate variable:

double payRate = 10;

However, for clarity, if you want to assign 10 to payRate, you might prefer to write the
following:

double payRate = 10.0;

The result is identical whether you assign the literal double 10.0 or the literal int 10 to the
double variable.

Understanding Type Conversion

103

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Understanding Type Conversion

1. When you perform arithmetic operations with operands of unlike types, you must
make an explicit conversion to a unifying type.

2. Summing a double, int, and float results in a double.

3. You can explicitly override the unifying type imposed by Java by performing a
type cast; type casting forces a value of one data type to be used as a value of
another type.

. epyt gni yfi nu a ot noi sr evnocti cil p mi na s mr ofr ep avaJ , sepyt ekil nu
f o sdnar epo hti wsnoi t ar epo ci t e mhti r a mr ofr ep uoy neh W. 1# si t ne met at s esl af ehT

You Do It

Implicit and Explicit Casting

In this section, you explore the concepts of the unifying types and casting.

1. Open the ArithmeticDemo.java file that uses integer values to calculate a
sum, difference, and average. Change the class name to ArithmeticDemo3,
and immediately save the file as ArithmeticDemo3.java.

2. In the previous version of the program, the average was calculated without
decimal places because when two integers are divided, the result is an
integer. To compute a more accurate average, change the data type for the
average variable from int to double.

3. Save, compile, and execute the program. As the sample execution in
Figure 2-42 shows, the program compiles and executes, but the average is
still not accurate. The average of 20 and 19 is calculated to be just 19.0
because when two integers are divided, the decimal portion of the arith-
metic result is lost.

(continues)

C H A P T E R 2 Using Data

104

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Change the statement that computes the average to include a cast as
follows:
average = (double) sum / 2;

5. Save, compile, and execute the program. As shown in Figure 2-43, now the
program displays a more accurate average. The integer sum has been cast to
a double, and when the double is divided by the integer, the result is a
double, which is then assigned to average.

6. Change the statement that computes the average to include a second set of
parentheses, as follows:
average = (double) (sum / 2);

(continued)

Figure 2-42 Typical execution of ArithmeticDemo3 application

Figure 2-43 Typical execution of ArithmeticDemo3 application after addition of a cast
operation for the average

(continues)

Understanding Type Conversion

105

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Save, compile, and execute the program. Now, the fractional portion of the
result is omitted again. That’s because the result of sum / 2 is calculated first,
and the result is an integer. Then, the whole-number result is cast to a double

and assigned to a double—but the fractional part of the answer was already
lost and casting is too late. Remove the newly added parentheses, save the
program, compile it, and execute it again to confirm that the fractional part of
the answer is reinstated.

8. As an alternative to the explicit cast in the division statement in the
ArithmeticDemo program, you could write the average calculation as follows:
average = sum / 2.0;

In this calculation, when the integer sum is divided by the double constant 2.0,
the result is a double. The result then does not require any cast to be
assigned to the double average without loss of data. Try this in your pro-
gram.

9. Go to the Java Web site (www.oracle.com/technetwork/java/index.html),
select Java APIs, and then select Java SE 8. Scroll through the list of All
Classes, and select PrintStream, which is the data type for the out object
used with the println() method. Scroll down to view the list of methods in the
Method Summary. As you did in a previous exercise, notice the many versions
of the print() and println() methods, including ones that accept a String,
an int, and a long. Notice, however, that no versions accept a byte or a
short. That’s because when a byte or short is sent to the print() or
println() method, it is automatically promoted to an int, so that version
of the method is used.

Don’t Do It
Don’t mispronounce “integer.” People who are unfamiliar with the term often say
“interger,” inserting an extra r.

Don’t attempt to assign a literal constant floating-point number, such as 2.5, to a float

without following the constant with an uppercase or lowercase F. By default, constant
floating-point values are doubles.

Don’t try to use a Java keyword as an identifier for a variable or constant. Table 1-1 in
Chapter 1 contains a list of Java keywords.

Don’t attempt to assign a constant value under –2,147,483,648 or over +2,147,483,647 to a
long variable without following the constant with an uppercase or lowercase L. By default,
constant integers are ints, and a value under –2,147,483,648 or over 2,147,483,647 is too
large to be an int.

(continued)

C H A P T E R 2 Using Data

106

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t assume that you must divide numbers as a step to determining a remainder; the
remainder operator (%) is all that’s needed.

Don’t try to use a variable or named constant that has not yet been assigned a value.

Don’t forget to consume the Enter key after numeric input using the Scanner class when a
nextLine() method call follows.

Don’t forget to use the appropriate import statement when using the Scanner or
JOptionPane class.

Don’t forget precedence rules when you write statements that contain multiple arithmetic
operations. For example, score1 + score2 / 2 does not compute the average of two scores.
Instead, it adds half of score2 to score1. To compute the average, you would write
(score1 + score2) / 2.

Don’t forget that integer division results in an integer, dropping any fractional part. For
example, 1/2 is not equal to 0.5; it is equal to 0.

Don’t forget that extra parentheses can change the result of an operation that includes casting.

Don’t forget that floating-point numbers are imprecise.

Don’t attempt to assign a constant decimal value to an integer using a leading 0. For
example, if you declare int num = 021; and then display num, you will see 17. The leading 0
indicates that the value is in base 8 (octal), so its value is two 8s plus one 1. In the decimal
system, 21 and 021 mean the same thing, but not in Java.

Don’t use a single equal sign (=) in a Boolean comparison for equality. The operator used
for equivalency is composed of two equal signs (==).

Don’t try to store a string of characters, such as a name, in a char variable. A char variable
can hold only a single character.

Don’t forget that when a String and a numeric value are concatenated, the resulting
expression is a string. For example, "X" + 2 + 4 results in "X24", not "X6". If you want the
result to be "X6", you can use the expression "X" + (2 + 4).

Key Terms
Constant describes values that cannot be changed during the execution of an application.

A literal constant is a value that is taken literally at each use.

A numeric constant is a number whose value is taken literally at each use.

An unnamed constant has no identifier associated with it.

A variable is a named memory location that you can use to store a value.

An item’s data type describes the type of data that can be stored there, how much memory
the item occupies, and what types of operations can be performed on the data.

Key Terms

107

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A primitive type is a simple data type. Java’s primitive types are byte, short, int, long, float,
double, char, and boolean.

Reference types are complex data types that are constructed from primitive types.

A variable declaration is a statement that reserves a named memory location.

A strongly typed language is one in which each variable has a well-defined type that limits
the operations you can perform with it; strong typing implies that variables must be declared
before they can be used.

Camel casing is a style in which an identifier begins with a lowercase letter and subsequent
words within the identifier are capitalized.

The assignment operator is the equal sign (=); any value to the right of the equal sign is
assigned to the variable on the left of the equal sign.

An initialization is an assignment made when you declare a variable.

An assignment is the act of providing a value for a variable.

Associativity refers to the order in which operands are used with operators.

An lvalue is an expression that can appear on the left side of an assignment statement.

An rvalue is an expression that can appear only on the right side of an assignment statement.

An uninitialized variable is one that has not been assigned a value.

A garbage value is the unknown value stored in an uninitialized variable.

A named constant is a named memory location whose assigned value cannot change during
program execution.

A symbolic constant is a named constant.

The keyword final precedes named constant declarations.

A blank final is a final variable that has not yet been assigned a value.

A magic number is a value that does not have immediate, intuitive meaning or a number that
cannot be explained without additional knowledge. Unnamed constants are magic numbers.

The scope of a data item is the area in which it is visible to a program and in which you can
refer to it using its simple identifier.

A block of code is the code contained between a set of curly braces.

Concatenated describes values that are attached end to end.

A null String is an empty String created by typing a set of quotes with nothing between them.

An integer is a whole number without decimal places.

The int data type is used to declare variables and constants that store integers in the range
of –2,147,483,648 to +2,147,483,647.

C H A P T E R 2 Using Data

108

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The byte data type holds very small integers, from –128 to 127.

The short data type holds small integers, from –32,768 to 32,767.

The long data type holds very large integers, from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

A lossy conversion is one in which some data is lost.

A lossless conversion is one in which no data is lost.

A boolean variable can hold only one of two values—true or false.

A relational operator compares two items; an expression that contains a relational operator
has a Boolean value.

A comparison operator is another name for a relational operator.

A floating-point number contains decimal positions.

A float data type can hold a floating-point value of up to six or seven significant digits of
accuracy.

A double data type can hold a floating-point value of up to 14 or 15 significant digits of
accuracy.

The term significant digits refers to the mathematical accuracy of a value.

Scientific notation is a display format that more conveniently expresses large or small
numeric values; a multidigit number is converted to a single-digit number and multiplied by
10 to a power.

A double-precision floating-point number is stored in a double.

A single-precision floating-point number is stored in a float.

The char data type is used to hold any single character.

String is a built-in Java class that provides you with the means for storing and manipulating
character strings.

An escape sequence begins with a backslash followed by a character; the pair represents a
single character.

The standard input device normally is the keyboard.

A token is a unit of data separated with whitespace.

A prompt is a message that requests and describes user input.

Echoing the input means to repeat the user’s entry as output so the user can visually confirm
the entry’s accuracy.

The keyboard buffer is a small area of memory where keystrokes are stored before they are
retrieved into a program.

Key Terms

109

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The type-ahead buffer is the keyboard buffer.

To consume an entry is to retrieve and discard it without using it.

An input dialog box asks a question and provides a text field in which the user can enter a
response.

Type-wrapper classes, contained in the java.lang package, include methods that can
process primitive type values.

To parse means to break into component parts.

A confirm dialog box displays the options Yes, No, and Cancel.

Standard arithmetic operators are used to perform calculations with values.

An operand is a value used in an arithmetic statement.

Binary operators require two operands.

Floating-point division is the operation in which two values are divided and either or both are
floating-point values.

Integer division is the operation in which two values are divided and both are integers; the
result contains no fractional part.

The remainder operator is the percent sign; when it is used with two integers, the result is an
integer with the value of the remainder after division takes place.

The modulus operator, sometimes abbreviated as mod, is an alternate name for the
remainder operator.

Operator precedence is the rules for the order in which parts of a mathematical expression
are evaluated.

Type conversion is the process of converting one data type to another.

A unifying type is a single data type to which all operands in an expression are converted.

An implicit conversion is the automatic transformation of one data type to another.

Promotion is an implicit conversion.

Type casting forces a value of one data type to be used as a value of another type.

A cast operator performs an explicit type conversion; it is created by placing the desired
result type in parentheses before the expression to be converted.

An explicit conversion is the data type transformation caused using a cast operator.

The unary cast operator is a more complete name for the cast operator that performs explicit
conversions.

A unary operator uses only one operand.

C H A P T E R 2 Using Data

110

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary
Variables are named memory locations in which programs store values; the value of a
variable can change. You must declare all variables you want to use in a program by
providing a data type and a name. Java provides for eight primitive types of data: boolean,
byte, char, double, float, int, long, and short. A named constant is a memory location
that holds a value that cannot be changed after it is assigned; it is preceded by the keyword
final.

A variable of type int can hold any whole number value from –2,147,483,648 to
+2,147,483,647. The types byte, short, and long are all variations of the integer type.

A boolean type variable can hold a true or false value. Java supports six relational
operators: >, <, ==, >=, <=, and !=.

A floating-point number contains decimal positions. Java supports two floating-point data
types: float and double.

You use the char data type to hold any single character. You type constant character
values between single quotation marks and String constants between double quotation
marks. You can store some characters using an escape sequence, which always begins with
a backslash.

You can use the Scanner class and the System.in object to accept user input from the
keyboard. Several methods are available to convert input to usable data, including
nextDouble(), nextInt(), and nextLine().

You can accept input using the JOptionPane class. The showInputDialog() method
returns a String, which must be converted to a number using a type-wrapper class before
you can use it as a numeric value.

There are five standard arithmetic operators: +, −, *, /, and %. Operator precedence is the
order in which parts of a mathematical expression are evaluated. Multiplication, division,
and remainder always take place prior to addition or subtraction in an expression.
Parentheses can be added to an expression to change precedence. When multiple pairs of
parentheses are included in an expression, the expression in the innermost parentheses is
evaluated first.

When you perform mathematical operations on unlike types, Java implicitly converts the
variables to a unifying type. You can explicitly override the unifying type imposed by Java
by performing a type cast.

Review Questions
1. When data cannot be changed after a class is compiled, the data is .

a. constant
b. variable

c. volatile
d. mutable

Review Questions

111

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Which of the following is not a primitive data type in Java?

a. boolean

b. byte

c. int

d. sector

3. Which of the following elements is not required in a variable declaration?

a. a type
b. an identifier

c. an assigned value
d. a semicolon

4. The assignment operator in Java is .

a. =
b. ==

c. :=
d. ::

5. Assuming you have declared shoeSize to be a variable of type int, which of the
following is a valid assignment statement in Java?

a. shoeSize = 9;

b. shoeSize = 9.5;

c. shoeSize = '9';

d. shoeSize = "nine";

6. Which of the following data types can store a value in the least amount of memory?

a. short

b. long

c. int

d. byte

7. A boolean variable can hold .

a. any character
b. any whole number

c. any decimal number
d. the value true or false

8. The value 137.68 can be held by a variable of type .

a. int

b. float

c. double

d. Two of the preceding answers are correct.

9. An escape sequence always begins with a(n) .

a. e
b. forward slash

c. backslash
d. equal sign

10. Which Java statement produces the following output?
w
xyz

a. System.out.println("wxyz");

b. System.out.println("w" + "xyz");

c. System.out.println("w\nxyz");

d. System.out.println("w\nx\ny\nz");

C H A P T E R 2 Using Data

112

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11. The remainder operator .

a. is represented by a forward slash
b. must follow a division operation
c. provides the quotient of integer division
d. is none of the above

12. According to the rules of operator precedence, when division occurs in the same
arithmetic statement as , the division operation always takes
place first.

a. multiplication
b. remainder
c. subtraction
d. Answers a and b are correct.

13. The “equal to” relational operator is .

a. =
b. ==

c. !=
d. !!

14. When you perform arithmetic with values of diverse types, Java .

a. issues an error message
b. implicitly converts the values to a unifying type
c. requires you to explicitly convert the values to a unifying type
d. implicitly converts the values to the type of the first operand

15. If you attempt to add a float, an int, and a byte, the result will be
a(n) .

a. float

b. int

c. byte

d. error message

16. You use a to explicitly override an implicit type.

a. mistake
b. type cast

c. format
d. type set

17. In Java, what is the value of 3 + 7 * 4 + 2?

a. 21
b. 33

c. 42
d. 48

18. Which assignment is correct in Java?

a. int value = (float) 4.5;

b. float value = 4 (double);

c. double value = 2.12;

d. char value = 5c;

Review Questions

113

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

19. Which assignment is correct in Java?

a. double money = 12;

b. double money = 12.0;

c. double money = 12.0d;

d. All of the above are correct.

20. Which assignment is correct in Java?

a. char aChar = 5.5;

b. char aChar = "W";

c. char aChar = '*';

d. Two of the preceding answers are correct.

Exercises

Programming Exercises

1. What is the numeric value of each of the following expressions as evaluated
by Java?

a. 4 + 6 * 2
b. 10 / 5 + 8
c. 12 / 4 + 16 / 2
d. 17 / 2
e. 22 / 5

f. 39 / 10
g. 19 % (2 + 3)
h. 3 + 4 * 20 / 3
i. 36 % (6 + 2)
j. 8 % 2 * 0

2. What is the value of each of the following Boolean expressions?

a. 15 > 13
b. 8 <= (2 + 6)
c. 5 == 15
d. 3 >= 3
e. 3 * 3 == 2 * 4

f. 5 < 8 – 3
g. 7 != 7
h. 8 != (2 + 5)
i. 10 – 20 == -10
j. 3 + 2 * 6 == 15

3. Choose the best data type for each of the following so that any reasonable value
is accommodated but no memory storage is wasted. Give an example of a typical
value that would be held by the variable, and explain why you chose the type
you did.

a. the number of siblings you have
b. your final grade in this class
c. the population of Earth
d. the population of a U.S. county
e. the number of passengers on a

bus

f. one player’s score in a Scrabble game
g. one team’s score in a Major League

Baseball game
h. the year an historical event occurred
i. the number of legs on an animal
j. the price of an automobile

C H A P T E R 2 Using Data

114

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. a. Write a Java class that declares a named constant to hold the number of quarts
in a gallon (4). Also declare a variable to represent the number of quarts
needed for a painting job, and assign an appropriate value—for example, 18.
Compute and display the number of gallons and quarts needed for the job.
Display explanatory text with the values—for example, A job that needs 18

quarts requires 4 gallons plus 2 quarts. Save the class as QuartsToGallons.
java.

b. Convert the QuartsToGallons class to an interactive application. Instead of
assigning a value to the number of quarts, accept the value from the user as input.
Save the revised class as QuartsToGallonsInteractive.java.

5. a. Write a Java class that declares named constants to represent the number of
kilometers (1.852) and the number of miles (1.150779) in a nautical mile. Also
declare a variable to represent a number of nautical miles and assign a value to it.
Compute and display, with explanatory text, the value in kilometers and in miles.
Save the class as NauticalMiles.java.

b. Convert the NauticalMiles class to an interactive application. Instead of
assigning a value to the nautical miles variable, accept it from the user as input.
Save the revised class as NauticalMilesInteractive.java.

6. a. Write a class that declares a variable named inches, which holds a length in
inches, and assign a value. Display the value in feet and inches; for example, 86
inches becomes 7 feet and 2 inches. Be sure to use a named constant where
appropriate. Save the class as InchesToFeet.java.

b. Write an interactive version of the InchesToFeet class that accepts the inches
value from a user. Save the class as InchesToFeetInteractive.java.

7. Write a class that declares variables to hold your three initials. Display the three
initials with a period following each one, as in J.M.F. Save the class as Initials.java.

8. Meadowdale Dairy Farm sells organic brown eggs to local customers. They charge
$3.25 for a dozen eggs, or 45 cents for individual eggs that are not part of a dozen.
Write a class that prompts a user for the number of eggs in the order and then display
the amount owed with a full explanation. For example, typical output might be, “You
ordered 27 eggs. That’s 2 dozen at $3.25 per dozen and 3 loose eggs at 45 cents each
for a total of $7.85.” Save the class as Eggs.java.

9. a. The Huntington Boys and Girls Club is conducting a fundraiser by selling chili
dinners to go. The price is $7 for an adult meal and $4 for a child’s meal. Write a
class that accepts the number of each type of meal ordered and display the total
money collected for adult meals, children’s meals, and all meals. Save the class as
ChiliToGo.java.

b. In the previous example, the costs to produce an adult meal and a child’s meal
are $4.35 and $3.10, respectively. Modify the ChiliToGo program to display the
total profit for each type of meal as well as the grand total profit. Save the class as
ChiliToGoProfit.java.

Exercises

115

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Write a class that calculates and displays the conversion of an entered number
of dollars into currency denominations—20s, 10s, 5s, and 1s. Save the class as
Dollars.java.

11. Write a program that accepts a number of minutes and converts it both to hours
and days. For example, 6000 minutes equals 100 hours and equals 4.167 days. Save
the class as MinutesConversion.java.

12. Travel Tickets Company sells tickets for airlines, tours, and other travel-related
services. Because ticket agents frequently mistype long ticket numbers, Travel
Tickets has asked you to write an application that indicates invalid ticket number
entries. The class prompts a ticket agent to enter a six-digit ticket number. Ticket
numbers are designed so that if you drop the last digit of the number, then divide
the number by 7, the remainder of the division will be identical to the last dropped
digit. This process is illustrated in the following example:

Accept the ticket number from the agent and verify whether it is a valid number.
Test the application with the following ticket numbers:

123454; the comparison should evaluate to true.

147103; the comparison should evaluate to true.

154123; the comparison should evaluate to false.

Save the program as TicketNumber.java.

Debugging Exercises

1. Each of the following files in the Chapter02 folder of your downloadable student files
has syntax and/or logic errors. In each case, determine the problem and fix the
application. After you correct the errors, save each file using the same filename
preceded with Fix. For example, DebugTwo1.java will become FixDebugTwo1.java.

a. DebugTwo1.java
b. DebugTwo2.java

c. DebugTwo3.java
d. DebugTwo4.java

Step 1 Enter the ticket number; for example, 123454.

Step 2 Remove the last digit, leaving 12345.

Step 3 Determine the remainder when the ticket number is divided by 7. In this
case, 12345 divided by 7 leaves a remainder of 4.

Step 4 Assign the Boolean value of the comparison between the remainder and
the digit dropped from the ticket number.

Step 5 Display the result—true or false—in a message box.

C H A P T E R 2 Using Data

116

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you change a filename, remember to change every instance of the class name within the file so that it
matches the new filename. In Java, the filename and class name must always match.

Game Zone

1. Mad Libs is a children’s game in which they provide a few words that are then
incorporated into a silly story. The game helps children understand different parts
of speech because they are asked to provide specific types of words. For example,
you might ask a child for a noun, another noun, an adjective, and a past-tense verb.
The child might reply with such answers as table, book, silly, and studied. The newly
created Mad Lib might be:

Mary had a little table

Its book was silly as snow

And everywhere that Mary studied

The table was sure to go.

Create a Mad Libs program that asks the user to provide at least four or five words,
and then create and display a short story or nursery rhyme that uses them. Save the
file as MadLib.java.

2. In the “Game Zone” section in Chapter 1, you learned how to obtain a random
number. For example, the following statement generates a random number between
the constants MIN and MAX inclusive and assigns it to a variable named random:

random = 1 + (int)(Math.random() * MAX);

Write a program that selects a random number between 1 and 5 and asks the
user to guess the number. Display a message that indicates the difference
between the random number and the user’s guess. Display another message
that displays the random number and the Boolean value true or false

depending on whether the user’s guess equals the random number. Save the
file as RandomGuessMatch.java.

Exercises

117

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Problems

1. Carly’s Catering provides meals for parties and special events. Write a program that
prompts the user for the number of guests attending an event and then computes
the total price, which is $35 per person. Display the company motto with the border
that you created in the CarlysMotto2 class in Chapter 1, and then display the
number of guests, price per guest, and total price. Also display a message that
indicates true or false depending on whether the job is classified as a large event—
an event with 50 or more guests. Save the file as CarlysEventPrice.java.

2. Sammy’s Seashore Supplies rents beach equipment such as kayaks, canoes, beach
chairs, and umbrellas to tourists. Write a program that prompts the user for the
number of minutes he rented a piece of sports equipment. Compute the rental cost
as $40 per hour plus $1 per additional minute. (You might have surmised already
that this rate has a logical flaw, but for now, calculate rates as described here. You
can fix the problem after you read the chapter on decision making.) Display
Sammy’s motto with the border that you created in the SammysMotto2 class in
Chapter 1. Then display the hours, minutes, and total price. Save the file as
SammysRentalPrice.java.

C H A P T E R 2 Using Data

118

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3
Using Methods,
Classes, and Objects

In this chapter, you will:

Learn about method calls and placement

Identify the parts of a method

Add parameters to methods

Create methods that return values

Learn about classes and objects

Create a class

Create instance methods in a class

Declare objects and use their methods

Create constructors

Appreciate classes as data types

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Method Calls and Placement
A method is a program module that contains a series of statements that carry out a task. You
have already seen Java classes that contain a main() method, which executes automatically
when you run a program. A program’s main() method can execute additional methods, and
those methods can execute others. Any class can contain an unlimited number of methods,
and each method can be called an unlimited number of times.

To execute a method, you invoke or call it. In other words, a calling method makes a method
call, and the method call invokes a called method. The calling method is also known as a
client method because a called method provides a service for its client.

Consider the simple First class that you saw in Chapter 1; it displayed a single line of output,
“First Java application.” Suppose that you want to add three lines of output to this application
to display your company’s name and address. One approach would be to simply add three
new println() statements, as shown in the shaded statements in Figure 3-1.

public class First
{

public static void main(String[] args)
{

System.out.println("XYZ Company");
System.out.println("8900 U.S. Hwy 14");
System.out.println("Crystal Lake, IL 60014");
System.out.println("First Java application");

}
}

Figure 3-1 The First class

Instead of adding the three println() statements to the application in Figure 3-1, you might
prefer to call a method that executes the three statements. Then the program would look like
the one in Figure 3-2. The shaded line contains the call to the displayAddress() method.

public class First
{

public static void main(String[] args)
{

displayAddress();
System.out.println("First Java application");

}
}

Figure 3-2 The First class with a call to the displayAddress() method

There are two major advantages to creating a separate method to display the three address
lines. First, the main() method remains short and easy to follow because main() contains just
one statement to call the method, rather than three separate println() statements to

C H A P T E R 3 Using Methods, Classes, and Objects

120

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

perform the work of the method. What is more important is that a method is easily reusable.
After you create the displayAddress() method, you can use it in any application that needs
the company’s name and address. In other words, you do the work once, and then you can use
the method many times. In the following examples, a method is called from another method
in its own class; later in this chapter, you learn how to call a method from a different class.

Besides adding a call to the method in the First class, you must actually write the method. You
place a method within a class, but it must be outside of any other methods. In other words,
you cannot place a method within another method. Figure 3-3 shows the two locations where
you can place additional methods within the First class—within the curly braces of the class,
but outside of (either before or after) any other methods. Methods can never overlap.

public class First
{

// You can place additional methods here, before main()
public static void main(String[] args)
{

displayAddress();
System.out.println("First Java application");

}
// You can place additional methods here, after main()

}

Figure 3-3 Placement of methods within a class

The order in which methods appear in a class has no bearing on the order in which the
methods are called or execute. No matter where you place it, the main() method is always
executed first in any Java application, and it might call any other methods in any order and
any number of times. The order in which you call methods, not their physical placement, is
what makes a difference in how an application executes.

A main() method executes automatically when you run a program, but other methods do not
execute simply because you place them within a class—they must be called. A class might
contain methods that are never called from a particular application, just as some electronic
devices might contain features you never use. For example, you might use a DVR to play
movies but never to record TV programs, or you might use your microwave oven for popcorn
but never to defrost.

Figure 3-4 shows the First class with two methods: the main() method and the
displayAddress() method placed after main(). Figure 3-5 shows the output from the
execution of the First class in Figure 3-4. When the program executes, the main() method
first calls the displayAddress() method, which displays three lines of output. Then main()

displays the phrase “First Java application”.

Using a method name to contain or encapsulate a series of statements is an example of the feature that
programmers call abstraction. Consider abstract art, in which the artist tries to capture the essence of an
object without focusing on the details. Similarly, when programmers employ abstraction, they use a general
method name in a module rather than list all the detailed activities that will be carried out by the method.

Understanding Method Calls and Placement

121

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Watch the video Methods.

TWO TRUTHS & A LIE

Understanding Method Calls and Placement

1. Any class can contain an unlimited number of methods.

2. During one program execution, a method might be called any number of times.

3. A method is usually written within another method.

. sdoht e mr eht o
yna ni hti wt ont ub, ssal c a ni hti wnetti r wsi doht e mA. 3# si t ne met at s esl af ehT

public class First
{

public static void main(String[] args)
 {

displayAddress();
 System.out.println("First Java application");
 }

public static void displayAddress()
 {

System.out.println("XYZ Company");
 System.out.println("8900 U.S. Hwy 14");
 System.out.println("Crystal Lake, IL 60014");
 }
}

The main() method in
this class contains two
statements. The first
one is a call to the
displayAddress()
method.

Figure 3-4 First class with main() calling displayAddress()

Figure 3-5 Output of the First application, including the displayAddress() method

C H A P T E R 3 Using Methods, Classes, and Objects

122

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Method Construction
Every method must include the two parts featured in Figure 3-6:

A method header—A method’s header provides information about how other methods
can interact with it. A method header is also called a declaration.

A method body between a pair of curly braces—The method body contains the
statements that carry out the work of the method. A method’s body is called its
implementation. Technically, a method is not required to contain any statements in its
body, but you usually would have no reason to create an empty method in a class.
Sometimes, while developing a program, the programmer creates an empty method as a
placeholder and fills in the implementation later. An empty method is called a stub.

The method header is the first line of a method. It contains the following:

Optional access specifiers

A return type

An identifier

Parentheses

The next few figures compare these parts of a method header for the main() method and the
displayAddress() method in the First class.

Access Specifiers
Figure 3-7 highlights the optional access specifiers for the two methods in the First class.
The access specifier for a Java method can be any of the following modifiers: public, private,
protected, or, if left unspecified, package by default. Most often, methods are given public

access; this book will cover the other modifiers later. Endowing a method with public access
means that any other class can use it, not just the class in which the method resides.

public class First
{

public static void main(String[] args)
 {

displayAddress();
System.out.println("First Java application");

 }
public static void displayAddress()

 {
System.out.println("XYZ Company");
System.out.println("8900 U.S. Hwy 14");
System.out.println("Crystal Lake, IL 60014");

 }
}

Method
headers

Method
bodies

Figure 3-6 The headers and bodies of the methods in the First class

Understanding Method Construction

123

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You first learned the term access specifier in Chapter 1. Access specifiers are sometimes called
access modifiers.

In addition, any method that can be used without instantiating an object requires the keyword
modifier static. The main() method in an application must use the keyword static, but
other methods, like displayAddress(), can use it too. You will learn about nonstatic
methods later in this chapter.

Return Type
Figure 3-8 features the return types for the main() and displayAddress() methods in the
First class. A return type describes the type of data the method sends back to its calling
method. Not all methods return a value to their calling methods; a method that returns no
data has a return type of void. The main() method in an application must have a return type
of void; in this example, displayAddress() also has a void return type. Other methods that
you will see later in this chapter have different return types. The phrases void method and
method of type void both refer to a method that has a void return type.

public static void displayAddress()

public static void main(String[] args)

The main() method in an application must
have a void return type.

The displayAddress() method does not send any information
back to the method that calls it, so its return type is void. Later in
this chapter you will write methods with other return types.

Figure 3-8 Return types for two methods

public static void displayAddress()

public static void main(String[] args)

The main() method in an application
must specify public access.

The displayAddress() method
is not required to specify public
access. However, if access is
public, the method can be used
by other, outside classes.

The static modifier means that
these methods do not require an
object to be created.

Figure 3-7 Access specifiers for two methods

C H A P T E R 3 Using Methods, Classes, and Objects

124

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Method Name
Figure 3-9 highlights the names of the two methods in the First class. A method’s name can
be any legal identifier. That is, like identifiers for classes and variables, a method’s identifier
must be one word with no embedded spaces, and cannot be a Java keyword. The method that
executes first when you run an application must be named main(), but you have a lot of
leeway in naming other methods that you create. Technically, you could even name another
method main() as long as you did not include String[] within the parentheses, but doing so
would be confusing and is not recommended. Because methods “do” something—that is,
perform an action—their names frequently contain a verb, such as print or display.

Parentheses
As Figure 3-10 shows, every method header contains a set of parentheses that follow the
identifier. The parentheses might contain data to be sent to the method. For example, when
you write a main() method in a class, the parentheses in its header surround String[] args.
The displayAddress() method in the First class requires no outside data, so its parentheses
are empty. Later in this chapter, you will see several methods that accept data.

The full name of the displayAddress() method is First.displayAddress(), which includes
the class name (First), a dot, and the method name, which is displayAddress(). (The name
does not include an object because displayAddress() is a static method.) A complete name

public static void displayAddress()

public static void main(String[] args)

The method that executes first when you run
an application must be named main().

Other methods you write in a class
can have any legal identifier.

Figure 3-9 Identifiers for two methods

public static void displayAddress()

public static void main(String[] args)

The main() method in an application must contain String[]
and an identifier (args is traditional) within its parentheses.

Other methods you write might accept data
within their parentheses, but
displayAddress()does not.

Figure 3-10 Parentheses and their contents for two methods

Understanding Method Construction

125

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

that includes the class is a fully qualified identifier. When you use a method within its own
class, you do not need to use the fully qualified name (although you can); the simple method name
alone is enough. However, if you want to use a method in another class, the compiler does not
recognize the method unless you use the full name. You have used similar syntax (including a class
name, dot, and method name) when calling the JOptionPane.showMessageDialog() method.

Each of two different classes can have its own method named displayAddress(). Such a
method in the second class would be entirely distinct from the identically named method in
the first class. You could use both methods in a third class by using their fully qualified
identifiers. Two classes in an application cannot have the same name.

Think of the class name as the family name. Within your own family, you might refer to an activity as “the
family reunion,” but outside the family people need to use a surname as well, as in “the Anderson family
reunion.” Similarly, within a class a method name alone is sufficient, but outside the class you need to use the
fully qualified name.

TWO TRUTHS & A LIE

Understanding Method Construction

1. A method header is also called an implementation.

2. When a method is declared with public access, methods in other classes can call it.

3. Not all methods return a value, but every method requires a return type.

. noi t at ne mel p mi
sti si ydob doht e ma; noi t ar al ced a si r edaeh doht e mA. 1# si t ne met at s esl af ehT

You Do It

Creating a static Method that Requires No Arguments and Returns No Values

Paradise Day Spa provides many personal services such as haircuts, manicures, and
facials. In this section, you create a new class named ParadiseInfo, which contains
a main() method that calls a displayInfo() method.

1. Open a new document in your text editor, and type the following shell for
the class:
public class ParadiseInfo
{
}

(continues)

C H A P T E R 3 Using Methods, Classes, and Objects

126

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Between the curly braces of the class, indent a few spaces and create the
shell for the main() method:
public static void main(String[] args)
{
}

3. Between the braces of the main() method, insert a call to the displayInfo()

method:
displayInfo();

4. Place the displayInfo() method outside the main() method, just before the
closing curly brace for the ParadiseInfo class:
public static void displayInfo()
{

System.out.println("Paradise Day Spa wants to pamper you.");
System.out.println("We will make you look good.");

}

5. Save the file as ParadiseInfo.java.

6. Compile the class, and then execute it. The output should look like Figure 3-11.

Calling a static Method from Another Class

Next, you see how to call the displayInfo()method from a method within another class.

1. Open a new document in your text editor, and then enter the following class in
which the main() method calls the displayInfo() method that resides in the
ParadiseInfo class:
public class TestInfo
{

public static void main(String[] args)
{

System.out.println("Calling method from another class:");
ParadiseInfo.displayInfo();

}
}

(continued)

Figure 3-11 Output of the ParadiseInfo application

(continues)

Understanding Method Construction

127

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Save the file as TestInfo.java in the same folder as the ParadiseInfo class.
If the files are not saved in the same folder and you try to compile the calling
class, your compiler issues the error message “cannot find symbol”; the
symbol named is the missing class you tried to call.

3. Compile the application and execute it. Your output should look like Figure 3-12.
The TestInfo class does not contain the displayInfo() method; it uses the
method from the ParadiseInfo class. It’s important that the displayInfo()

method is public. If you had omitted the keyword public from the definition of
the displayInfo() method in the ParadiseInfo class, then the TestInfo class
would not have been able to use it.

Examining the Details of a Prewritten static Method

Recall that in Chapter 2, you used the JOptionPane class to create statements like
the following:
JOptionPane.showMessageDialog
(null, "Every bill is due in " + creditDays + " days");

In the next steps, you examine the Java API documentation for the showMessageDialog()

method so that you can better understand how prewritten methods are similar to
ones that you write.

1. Using a Web browser, go to the Java Web site and select Java APIs and
Java SE 8.

2. In the alphabetical list of classes, find the JOptionPane class and select it.

3. Scroll through the class documentation until you find the Method Summary.
Then, find the first listed version of the showMessageDialog()method. To the left,
notice that the method is defined as a static void method, just like the main()

and displayInfo() methods discussed earlier in this “You Do It” section. You
can use the static showMessageDialog() method in your classes by using its
class name, a dot, and the method name, in the same way that you used the
ParadiseInfo.displayInfo() method in the outside class named TestInfo.

(continued)

Figure 3-12 Output of the TestInfo application

C H A P T E R 3 Using Methods, Classes, and Objects

128

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Adding Parameters to Methods
Some methods require that data be sent to them when they are called. Data items you use in a
call to a method are called arguments. When the method receives the data items, they are
called parameters. Methods that receive data are flexible because they can produce different
results depending on what data they receive.

As a real-life example, when you make a restaurant reservation, you do not need to employ a
different method for every date of the year at every possible time of day. Rather, you can
supply the date and time as information to the person who carries out the method. The
method, recording the reservation, is then carried out in the same manner, no matter what
date and time are supplied.

In a program, if you design a method to square numeric values, it makes sense to design a
square() method that you can supply with an argument that represents the value to be
squared, rather than having to develop a square1() method (that squares the value 1), a
square2() method (that squares the value 2), and so on. To call a square() method that
takes an argument, you might write a statement like square(17); or square(86);. Similarly,
any time it is called, the println() method can receive any one of an infinite number of
arguments—for example, “Hello”, “Goodbye”, or any other String. No matter what message
is sent to println(), the message is displayed correctly. If the println() method could not
accept arguments, it would not be practical to use.

In everyday life, you use many methods without understanding how they work. For example,
when you make a real-life restaurant reservation, you do not need to know how the
reservation is actually recorded at the restaurant—perhaps it is written in a book, marked on a
large chalkboard, or entered into a computerized database. The implementation details don’t
concern you as a client, and if the restaurant changes its methods from one year to the next,
the change does not affect your use of the reservation method—you still call and provide your
name, a date, and a time.

Similarly, object-oriented programs use implementation hiding, which describes the
encapsulation of method details. It means that a client does not have to know how a method
works internally, but only needs to know the name of the called method and what type of
information to send. (Usually, you also want to know about any data returned by the
method; you will learn about returned data later in this chapter.) In other words, the calling
method needs to understand only the interface to the called method. The interface is the
only part of a method that the method’s client sees or with which it interacts. In addition, if
you substitute a new or revised method implementation, as long as the interface to the
method does not change, you won’t need to make any changes in any methods that call
the altered method.

Hidden implementation methods are often referred to as existing in a black box. Many everyday devices
are black boxes—that is, you can use them without understanding how they work. For example, most of us
use telephones, television sets, and automobiles without understanding much about their internal
mechanisms.

Adding Parameters to Methods

129

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating a Method that Receives a Single Parameter
When a method can receive a parameter, its declaration contains the same elements as one
that does not accept a parameter—optional access specifiers, the return type for the method,
the method name, and a set of parentheses that include two items:

The parameter type

A local name for the parameter

For example, the declaration for a public method named predictRaise() that accepts a
person’s annual salary and computes the value of a 10 percent raise could be written as
follows:
public static void predictRaise(double salary)

You can think of the parentheses in a method declaration as a funnel into the method—
parameters listed there contain data that is “dropped into” the method. A parameter accepted
by a method can be any data type, including the primitive types, such as int, double, and
char; it also can be a built-in class type such as String or PrintStream, or a class type you
create.

In the method header for predictRaise(), the parameter double salary within the
parentheses indicates that the method will receive a value of type double, and that within
the method, the passed value will be known as salary. Figure 3-13 shows a complete
method.

The predictRaise() method is a void method because it does not need to return a value to
any other method that calls it—its only function is to receive the salary value, multiply it by
the RAISE_RATE constant (1.10, which results in a 10 percent salary increase), and then display
the result.

public static void predictRaise(double salary)
{

double newSalary;
final double RAISE_RATE = 1.10;
newSalary = salary * RAISE_RATE;
System.out.println("Current salary: " +

salary + " After raise: " +
newSalary);

}

Parameter data
type

Parameter
identifier

Figure 3-13 The predictRaise() method

C H A P T E R 3 Using Methods, Classes, and Objects

130

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The predictRaise() method’s parameter is a double, so you call it using any argument that
can be promoted to a double. In other words, because predictRaise() accepts a double, it
can also accept a float, long, int, short, or byte. (See Figure 2-41 in Chapter 2 to review the
order for establishing unifying data types.) The argument can be a constant, variable, or more
complicated expression.

For example, all of the following method calls are valid:

predictRaise(1000);—This call uses an unnamed int constant that is promoted to
a double.

predictRaise(472.25);—This call uses an unnamed double constant.

predictRaise(16.55 * 40);—This call uses an arithmetic expression.

predictRaise(STANDARD_SALARY);—This call uses a named constant that might be
a double, float, long, int, short, or byte.

predictRaise(mySalary);—This call uses a variable that might be a double, float, long,
int, short, or byte.

predictRaise(getCurrentSalary());—This call assumes that the getCurrentSalary()
method used as an argument returns a double, float, long, int, short, or byte. You
learn about methods that return data later in this chapter.

You can call the predictRaise() method any number of times, with a different argument
each time. Each of these arguments becomes known as salary within the method. The
identifier salary represents a variable that holds a copy of the value of any double value
passed into the method.

It is interesting to note that if the value used as an argument in the method call to
predictRaise() is a variable, it might possess the same identifier as salary or a different
one, such as startingWage. For example, the code in Figure 3-14 shows three calls to the
predictRaise() method, and Figure 3-15 shows the output. One call uses a constant,
400.00. The other two use variables—one with the same name as salary and the other with
a different name, startingWage. The identifier salary in the main() method refers to a
different memory location than the one in the predictRaise() method. The parameter
salary is simply a placeholder while it is being used within the predictRaise() method, no
matter what name its value “goes by” in the calling method. The parameter salary is a local
variable to the predictRaise() method; that is, it is known only within the boundaries of
the method. The variable and constant declared within the method are also local to the
method.

Adding Parameters to Methods

131

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Recall that the final modifier makes RAISE_RATE constant. Because salary is not altered within the
predictRaise() method in Figure 3-14, you could also make the method’s parameter constant by
declaring the method header as public static void predictRaise(final double SALARY).
There would be no difference in the program’s execution, but declaring a parameter as final means it
cannot be altered within the method. Someone reading your program would be able to see that the
parameter is not intended to change.

Each time the predictRaise() method in Figure 3-14 executes, a salary variable is
redeclared—that is, a new memory location large enough to hold a double is set up and
named salary. Within the predictRaise() method, salary holds a copy of whatever value

Figure 3-15 Output of the DemoRaise application

public class DemoRaise
{

public static void main(String[] args)
{

double salary = 200.00;
double startingWage = 800.00;
System.out.println("Demonstrating some raises");
predictRaise(400.00);
predictRaise(salary);
predictRaise(startingWage);

}

public static void predictRaise(double salary)
{

double newSalary;
final double RAISE_RATE = 1.10;
newSalary = salary * RAISE_RATE;
System.out.println("Current salary: " +

salary + " After raise: " +
newSalary);

}
}

The predictRaise() method
is called three times using three
different arguments.

The parameter salary
receives a copy of the
value in each argument that
is passed.

Figure 3-14 The DemoRaise class with a main() method that uses the predictRaise()

method three times

C H A P T E R 3 Using Methods, Classes, and Objects

132

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

is passed into the method by the main() method. When the predictRaise() method ends
at the closing curly brace, the local salary variable ceases to exist. That is, if you change the
value of salary after you have used it in the calculation within predictRaise(), it affects
nothing else. The memory location that holds salary is released at the end of the method,
and any changes to its value within the method do not affect any value in the calling
method. In particular, don’t think there would be any change in the variable named salary

in the main() method; that variable, even though it has the same name as the locally
declared parameter in the predictRaise() method, is a different variable with its own
memory address.

When a variable ceases to exist at the end of a method, programmers say the variable “goes out of scope.”
A variable’s scope is the part of a program in which a variable exists and can be accessed using its
unqualified name. Chapter 4 discusses scope in greater detail.

Creating a Method that Requires Multiple Parameters
A method can require more than one parameter. For example, rather than creating a
predictRaise() method that adds a 10 percent raise to every person’s salary, you might
prefer to create a method to which you can pass two values—the salary to be raised as well
as a percentage figure by which to raise it. Figure 3-16 shows a method that uses two such
parameters.

public static void predictRaiseUsingRate(double salary, double rate)
{

double newAmount;
newAmount = salary * (1 + rate);
System.out.println("With raise, new salary is " + newAmount);

}

Figure 3-16 The predictRaiseUsingRate() method that accepts two parameters

In Figure 3-16, two parameters (double salary and double rate) appear within the
parentheses in the method header. A comma separates each parameter, and each parameter
requires its own declared type (in this case, both are double) as well as its own identifier. Note
that a declaration for a method that receives two or more parameters must list the type for
each parameter separately, even if the parameters have the same type.

You can pass multiple arguments to a method by listing the arguments within the call to
the method and separating them with commas. When values are passed to the method in
a statement such as the following, the first value passed is referenced as salary within the
method, and the second value passed is referenced as rate:
predictRaiseUsingRate(mySalary, promisedRate);

Arguments to a method must be passed in the correct order. The call
predictRaiseUsingRate(200.00, 0.10); results in output representing a 10 percent raise based

Adding Parameters to Methods

133

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

on a $200.00 salary amount (or $220.00), but predictRaiseUsingRate(0.10, 200.00);

results in output representing a 20,000 percent raise based on a salary of 10 cents
(or $20.10).

If arguments to a method are passed in the wrong order, the result is one of the following:

If the method can still accept both arguments, the result is a logical error; that is, the
program compiles and executes, but it probably produces incorrect results.

If the method cannot accept the arguments, passing arguments in the wrong order
constitutes a syntax error, and the program does not compile.

You can write a method so that it takes any number of parameters in any order. However,
when you call a method, the arguments you send to a method must match in order—both in
number and in type—the parameters listed in the method declaration. A method’s signature
is the combination of the method name and the number, types, and order of arguments.
A method call must match the called method’s signature.

Thus, a method to compute an automobile salesperson’s commission amount might require
arguments such as an integer dollar value of a car sold, a double percentage commission rate,
and a character code for the vehicle type. The correct method executes only when three
arguments of the correct types are sent in the correct order. Figure 3-17 shows a class
containing a three-parameter method and a main() method that calls it twice, once using
variable arguments and again using constant arguments. Figure 3-18 shows the output of the
application.

public class ComputeCommission
{

public static void main(String[] args)
{

char vType = 'S';
int value = 23000;
double commRate = 0.08;
computeCommission(value, commRate, vType);
computeCommission(40000, 0.10, 'L');

}
public static void computeCommission(int value,

double rate, char vehicle)
{

double commission;
commission = value * rate;
System.out.println("\nThe " + vehicle +

" type vehicle is worth $" + value);
System.out.println("With " + (rate * 100) +

"% commission rate, the commission is $" +
commission);

}
}

Figure 3-17 The ComputeCommission class

C H A P T E R 3 Using Methods, Classes, and Objects

134

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The arguments in a method call are often referred to as actual parameters. The variables in the method
declaration that accept the values from the actual parameters are formal parameters.

When you look at Java applications, you might see methods that appear to be callable in multiple ways. For
example, you can use System.out.println() with no arguments to display a blank line, or with a
String argument to display the String. You can use the method with different argument lists only
because multiple versions of the method have been written, each taking a specific set of arguments. The
ability to execute different method implementations by altering the argument used with the method name is
known as method overloading, a concept you will learn about in the next chapter.

TWO TRUTHS & A LIE

Adding Parameters to Methods

1. A class can contain any number of methods, and each method can be called any
number of times.

2. Arguments are used in method calls; they are passed to parameters in method
headers.

3. A method header always contains a return type, an identifier, and a parameter list
within parentheses.

. yt p me ebt hgi mt sil r et e mar ap eht t ub, seseht ner ap dna,r eifi t nedi
na, epyt nr ut er a sni at noc sya wl a r edaeh doht e mA. 3# si t ne met at s esl af ehT

Figure 3-18 Output of the ComputeCommission application

Adding Parameters to Methods

135

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating Methods that Return Values
A method ends when any of the following events takes place:

The method completes all of its statements. You have seen methods like this in the
last section.

The method throws an exception. Exceptions are errors; you will learn about them in the
chapter “Exception Handling.”

The method reaches a return statement. A return statement causes a method to end
and the program’s logic to return to the calling method. Also, a return statement
frequently sends a value back to the calling method.

The return type for a method can be any type used in Java, which includes the primitive types
int, double, char, and so on, as well as class types (including class types you create). Of
course, a method can also return nothing, in which case the return type is void.

A method’s return type is known more succinctly as a method’s type. For example, the
declaration for the displayAddress() method shown earlier in Figure 3-4 is written as follows:
public static void displayAddress()

This method returns no value, so it is type void.

A method that prompts a user for an age and returns the age to the calling method might be
declared as:
public static int getAge()

The method returns an int, so it is type int.

As another example, a method that returns true or false depending on whether an
employee worked overtime hours might be declared as:
public static boolean workedOvertime()

This method returns a Boolean value, so it is type boolean.

The predictRaise() method shown earlier produces output, but does not return any value,
so its return type is void. If you want to create a method to return the new, calculated salary
value rather than display it, the header would be written as follows:
public static double predictRaise(double salary)

Figure 3-19 shows this method.

public static double predictRaise(double salary)
{

double newAmount;
final double RAISE = 1.10;
newAmount = salary * RAISE;
return newAmount;

}

Figure 3-19 The predictRaise() method returning a double

C H A P T E R 3 Using Methods, Classes, and Objects

136

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notice the shaded return type double that precedes the method name in the predictRaise()
method header in Figure 3-19. Also notice the shaded declaration of newAmount. This double
variable’s value is returned in the last shaded statement in the method. The return statement
causes a value to be sent from a called method back to the calling method. A method’s
declared return type must match the type of the value used in the return statement; if it does
not, the class does not compile.

A method can return one value at most. The returned value can be a variable, a named
or unnamed constant, or another method call, and the returned type must match or be
promotable to the return type declared in the method header. For example, a method with
a double return type might have a return statement that looks like any of the following:
return 1;
return 1.0;
return mySalary;
return getMySalary();

All methods except void methods require a return statement that returns a value of the appropriate
type. You can place a return statement in a void method that is simply the word return followed by
a semicolon. However, most Java programmers do not include a return statement in a method when
nothing is returned.

You cannot place any statements after a method’s return statement. Such statements are
unreachable statements because the logical flow leaves the method at the return statement.
An unreachable statement can never execute, and it causes a compiler error. Unreachable
statements are also called dead code.

A method can contain multiple return clauses if they are embedded in a decision, although this practice is
not recommended because it can lead to errors that are difficult to detect. However, no other statements
can be placed after the last return clause in a method. You will learn about decision making in the chapter
“Making Decisions.”

If a method returns a value, then when you call the method, you normally use the
returned value, although you are not required to do so. For example, when you invoke
the predictRaise() method, you might want to assign the returned value (also called
the method’s value) to a double variable named myNewSalary, as in the following
statement:
myNewSalary = predictRaise(mySalary);

The predictRaise() method returns a double, so it is appropriate to assign the method’s
returned value to a double variable.

Alternatively, you can choose to use a method’s returned value directly, without storing it in
any variable. When you use a method’s value, you use it in the same way you would use any
variable of the same type. For example, you can display a return value in a statement such as
the following:
System.out.println("New salary is " + predictRaise(mySalary));

Creating Methods that Return Values

137

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the preceding statement, the call to the predictRaise() method is made from within
the println() method call. Because predictRaise() returns a double, you can use the
method call in the same way that you would use any simple double value. As another
example, you can perform arithmetic with a method’s return value, as in the following
statement:
double spendingMoney = predictRaise(mySalary) – expenses;

In this statement, the value of mySalary is not altered; the only changed variable is
spendingMoney.

If you want mySalary to hold the value of the new salary with the raise, then you could use
the following statement:
mySalary = predictRaise(mySalary);

Chaining Method Calls
Any method might call any number of other methods. For example, a main() method
might call a predictRaise() method, and the predictRaise()method might call a
calculateBonus() method, as shown in the shaded statement in Figure 3-20.

public static double predictRaise(double salary)
{

double newAmount;
double bonusAmount;
final double RAISE = 1.10;
newAmount = salary * RAISE;
bonusAmount = calculateBonus(newAmount);
newAmount = newAmount + bonusAmount;
return newAmount;

}

Figure 3-20 The predictRaise() method calling the calculateBonus() method

Looking at the call to the calculateBonus() method from the predictRaise() method,
you do not know how calculateBonus()works. You only know that the calculateBonus()

method accepts a double as a parameter (because newAmount is passed into it) and
that it must return either a double or a type that can automatically be promoted to a
double (because the result is stored in bonusAmount). In other words, the method acts
as a black box.

As examples, the calculateBonus() method might look like either of the versions shown in
Figure 3-21. The first version simply adds a $50.00 bonus to a salary parameter. The second
version calls another method named trickyCalculation() that returns a value added to
salary. When you read the calculateBonus() method, you don’t know what happens in the
trickyCalculation() method, and when you read the predictRaise() method that calls
calculateBonus(), you don’t even necessarily know that trickyCalculation() is called.

C H A P T E R 3 Using Methods, Classes, and Objects

138

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public static double calculateBonus(double salary)
{

final double BONUS_AMT = 50.00;
salary = salary + BONUS_AMT;
return salary;

}

public static double calculateBonus(double salary)
{

salary = salary + trickyCalculation();
return salary;

}

Figure 3-21 Two possible versions of the calculateBonus() method

You also can chain method calls in a single statement. If calculateBonus() accepts and
returns a double, and predictRaise() also accepts and returns a double, then the following
statement is legal:
double salaryGoingForward = calculateBonus(predictRaise(300.00));

In this statement, the constant 300.00 is passed to predictRaise(), and the value
returned from that call is passed to calculateBonus(). Finally, the value returned from
calculateBonus() is assigned to salaryGoingForward.

Watch the video Methods and Parameters.

TWO TRUTHS & A LIE

Creating Methods that Return Values

1. The return type for a method can be any type used in Java, including int, double,
and void.

2. A method’s declared return type must match the type of the value used in the
parameter list.

3. You cannot place a method within another method, but you can call a method from
within another method.

.t ne met at s nruter eht ni desu eul av eht
f o epyt eht hct a mt su mepyt nr ut er der al ced s’ doht e mA. 2# si t ne met at s esl af ehT

Creating Methods that Return Values

139

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Creating static Methods that Accept Arguments and Return a Value

In this section, you add a method to the ParadiseInfo class you started in the last
“You Do It” section. The new method receives two parameters and returns a value.
The purpose of the method is to accept a minimum price for the current week’s
featured discount and the percentage discount, and to return the minimum amount
the customer will save.

1. Open the ParadiseInfo.java file in your text editor, and then change the class
name to ParadiseInfo2. Immediately save the file as ParadiseInfo2.java.

2. As the first line of the file, add the import statement that allows user input:
import java.util.Scanner;

3. Add four declarations as the first statements following the opening curly
brace of the main() method. One holds the minimum price for which a
discount will be allowed, and another holds the discount rate. The third
variable is the minimum savings, which is calculated by multiplying the
minimum price for a discount and the discount rate. The fourth variable is
a Scanner object to use for keyboard input.
double price;
double discount;
double savings;
Scanner keyboard = new Scanner(System.in);

Instead of importing the Scanner class to provide console input, you could substitute
JOptionPane and include program statements that provide GUI input. The input process can
use other techniques too, such as getting data from a storage device—you will learn about
file input in the chapter “File Input and Output.” The concept of input (getting data into memory
from the outside) is the same, no matter what specific technique or type of hardware device
you use.

4. Following the declarations, prompt the user for the minimum discount price,
and accept a value from the keyboard:
System.out.print("Enter cutoff price for discount >> ");
price = keyboard.nextDouble();

5. Prompt the user for the discount rate, and accept it.
System.out.print("Enter discount rate as a whole number >> ");
discount = keyboard.nextDouble();

(continues)

C H A P T E R 3 Using Methods, Classes, and Objects

140

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. After the call to displayInfo(), insert a call to computeDiscountInfo(). You
will pass the price and discount values to the method, and the method
returns the minimum that a consumer will save, which is stored in savings:
savings = computeDiscountInfo(price, discount);

7. Just before the closing curly brace for the main() method, display the savings
information:
System.out.println("Special this week on any service over " +

price);
System.out.println("Discount of " + discount + " percent");
System.out.println("That’s a savings of at least $" + savings);

8. After the displayInfo() method implementation, but before the closing curly
brace for the class, add the computeDiscountInfo() method. It accepts two
doubles and returns a double.
public static double computeDiscountInfo(double pr, double dscnt)
{

double savings;
savings = pr * dscnt / 100;
return savings;

}

9. Save the file, and then compile and execute it. Figure 3-22 shows a typical
execution. After the user is prompted for the cutoff price for the week’s sale
and the discount to be applied, the program executes the displayInfo()

method. Then the program executes the computeDiscountInfo() method,
which returns a value to store in the savings variable. Finally, the discount
information is displayed.

(continued)

Figure 3-22 Typical execution of the ParadiseInfo2 program

(continues)

Creating Methods that Return Values

141

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding that Methods Can Be Used as Black Boxes

In this chapter, you have learned that methods can be used without knowing the
details of their implementation. As an example of how professional programmers use
implementation hiding, you can visit the Java Web site to see the interfaces for
thousands of prewritten methods that reside in the Java prewritten classes. You
are not allowed to see the code inside these methods; you see only their interfaces,
which is all you need to be able to use the methods.

1. Open your Web browser, go to the Java Web site, and navigate to the Java
APIs for Java SE 8.

2. From the alphabetical list of classes, select PrintStream.

3. At the PrintStream page, read the descriptions of several methods for the
class. Note that for each method, you can see the return type, method name,
and parameter list, but you do not see the implementation for any of the
existing methods.

4. Examine other classes. Again, note that the Java documentation provides you
with method interfaces but not implementations. When you develop your own
classes in the future, you might choose to provide your users with similar
documentation and compiled classes so that they cannot see, modify, or
steal the code you have worked hard to develop.

Learning About Classes and Objects
When you think in an object-oriented manner, everything is an object, and every object is a
member of a class. You can think of any inanimate physical item as an object—your desk, your
computer, and the building in which you live are all called objects in everyday conversation.
You can also think of living things as objects—your houseplant, your pet fish, and your sister are
objects. Events are also objects—the stock purchase you made, the mortgage closing you
attended, and a graduation party that was held in your honor are all objects.

Everything is an object, and every object is a member of a more general class. Your desk is a
member of the class that includes all desks, and your pet fish is a member of the class that
contains all fish. An object-oriented programmer would say that your desk is an instance of
the Desk class and your fish is an instance of the Fish class. These statements represent is-a
relationships—that is, relationships in which the object “is a” concrete example of the class.
Expressing an is-a relationship is correct only when you refer to the object and the class in the
proper order. You can say, “My oak desk with the scratch on top is a Desk, and my goldfish
named Moby is a Fish.” You don’t define a Desk by saying, “A Desk is an oak desk with a
scratch on top,” or explain what a Fish is by saying, “A Fish is a goldfish named Moby,”

(continued)

C H A P T E R 3 Using Methods, Classes, and Objects

142

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

because both a Desk and a Fish are much more general. The difference between a class and an
object parallels the difference between abstract and concrete. An object is an instantiation of a
class, or one tangible example of a class. Your goldfish, my guppy, and the zoo’s shark each
constitute one instantiation of the Fish class.

Programmers also use the phrase “is-a” when talking about inheritance relationships. You will learn more
about inheritance in the chapters “Introduction to Inheritance” and “Advanced Inheritance Concepts.”

The concept of a class is useful because of its reusability. Objects gain their attributes from
their classes, and all objects have predictable attributes because they are members of certain
classes. For example, if you are invited to a graduation party, you automatically know many
things about it. You assume there will be a starting time, a certain number of guests, and some
quantity of food. You understand what a party object entails because of your previous
knowledge of the Party class. You don’t know the number of guests or what food will be
served at this particular party, but you understand that because all parties have guests and
refreshments, this one must too. Because you understand the general characteristics of a
Party, you anticipate different attributes than if you plan to attend a TheaterPerformance
object or a DentalAppointment object.

In addition to their attributes, objects have methods associated with them, and every object
that is an instance of a class is assumed to possess the same methods. For example, for all
Party objects, a date and time are set at some point. In a program, you might name these
methods setDate() and setTime(). Party guests need to know the date and time and might
use methods named getDate() and getTime() to find out the date and time of any Party

object. Method names that begin with get and set are very typical. You will learn more about
get and set methods in the next section.

Your graduation party, then, might have the identifier myGraduationParty. As a member
of the Party class, myGraduationParty, like all Party objects, might have data methods
setDate() and setTime(). When you use them, the setDate() and setTime() methods
require arguments, or information passed to them. For example, statements such as
myGraduationParty.setDate("May 12") and myGraduationParty.setTime("6 P.M.")

invoke methods that are available for the myGraduationParty object. When you use an
object and its methods, think of being able to send a message to the object to direct it to
accomplish some task—you can tell the Party object named myGraduationParty to set the
date and time you request. Even though yourAnniversaryParty is also a member of the
Party class, and even though it also has access to setDate() and setTime() methods,
the arguments you send to yourAnniversaryParty methods will be different from those
you send to myGraduationParty methods. Within any object-oriented program, you are
continuously making requests to objects’ methods and often including arguments as part
of those requests.

In addition, some methods used in an application must return a message or value. If one of
your party guests uses the getDate() method, the guest hopes that the method will respond
with the desired information. Similarly, within object-oriented programs, methods are often
called upon to return a piece of information to the source of the request. For example, a
method within a Payroll class that calculates federal withholding tax might return a tax

Learning About Classes and Objects

143

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

amount in dollars and cents, and a method within an Inventory class might return true

or false, depending on the method’s determination of whether an item is at the reorder
point.

With object-oriented programming, sometimes you create classes so that you can instantiate
objects from them, and other times you create classes to run as applications. Application
classes frequently instantiate objects that use the objects of other classes (and their data and
methods). Sometimes you write classes that do both. The same programmer does not need to
write every class he or she uses. Often, you will write programs that use classes created by
others. For example, many programs you have seen so far in this book have used the System
class. You did not have to create it or its println() method; both were provided for you by
Java’s creators. Similarly, you might create a class that others will use to instantiate objects
within their own applications. You can call an application or class that instantiates objects of
another class a class client or class user.

You can identify a class that is an application because it contains a public static void main()
method. The main() method is the starting point for any application. You will write and use many classes
that do not contain a main() method—these classes can be used by other classes that are applications or
applets. (You will learn about applets in the chapter “Applets, Images, and Sound.”)

A Java application can contain only one method with the header public static void main(String[]
args). If you write a class that imports another class, and both classes have a public main() method,
your application will not compile.

So far, you’ve learned that object-oriented programming involves objects that send
messages to other objects requesting they perform tasks, and that every object belongs to
a class. Understanding classes and how objects are instantiated from them is the heart of
object-oriented thinking.

TWO TRUTHS & A LIE

Learning About Classes and Objects

1. A class is an instantiation of many objects.

2. Objects gain their attributes and methods from their classes.

3. An application or class that instantiates objects of another prewritten class is a
class client.

. ssal c af o noi t ai t nat sni eno si t cej bo nA. 1# si t ne met at s esl af ehT

C H A P T E R 3 Using Methods, Classes, and Objects

144

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating a Class
When you create a class, you must assign a name to the class, and you must determine what
data and methods will be part of the class. Suppose you decide to create a class named
Employee. One instance variable of Employee might be an employee number, and two
necessary methods might be a method to set (or provide a value for) the employee number
and another method to get (or retrieve) that employee number. To begin, you create a class
header with three parts:

An optional access specifier

The keyword class

Any legal identifier you choose for the name of your class—starting with an uppercase
letter is conventional

For example, a header for a class that represents an employee might be:
public class Employee

The most liberal form of access is public. The keyword public is a class modifier.
Classes that are public are accessible by all objects. Public classes also can be extended,
or used as a basis for any other class. Making access public means that if you develop a
good Employee class, and someday you want to develop two classes that are more specific,
SalariedEmployee and HourlyEmployee, then you do not have to start from scratch. Each
new class can become an extension of the original Employee class, inheriting its data and
methods. Although other specifiers exist, you will use the public specifier for most of your
classes.

You will learn about extended classes in the chapter “Introduction to Inheritance.”

After writing the class header public class Employee, you write the body of the Employee

class between a set of curly braces. The body contains the data and methods for the class.
The data components of a class are often referred to as data fields to help distinguish them
from other variables you might use. Figure 3-23 shows an Employee class that contains one
data field named empNum. Data fields are variables you declare within a class but outside of
any method.

In Figure 3-23, the data field empNum is not
preceded by the keyword static. If the
keyword static had been inserted there,
only one empNum value would be shared by
all Employee objects that are eventually
instantiated. Because the empNum field in
Figure 3-23 is not preceded by static,

public class Employee
{

private int empNum;
}

Figure 3-23 The Employee class with one field

Creating a Class

145

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

when you eventually create, or instantiate, objects from the class, each Employee can
have its own unique empNum. Each object gets its own copy of each nonstatic data field.
A nonstatic field like empNum is an instance variable for the class.

You have already learned that the access specifier for most Java methods is public. However,
most fields, like empNum in the Employee class, are private, which provides the highest level of
security. Assigning private access to a field means that no other classes can access the field’s
values, and only methods of the same class are allowed to set, get, or otherwise use private
variables. The principle used in creating private access is sometimes called information hiding
and is an important component of object-oriented programs. A class’s private data can be
changed or manipulated only by a class’s own methods and not by methods that belong to
other classes. In contrast to fields, which are usually private, most class methods are public.
The resulting private data/public method arrangement provides a means for you to control
outside access to your data—only a class’s nonprivate methods can be used to access a class’s
private data. The situation is similar to hiring a public receptionist to sit in front of your
private office and control which messages you receive (perhaps deflecting trivial or hostile
ones) and which messages you send (perhaps checking your spelling, grammar, and any legal
implications). The way in which the nonprivate methods are written controls how you use the
private data.

The first release of Java (1.0) supported five access levels—the four listed previously plus private
protected. The private protected access level is not supported in versions of Java higher than
1.0; you should not use it in your Java programs.

In summary, a class’s data fields are most often private and not static. The exception occurs
when you want to use a nonchanging value without being required to create an object—in
that case you make the field both static and final. For example, the Java Math class contains
a final, public, static field named PI that you can use without instantiating a Math object.
You will learn about the Math class in the next chapter.

TWO TRUTHS & A LIE

Creating a Class

1. A class header contains an optional access specifier, the keyword class, and an
identifier.

2. When you instantiate objects, each has its own copy of each static data field in
the class.

3. Most fields in a class are private, and most methods are public.

. ssal c eht ni dl eif at ad ci t at snon hcaef o
ypoc n wo sti sah hcae, st cej bo et ai t nat sni uoy neh W. 2# si t ne met at s esl af ehT

C H A P T E R 3 Using Methods, Classes, and Objects

146

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating Instance Methods in a Class
Besides data, classes contain methods. For example, one method you need for an Employee

class that contains an empNum is the method to retrieve (or return) any Employee’s empNum for
use by another class. A reasonable name for this method is getEmpNum(), and its declaration is
public int getEmpNum() because it will have public access, return an integer (the employee
number), and possess the identifier getEmpNum().

Similarly, you need a method with which to set the empNum field. A reasonable name for this
method is setEmpNum(), and its declaration is public void setEmpNum(int emp) because it
will have public access, return nothing, possess the identifier setEmpNum(), and require a
parameter that represents the employee’s ID number, which is type int.

Methods that set or change field values are called mutator methods; methods that retrieve
values are called accessor methods. In Java, mutator methods conventionally start with the
prefix set, and accessor methods conventionally start with the prefix get. Using these three-
letter prefixes with your method names is not required, but it is conventional. Figure 3-24
shows the get and set methods for the empNum field for the Employee class.

public void setEmpNum(int emp)
{

empNum = emp;
}

public int getEmpNum()
{

return empNum;
}

Figure 3-24 The setEmpNum() and getEmpNum() methods

Notice that, unlike the methods you created earlier in this chapter, the getEmpNum() and
setEmpNum() methods do not employ the static modifier. The keyword static is used
for classwide methods, but not for methods that “belong” to objects. If you are creating a
program with a main() method that you will execute to perform some task, many of your
methods will be static so you can call them from within main() without creating objects.
However, if you are creating a class from which objects will be instantiated, most methods
will probably be nonstatic because you will associate the methods with individual objects. For
example, the getEmpNum() method must be nonstatic because it returns a different empNum
value for every Employee object you ever create. Nonstatic methods, those methods used with
object instantiations, are called instance methods. You can use either a static or nonstatic
method with an object, but only nonstatic methods behave uniquely for each object. You
cannot use a nonstatic method without an object.

Understanding when to declare fields and methods as static and nonstatic is a challenge for
new programmers. To help you determine whether a data field should be static or not, you
can ask yourself how many times it occurs. If it occurs once per class, it is static, but if it
occurs once per object, it is not static. Table 3-1 provides a summary.

Creating Instance Methods in a Class

147

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table 3-1mentions the this reference. You will learn about the this reference in the next chapter.

Figure 3-25 also provides a summary of how public, private, static, and nonstatic class
members can be used by another class. The figure shows a class named MyClass that
contains four methods that are public static, private static, public nonstatic, and
private nonstatic. The figure also shows a TestClass that instantiates a MyClass object.
The TestClass contains eight method calls. The three valid calls are all to public

Static Nonstatic

In Java, static is a keyword. It also can be used
as an adjective.

There is no keyword for nonstatic items. When
you do not explicitly declare a field or method to
be static, it is nonstatic by default.

Static fields in a class are called class fields. Nonstatic fields in a class are called instance
variables.

Static methods in a class are called class
methods.

Nonstatic methods in a class are called instance
methods.

When you use a static field or method, you
do not need to use an object; for example:
JOptionPane.showDialog();

When you use a nonstatic field or method,
you must use an object; for example:
System.out.println();

When you create a class with a static field and
instantiate 100 objects, only one copy of that field
exists in memory.

When you create a class with a nonstatic field and
instantiate 100 objects, then 100 copies of that
field exist in memory.

When you create a static method in a class and
instantiate 100 objects, only one copy of the
method exists in memory and the method does
not receive a this reference.

When you create a nonstatic method in a class
and instantiate 100 objects, only one copy of the
method exists in memory, but the method
receives a this reference that contains the
address of the object currently using it.

Static class variables are not instance variables.
The system allocates memory to hold class
variables once per class, no matter how many
instances of the class you instantiate. The system
allocates memory for class variables the first time
it encounters a class, and every instance of a class
shares the same copy of any static class variables.

Instance fields and methods are nonstatic. The
system allocates a separate memory location for
each nonstatic field in each instance.

Table 3-1 Comparison of static and nonstatic

C H A P T E R 3 Using Methods, Classes, and Objects

148

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

methods. The call to the nonstatic method uses an object, and the two calls to the static

method can use an object or not. The rest of the TestClass code after the comment is
invalid. Private methods cannot be called from outside the class, and nonstatic methods
require an object.

Figure 3-26 shows the complete Employee class containing one private data field and two
public methods, all of which are nonstatic. This class becomes the model for a new data type
named Employee; when Employee objects eventually are created, each will have its own
empNum field, and each will have access to two methods—one that provides a value for its
empNum field and another that retrieves the value stored there.

public class MyClass
{

public static pubStatMethod()
private static privStatMethod()
public pubNonstatMethod()
private privNonstatMethod()

}

public class TestClass
{

MyClass object = new MyClass();

object.pubNonstatMethod();

object.pubStatMethod();

MyClass.pubStatMethod();

// None of the following work

MyClass.privStatMethod();

MyClass.pubNonstatMethod();

object.privStatMethod();

object.privNonstatMethod();

MyClass.privNonstatMethod();

}

The nonstatic method must be
used with a MyClass object.

An object can use a static or
nonstatic method, but these
methods are private and
cannot be used here.

This is wrong on two counts—the
method is nonstatic, so it needs an
object, and in any event, the
method is private.

TestClass doesn’t have
access to the private
method.

The public nonstatic method
can be used from TestClass
with a MyClass object.

The public static
method can be
used from
TestClass with
or without an
object.

Figure 3-25 Summary of legal and illegal method calls based on combinations of method modifiers

Creating Instance Methods in a Class

149

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class Employee
{

private int empNum;
public int getEmpNum()
{

return empNum;
}
public void setEmpNum(int emp)
{

empNum = emp;
}

}

Figure 3-26 The Employee class with one field and two methods

When you create a class like Employee, you can compile it, which will identify typographical
errors. However, you cannot execute the class because it does not contain a main() method.
A class like Employee is intended to be used as a data type for objects within other
applications, as you will see in the next section.

Organizing Classes
Most classes that you create have multiple data fields and methods. For example, in addition
to requiring an employee number, an Employee needs a last name, a first name, and a salary,
as well as methods to set and get those fields. Figure 3-27 shows how you could code the data
fields for the Employee class.

public class Employee
{

private int empNum;
private String empLastName;
private String empFirstName;
private double empSalary;
// Methods will go here

}

Figure 3-27 An Employee class with several data fields

Although there is no requirement to do so, most programmers place data fields in some
logical order at the beginning of a class. For example, empNum is most likely used as a unique
identifier for each employee (what database users often call a primary key), so it makes sense
to list the employee number first in the class. An employee’s last name and first name “go
together,” so it makes sense to store these two Employee components adjacently. Despite
these commonsense rules, you have a lot of flexibility in how you position your data fields
within any class.

C H A P T E R 3 Using Methods, Classes, and Objects

150

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A unique identifier is one that should have no duplicates within an application. For example, an organization
might have many employees with the last name Johnson or a weekly salary of $400.00, but there is only one
employee with employee number 128.

Because there are two String components in the current Employee class, they might be
declared within the same statement, such as the following:
private String empLastName, empFirstName;

However, it is usually easier to identify each Employee field at a glance if the fields are listed
vertically.

You can place a class’s data fields and methods in any order within a class. For example, you
could place all the methods first, followed by all the data fields, or you could organize the class
so that several data fields are followed by methods that use them, and then several more data
fields are followed by the methods that use them. This book follows the convention of placing
all data fields first so that you can see their names and data types before reading the methods
that use them.

The Employee class started in Figure 3-27 contains only four fields. Even if only one set

method and one get method are needed for each, eight methods are required. Consider an
employee record for most organizations, and you will realize that many more fields are often
required (such as address, phone number, hire date, number of dependents, and so on), as
well as many more methods. Finding your way through the list can become a formidable task.
For ease in locating class methods, many programmers store them in alphabetical order.
Other programmers arrange values in pairs of get and set methods, an order that also results
in functional groupings. Figure 3-28 shows how the complete class definition for an Employee
might appear.

public class Employee
{

private int empNum;
private String empLastName;
private String empFirstName;
private double empSalary;
public int getEmpNum()
{

return empNum;
}
public void setEmpNum(int emp)
{

empNum = emp;
}
public String getEmpLastName()
{

return empLastName;
}

Figure 3-28 The Employee class with several data fields and corresponding methods (continues)

Creating Instance Methods in a Class

151

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public void setEmpLastName(String name)
{

empLastName = name;
}
public String getEmpFirstName()
{

return empFirstName;
}
public void setEmpFirstName(String name)
{

empFirstName = name;
}
public double getEmpSalary()
{

return empSalary;
}
public void setEmpSalary(double sal)
{

empSalary = sal;
}

}

Figure 3-28 The Employee class with several data fields and corresponding methods

The Employee class is still not a particularly large class, and each of its methods is very short,
but it is already becoming quite difficult to manage. It certainly can support some well-placed
comments. For example, the purpose of the class and the programmer’s name might appear
in comments at the top of the file, and comments might be used to separate the data and
method sections of the class. Your organization might have specific recommendations or
requirements for placing comments within a class.

TWO TRUTHS & A LIE

Creating Instance Methods in a Class

1. The keyword static is used with classwide methods, but not for methods that
“belong” to objects.

2. When you create a class from which objects will be instantiated, most methods are
nonstatic because they are associated with individual objects.

3. Static methods are instance methods.

. sdoht e mssal c er a
sdoht e mcit at s; sdoht e mecnat sni er a sdoht e mcit at snoN. 3# si t ne met at s esl af ehT

(continued)

C H A P T E R 3 Using Methods, Classes, and Objects

152

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Creating a Class that Contains Instance Fields and Methods

Next, you create a class to store information about event services offered at
Paradise Day Spa.

1. Open a new document in your text editor, and type the following class header
and the curly braces to surround the class body:
public class SpaService
{
}

2. Between the curly braces for the class, insert two private data fields that will
hold data about a spa service:
private String serviceDescription;
private double price;

3. Within the class’s curly braces and after the field declarations, enter the
following two methods that set the field values. The setServiceDescription()

method accepts a String parameter and assigns it to the serviceDescription

field for each object that eventually will be instantiated. Similarly, the setPrice()

method accepts a double parameter and assigns it to the price field. Note that
neither of these methods is static.
public void setServiceDescription(String service)
{

serviceDescription = service;
}
public void setPrice(double pr)
{

price = pr;
}

4. Next, add two methods that retrieve the field values as follows:
public String getServiceDescription()
{

return serviceDescription;
}
public double getPrice()
{

return price;
}

5. Save the file as SpaService.java, compile it, and then correct any syntax
errors. Remember, you cannot run this file as a program because it does not
contain a public static main() method. After you read the next section, you
will use this class to create objects.

Creating Instance Methods in a Class

153

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Declaring Objects and Using their Methods
Declaring a class does not create any actual objects. A class is just an abstract description of
what an object will be like if any objects are ever actually instantiated. Just as you might
understand all the characteristics of an item you intend to manufacture long before the first
item rolls off the assembly line, you can create a class with fields and methods long before you
instantiate any objects that are members of that class.

A two-step process creates an object that is an instance of a class. First, you supply a type
and an identifier—just as when you declare any variable—and then you allocate computer
memory for that object. For example, you might declare an integer as int someValue; and
you might declare an Employee as follows:
Employee someEmployee;

In this statement, someEmployee can be any legal identifier, but objects conventionally start
with a lowercase letter.

When you declare an integer as int someValue;, you notify the compiler that an integer
named someValue will exist, and you reserve computer memory for it at the same time. When
you declare the someEmployee instance of the Employee class, you are notifying the compiler
that you will use the identifier someEmployee. However, you are not yet setting aside
computer memory in which the Employee named someEmployee might be stored—that is
done automatically only for primitive type variables. To allocate the needed memory for an
object, you must use the new operator. Two statements that actually set aside enough
memory to hold an Employee are as follows:
Employee someEmployee;
someEmployee = new Employee();

You first learned about the new operator when you created a Scanner object in Chapter 2.

Instead of using two statements, you can declare and reserve memory for someEmployee in
one statement, as in the following:
Employee someEmployee = new Employee();

In this statement, Employee is the object’s type (as well as its class), and someEmployee is the name
of the object. Also, someEmployee becomes a reference to the object—the name for a memory
address where the object is held. Every object name is also a reference—that is, a computer
memory location. In Chapter 2, you learned that a class like Employee is a reference type.

The equal sign is the assignment operator, so a value is being assigned to someEmployee in the
declaration. The new operator is allocating a new, unused portion of computer memory for
someEmployee. The value that the statement is assigning to someEmployee is a memory
address at which someEmployee is to be located. You do not need to be concerned with what
the actual memory address is—when you refer to someEmployee, the compiler locates it at the
appropriate address for you.

C H A P T E R 3 Using Methods, Classes, and Objects

154

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The final portion of the statement after the new operator, Employee(), with its parentheses,
looks suspiciously like a method name. In fact, it is the name of a method that constructs an
Employee object. The Employee() method is a constructor, a special type of method that
creates and initializes objects. You can write your own constructor for a class, and you will
learn how later in this chapter. However, when you don’t write a constructor for a class, Java
writes one for you. Whether you write your own constructor or use the one automatically
created by Java, the name of the constructor is always the same as the name of the class whose
objects it constructs.

After an object has been instantiated, its methods can be accessed using the object’s identifier,
a dot, and a method call. For example, Figure 3-29 shows an application that instantiates two
Employee objects. The two objects, clerk and driver, each use the setEmpNum() and
getEmpNum() method one time. The DeclareTwoEmployees application can use these
methods because they are public, and it must use each of them with an Employee object
because the methods are not static. Figure 3-30 shows the output of the application.

public class DeclareTwoEmployees
{

public static void main(String[] args)
{

Employee clerk = new Employee();
Employee driver = new Employee();
clerk.setEmpNum(345);
driver.setEmpNum(567);
System.out.println("The clerk's number is " +
clerk.getEmpNum() + " and the driver's number is " +
driver.getEmpNum());

}
}

Figure 3-29 The DeclareTwoEmployees class

The program in Figure 3-29 assumes that the Employee.java file is stored in the same folder as the
application. If the Employee.java file was stored in a different folder, you would need an import statement
at the top of the file, similar to the ones you use for the Scanner and JOptionPane classes.

Figure 3-30 Output of the DeclareTwoEmployees application

Declaring Objects and Using their Methods

155

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Data Hiding
Within the DeclareTwoEmployees class, you must use the public methods setEmpNum() and
getEmpNum() to be able to set and retrieve the value of the empNum field for each Employee
because you cannot access the private empNum field directly. For example, the following
statement would not be allowed:
clerk.empNum = 789;

This statement generates the error message “empNum has private access in Employee”,
meaning you cannot access empNum from the DeclareTwoEmployees class. If you made empNum

public instead of private, a direct assignment statement would work, but you would violate
an important principle of object-oriented programming—that of data hiding using
encapsulation. Data fields should usually be private, and a client application should be able to
access them only through the public interfaces—that is, through the class’s public methods.
However, you might reasonably ask, “When I write an application, if I can’t set an object’s
data field directly, but I can set it using a public method, what’s the difference? The field value
is set either way!” Actually, the setEmpNum() method in the Employee class in Figure 3-26 does
accept any integer value you send into it. However, you could rewrite the setEmpNum()

method to prevent invalid data from being assigned to an object’s data fields. For example,
perhaps your organization has rules for valid employee ID numbers—they must be no fewer
than five digits, or they must start with a 9, for instance—or perhaps you calculate a check-
digit that is appended to every employee ID number. The statements that enforce these
requirements would be part of the setEmpNum() method. Checking a value for validity
requires decision making. You will learn more in the chapter “Making Decisions.”

A check-digit is a number appended to a field, typically an ID number or account number. The check-digit
ensures that the number is valid. For example, an organization might use five-digit employee ID numbers in
which the fifth digit is calculated by dividing the first four by 7 and taking the remainder. As an example, if the
first four digits of your ID number are 7235, then the fifth digit is 4, the remainder when you divide the first
four digits by 7. So the five-digit ID becomes 72354. Later, if you make a mistake and enter your ID into a
company application as 82354, the application would divide the first four digits, 8235, by 7. The remainder
is not 4, and the ID would be found invalid.

Similarly, a get method might control how a value is retrieved. Perhaps you do not want
clients to have access to part of an employee’s ID number, or perhaps you always want to add
a company code to every ID before it is returned to the client. Even when a field has no data
value requirements or restrictions, making data private and providing public set and get

methods establishes a framework that makes such modifications easier in the future. You will
not necessarily write set and get methods for every field in a class; there are some fields that
clients will not be allowed to alter. Some fields will simply be assigned values, and some field
values might be calculated from the values of others.

Watch the video Classes and Objects.

C H A P T E R 3 Using Methods, Classes, and Objects

156

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Declaring Objects and Using Their Methods

1. When you declare an object, you give it a name and set aside enough memory for
the object to be stored.

2. An object name is a reference; it holds a memory address.

3. When you don’t write a constructor for a class, Java creates one for you; the name
of the constructor is always the same as the name of its class.

.r ot ar epo wen eht esut su muoy ,t cej bo na
r of yr o me mdedeen eht et acoll a ot ; der ot s si t cej bo eht hci h wni yr o me mr et up moc
edi sa gni tt est ey t on er a uoy,t cej bo na er al ced uoy neh W. 1# si t ne met at s esl af ehT

You Do It

Declaring and Using Objects

In the last “You Do It” section, you created a class named SpaService. Now you
create an application that instantiates and uses SpaService objects.

1. Open a new file in your text editor, and type the import statement needed for
an interactive program that accepts user keyboard input:
import java.util.Scanner;

2. Create the shell for a class named CreateSpaServices:
public class CreateSpaServices
{
}

3. Between the curly braces of the CreateSpaServices class, create the shell
for a main() method for the application:
public static void main(String[] args)
{
}

(continues)

Declaring Objects and Using their Methods

157

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Within the main() method, declare variables to hold a service description and
price that a user can enter from the keyboard:
String service;
double price;

5. Next, declare three objects. Two are SpaService objects that use the class
you created in the last set of “You Do It” steps. The third object uses the built-
in Java Scanner class. Both classes use the new operator to allocate memory
for their objects, and both call a constructor that has the same name as the
class. The difference is that the Scanner constructor requires an argument
(System.in), but the SpaService class does not.
SpaService firstService = new SpaService();
SpaService secondService = new SpaService();
Scanner keyboard = new Scanner(System.in);

6. In the next statements, you prompt the user for a service, accept it from the
keyboard, prompt the user for a price, and accept it from the keyboard.
System.out.print("Enter service >> ");
service = keyboard.nextLine();
System.out.print("Enter price >> ");
price = keyboard.nextDouble();

7. Recall that the setServiceDescription() method in the SpaService class is
nonstatic, meaning it is used with an object, and that it requires a String

argument. Write the statement that sends the service the user entered to the
setServiceDescription() method for the firstService object:
firstService.setServiceDescription(service);

8. Similarly, send the price the user entered to the setPrice() method for the
firstService object. Recall that this method is nonstatic and requires a
double argument.
firstService.setPrice(price);

9. Make a call to the nextLine() method to remove the Enter key that remains in
the input buffer after the last numeric entry. Then repeat the prompts, and
accept data for the second SpaService object.
keyboard.nextLine();
System.out.print("Enter service >> ");
service = keyboard.nextLine();
System.out.print("Enter price >> ");
price = keyboard.nextDouble();
secondService.setServiceDescription(service);
secondService.setPrice(price);

(continued)

(continues)

C H A P T E R 3 Using Methods, Classes, and Objects

158

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Display the details for the firstService object.
System.out.println("First service details:");

System.out.println(firstService.getServiceDescription() +
" $" + firstService.getPrice());

11. Display the details for the secondService object.
System.out.println("Second service details:");

System.out.println(secondService.getServiceDescription() +
" $" + secondService.getPrice());

12. Save the file as CreateSpaServices.java. Compile and execute the
program. Figure 3-31 shows a typical execution. Make sure you understand
how the user’s entered values are assigned to and retrieved from the two
SpaService objects.

An Introduction to Using Constructors
When you create a class, such as Employee, and instantiate an object with a statement such as
the following, you are actually calling the Employee class constructor that is provided by
default by the Java compiler:
Employee chauffeur = new Employee();

A constructor establishes an object; a default constructor is one that requires no arguments.
A default constructor is created automatically by the Java compiler for any class you create
whenever you do not write your own constructor.

When the prewritten, default constructor for the Employee class is called, it establishes one
Employee object with the identifier provided. The automatically supplied default constructor
provides the following specific initial values to an object’s data fields:

(continued)

Figure 3-31 Typical execution of the CreateSpaServices program

An Introduction to Using Constructors

159

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Numeric fields are set to 0 (zero).

Character fields are set to Unicode ‘\u0000’.

Boolean fields are set to false.

Fields that are object references (for example, String fields) are set to null (or empty).

If you do not want each field in an object to hold these default values, or if you want to
perform additional tasks when you create an instance of a class, you can write your own
constructor. Any constructor you write must have the same name as the class it
constructs, and constructors cannot have a return type—not even void. Normally, you
declare constructors to be public so that other classes can instantiate objects that belong to
the class. When you write a constructor for a class, you no longer have access to the
automatically created version.

For example, if you want every Employee object to have a default starting salary of $300.00 per
week, you could write the constructor for the Employee class that appears in Figure 3-32. Any
Employee object instantiated will have an empSalary field value equal to 300.00, and the other
Employee data fields will contain the automatically supplied default values. Even though you
might want a field to hold the default value, you still might prefer to explicitly initialize the
field for clarity.

public Employee()
{

empSalary = 300.00;
}

Figure 3-32 The Employee class constructor that assigns a salary

The Employee class constructor in Figure 3-32 takes no parameters. Therefore, it is a default constructor.
You will learn about nondefault constructors that take parameters in the next chapter.

You can write any Java statement in a constructor. Although you usually have no reason to do
so, you could display a message from within a constructor or perform any other task.

You can place the constructor anywhere inside the class, outside of any other method.
Typically, a constructor is placed with the other methods. Often, programmers list the
constructor first because it is the first method used when an object is created.

You never are required to write a constructor for a class; Java provides you with a default
version if the class contains no explicit constructor.

A class can contain multiple constructors. You will learn how to overload constructors in the next chapter.

C H A P T E R 3 Using Methods, Classes, and Objects

160

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Watch the video Constructors.

TWO TRUTHS & A LIE

An Introduction to Using Constructors

1. In Java, you cannot write a default constructor; it must be supplied for you
automatically.

2. The automatically supplied default constructor sets all numeric fields to 0, char-
acter fields to Unicode ‘\u0000’, Boolean fields to false, and fields that are object
references to null.

3. When you write a constructor, it must have the same name as the class it
constructs, and it cannot have a return type.

. eno deil ppus
yll aci t a mot ua eht secal per t aht r ot curt snoctl uaf ed a et aer c nac uoy ,r eve woH. uoy
r of r ot curt snoctl uaf ed a set aer c avaJ , ssal c a r of r ot curt snoc a et aer ct on od uoyfI

. sr et e mar ap on sekat t aht eno si r ot curt snoctl uaf ed A. 1# si t ne met at s esl af ehT

You Do It

Adding a Constructor to a Class

1. Open the SpaService.java file that you created in a “You Do It” section
earlier in this chapter.

2. After the field declarations, and before the method declarations, insert an
explicit default constructor that sets serviceDescription to “XXX” and price

to 0. Because numeric fields in objects are set to 0 by default, the last
assignment is not really necessary. However, programmers sometimes code
a statement like the one that sets price to 0 so that their intentions are clear
to people reading their programs.

(continues)

An Introduction to Using Constructors

161

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public SpaService()
{

serviceDescription = "XXX";
price = 0;

}

3. Save the class and compile it.

4. Open the CreateSpaServices.java file. Comment out the seven statements
that prompt for, receive, and set the values for the secondService object by
placing double slashes at the start of their lines, as shown below. By comment-
ing out these lines, you change the program so that the user does not enter
values for the secondService object. Instead, the values assigned by the con-
structor are the final values for the object.
// keyboard.nextLine();
// System.out.print("Enter service >> ");
// service = keyboard.nextLine();
// System.out.print("Enter price >> ");
// price = keyboard.nextDouble();
// secondService.setServiceDescription(service);
// secondService.setPrice(price);

5. Save the file, and then compile and execute it. Figure 3-33 shows a typical
execution. The firstService object contains values supplied by the user, but
the secondService object shows the values assigned during the object’s
construction.

(continued)

Figure 3-33 Typical execution of CreateSpaServices program that uses constructor
values for the second object

C H A P T E R 3 Using Methods, Classes, and Objects

162

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding that Classes Are Data Types
The classes that you create become data types. Programmers sometimes refer to classes
as abstract data types, or ADTs. An abstract data type is a type whose implementation is
hidden and accessed through its public methods. A class that you create can also be called
a programmer-defined data type; in other words, it is a type that is not built into the
language. A class is a composite type—that is, a class is composed from smaller parts.

Java’s primitive types are not composite. Java has eight built-in primitive data types such as
int and double. Primitive types can also be called scalar types. You do not have to define
these simple types; the creators of Java have already done so. For example, when the int type
was first created, the programmers who designed it had to think of the following:

Q: What shall we call it?

A: int.

Q: What are its attributes?

A: An int is stored in four bytes; it holds whole-number values.

Q: What methods are needed by int?

A: A method to assign a value to a variable (for example, num = 32;).

Q: Any other methods?

A: Some operators to perform arithmetic with variables (for example, num + 6).

Q: Any other methods?

A: Of course, there are even more attributes and methods of an int, but these are a good start.

Your job in constructing a new data type is similar. If you need a class for employees, you
should ask:

Q: What shall we call it?

A: Employee.

Q: What are its attributes?

A: It has an integer ID number, a String last name, and a double salary.

Q: What methods are needed by Employee?

A: A method to assign values to a member of this class (for example, one Employee’s ID
number is 3232, her last name is “Walters”, and her salary is 30,000).

Q: Any other methods?

A: A method to display data in a member of this class (for example, display one
Employee’s data).

Q: Any other methods?

A: Probably, but this is enough to get started.

Understanding that Classes Are Data Types

163

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you declare a primitive type object, you provide its type and an identifier. When you
declare an object from one of your classes, you do the same. After each exists, you can use
them in very similar ways. For example, suppose you declare an int named myInt and an
Employee named myEmployee. Then each can be passed into a method, returned from a
method, or assigned to another object of the same data type.

For example, Figure 3-34 shows a program in which the main() method uses two other
methods. One method accepts an Employee as a parameter, and the other returns an
Employee. (The Employee class is defined in Figure 3-28.) Figure 3-35 shows a typical
execution. You can see in this sample program that an Employee is passed into and out
of methods just like a primitive object would be. Classes are not mysterious; they are just
new data types that you invent.

import java.util.Scanner;
class MethodsThatUseAnEmployee
{

public static void main (String args[])
{

Employee myEmployee;
myEmployee = getEmployeeData();
displayEmployee(myEmployee);

}
public static Employee getEmployeeData()
{

Employee tempEmp = new Employee();
int id;
double sal;
Scanner input = new Scanner(System.in);
System.out.print("Enter employee ID >> ");
id = input.nextInt();
tempEmp.setEmpNum(id);
System.out.print("Enter employee salary >> ");
sal = input.nextDouble();
tempEmp.setEmpSalary(sal);
return tempEmp;

}
public static void displayEmployee(Employee anEmp)
{

System.out.println("\nEmployee #" + anEmp.getEmpNum() +
" Salary is " + anEmp.getEmpSalary());

}
}

Figure 3-34 The MethodsThatUseAnEmployee application

C H A P T E R 3 Using Methods, Classes, and Objects

164

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notice in the application in Figure 3-34 that the Employee declared in the main() method is
not constructed there. An Employee is constructed in the getEmployeeData() method and
passed back to the main() method, where it is assigned to the myEmployee reference. The
Employee constructor could have been called in main(), but the values assigned would have
been overwritten after the call to getEmployeeData().

TWO TRUTHS & A LIE

Understanding that Classes Are Data Types

1. When you declare a primitive variable or instantiate an object from a class, you
provide both a type and an identifier.

2. Unlike a primitive variable, an instantiated object cannot be passed into or returned
from a method.

3. The address of an instantiated object can be assigned to a declared reference of
the same type.

. doht e ma morf
denr ut er r o ot ni dessap eb nact cej bo det ai t nat sni nA. 2# si t ne met at s esl af ehT

Figure 3-35 Typical execution of the MethodsThatUseAnEmployee application

Understanding that Classes Are Data Types

165

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Understanding that Classes Are Data Types

In this section, you modify the CreateSpaServices class to include a method for data
entry. This change makes the main() method shorter, gives you the ability to reuse
code, and shows that an object of the SpaService class data type can be returned
from a method as easily as a primitive data type.

1. Open the CreateSpaServices.java file if it is not still open in your text editor.

2. Delete the declarations for service, price, and keyboard. Declarations for
these variables will now be part of the data entry method that you will create.

3. Delete the six statements that prompt the user and get values for the
firstService objects. Also delete the seven statements that prompt the user
and retrieve data for the secondService object. You commented out these
statements in the previous “You Do It” section.

4. In place of the statements you just deleted, insert two new statements. The
first sends a copy of the firstService object to a method named getData().
The method returns a SpaService object that will be filled with appropriate
data, and this object is assigned to firstService. The second statement
does the same thing for secondService.
firstService = getData(firstService);
secondService = getData(secondService);

5. After the closing curly brace for the main() method, but before the closing
curly brace for the class, start the following public static getData()

method. The header indicates that the method both accepts and returns a
SpaService object. Include the opening curly brace for the method, and make
declarations for service, price, and keyboard.
public static SpaService getData(SpaService s)
{

String service;
double price;
Scanner keyboard = new Scanner(System.in);

(continues)

C H A P T E R 3 Using Methods, Classes, and Objects

166

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Continue the method by prompting the user for and accepting a service and
its price. Include a final call to nextLine() so that the input buffer is cleared
after the last numeric entry.
System.out.print("Enter service >> ");
service = keyboard.nextLine();
System.out.print("Enter price >> ");
price = keyboard.nextDouble();
keyboard.nextLine();

7. Finish the method by assigning the entered service and price to the SpaService

object parameter using the SpaService class’s setServiceDescription() and
setPrice() methods. Then return the full object to the main() method, where it
is assigned to the object used in the method call. Add a closing curly brace for
the method.

s.setServiceDescription(service);
s.setPrice(price);
return s;

}

8. Save the file, compile it, and execute it. Figure 3-36 shows a typical execution.
The execution is no different from the original version of the program, but by
creating a method that accepts an unfilled SpaService object and returns one
filled with data, you have made the main() method shorter and reused the
data entry code.

(continued)

Figure 3-36 Typical execution of the CreateSpaServices program that uses
a data entry method

Understanding that Classes Are Data Types

167

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It
Don’t place a semicolon at the end of a method header. After you get used to putting
semicolons at the end of every statement, it’s easy to start putting them in too many
places. Method headers never end in a semicolon.

Don’t think “default constructor” means only the automatically supplied constructor.
Although a class’s automatically supplied constructor is a default constructor, so is any
constructor you create that accepts no parameters.

Don’t think that a class’s methods must accept its own fields’ values as parameters or
return values to its own fields. When a class contains both fields and methods, each
method has direct access to every field within the class.

Don’t create a class method that has a parameter with the same identifier as a class field—
yet. If you do, you will only be allowed to access the local variable within the method, and
you will not be able to access the field. You will be able to use the same identifier and still
access both values after you read the next chapter. For now, make sure that the parameter
in any method has a different identifier from any field.

Key Terms
A method is a program module that contains a series of statements that carry out a task.

When you invoke or call a method, you execute it.

The calling method makes a method call that invokes the called method.

A client method is a method that calls another.

Abstraction is the programming feature that allows you to use a method name to encapsulate
a series of statements.

The method header is the first line of the method and contains information about how other
methods can interact with it.

A declaration is another name for a method header.

A method body is the set of statements between curly braces that follow the header and that
carry out the method’s actions.

Implementation describes the actions that execute within a method—the method body.

A stub is a method that contains no statements; programmers create stubs as temporary
placeholders during the program development process.

Access modifier is sometimes used as another term for access specifier.

A return type indicates the type of data that, upon completion of the method, is sent back to
its calling method.

C H A P T E R 3 Using Methods, Classes, and Objects

168

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To return a value is to send the value from a called method back to the calling method.

A fully qualified identifier includes a class name and a dot before the identifier.

Arguments are data items sent to methods in a method call.

Parameters are the data items received by a method.

Implementation hiding is a principle of object-oriented programming that describes the
encapsulation of method details within a class.

The interface to a method includes the method’s return type, name, and arguments. It is the
part that a client sees and uses.

A black box is a device you can use without understanding how it works.

A local variable is known only within the boundaries of a method.

A method’s signature is the combination of the method name and the number, types,
and order of arguments.

Actual parameters are the arguments in a method call.

Formal parameters are the variables in a method declaration that accept the values from
actual parameters.

A return statement ends a method and frequently sends a value from a called method back
to the calling method.

A method’s type is its return type.

Unreachable statements are those that cannot be executed because the logical path can never
encounter them; an unreachable statement causes a compiler error.

Dead code is a set of statements that are logically unreachable.

An is-a relationship is the relationship between an object and the class of which it is a
member.

An instantiation of a class is an object; in other words, it is one tangible example of a class.

A class client or class user is an application or class that instantiates objects of another
prewritten class.

Classes can be extended, or used as a basis for any other class.

Data fields are data variables declared in a class outside of any method.

The instance variables of a class are its data components.

Assigning private access to a field means that no other classes can access the field’s values,
and only methods of the same class are allowed to set, get, or otherwise use private variables.

Information hiding is the object-oriented programming principle used when creating private
access for data fields; a class’s private data can be changed or manipulated only by a class’s
own methods and not by methods that belong to other classes.

Key Terms

169

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Mutator methods set values.

Accessor methods retrieve values.

Nonstatic methods, those methods used with object instantiations, are called instance
methods.

A primary key is a unique identifier for data within a database.

The new operator allocates the memory needed to hold an object.

A reference to an object is the name for a memory address where the object is held.

A constructor is a method that establishes an object.

A default constructor is one that requires no parameters; if you do not write one, a default
constructor is created for a class automatically by the Java compiler.

An abstract data type (ADT) is a type whose implementation is hidden and accessed through
its public methods.

A programmer-defined data type is one that is created by a programmer and not built into
the language.

Chapter Summary
A method is a series of statements that carry out a task. Any method can call, or invoke,
another. You place a method within a class outside of any other methods.

Methods must include a declaration (or header or definition) and a pair of curly braces
that enclose the method body. A method declaration contains optional access specifiers,
the return type for the method, the method name, and a pair of parentheses that might
contain a list of parameters.

When a method can receive a parameter, its declaration must contain the parameter type
and an identifier within parentheses. A method can accept multiple parameters separated
with commas. The arguments sent to a method must match (both in number and in type)
the parameters listed in the method declaration.

The return type for a method (the method’s type) can be any Java type, including void.
A return statement sends a value back to a calling method.

Objects are concrete instances of classes. Objects gain their attributes from their classes,
and all objects have predictable attributes because they are members of certain classes. In
addition to their attributes, objects have methods associated with them, and every object
that is an instance of a class is assumed to possess the same methods.

A class header contains an optional access specifier, the keyword class, and any legal
identifier you choose for the name of your class. A class contains fields, which are
frequently private, and methods, which are frequently public.

Nonstatic instance methods operate uniquely for every object. Within a class, fields can be
placed before or after methods, and methods can be placed in any logical order.

C H A P T E R 3 Using Methods, Classes, and Objects

170

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To create an object that is an instance of a class, you supply a type and an identifier,
and then you allocate computer memory for that object using the new operator and the
class constructor. With well-written object-oriented programming methods, using
implementation hiding—or the encapsulation of method details within a class—means
that the calling method needs to understand only the interface to the called method.

A constructor establishes an object and provides specific initial values for the object’s data
fields. A constructor always has the same name as the class of which it is a member. By
default, numeric fields are set to 0 (zero), character fields are set to Unicode ‘\u0000’,
Boolean fields are set to false, and object type fields are set to null.

A class is an abstract, programmer-defined data type, similar to Java’s built-in, primitive
data types.

Review Questions
1. In Java, methods must include all of the following except .

a. a declaration
b. a call to another method
c. curly braces
d. a body

2. All method declarations contain .

a. the keyword static

b. one or more explicitly named access specifiers
c. arguments
d. parentheses

3. A public static method named computeSum() is located in classA. To call the
method from within classB, use the statement .

a. computeSum(classB);

b. classB(computeSum());

c. classA.computeSum();

d. You cannot call computeSum() from within classB.

4. Which of the following method declarations is correct for a static method named
displayFacts() if the method receives an int argument?

a. public static int displayFacts()

b. public void displayFacts(int data)

c. public static void displayFacts(int data)

d. Two of these are correct.

Review Questions

171

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. The method with the declaration public static int aMethod(double d) has
a method type of .

a. static

b. int

c. double

d. You cannot determine the method type.

6. Which of the following is a correct call to a method declared as public static void
aMethod(char code)?

a. void aMethod();

b. void aMethod('V');

c. aMethod(char 'M');

d. aMethod('Q');

7. A method is declared as public static void showResults(double d, int i). Which
of the following is a correct method call?

a. showResults(double d, int i);

b. showResults(12.2, 67);

c. showResults(4, 99.7);

d. Two of these are correct.

8. The method with the declaration public static char procedure(double d) has a
method type of .

a. public

b. static

c. char

d. double

9. The method public static boolean testValue(int response)

returns .

a. a boolean value
b. an int value
c. no value
d. You cannot determine what is returned.

10. Which of the following could be the last legally coded line of a method declared as
public static int getVal(double sum)?

a. return;

b. return 77;

c. return 2.3;

d. Any of these could be the last coded line of the method.

11. The nonstatic data components of a class often are referred to as
the of that class.

a. access types
b. instance variables

c. methods
d. objects

C H A P T E R 3 Using Methods, Classes, and Objects

172

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12. Objects contain methods and data items, which are also known as .

a. fields
b. functions

c. themes
d. instances

13. You send messages or information to an object through its .

a. fields
b. methods

c. classes
d. type

14. A program or class that instantiates objects of another prewritten class is
a(n) .

a. class client
b. superclass

c. object
d. patron

15. The body of a class is always written .

a. in a single line, as the first statement in a class
b. within parentheses
c. between curly braces
d. as a method call

16. Most class data fields are .

a. private

b. public

c. static

d. final

17. The concept of allowing a class’s private data to be changed only by a class’s own
methods is known as .

a. structured logic
b. object orientation

c. information hiding
d. data masking

18. Suppose you declare an object as Book thisBook;. Before you store data in thisBook,
you .

a. also must explicitly allocate memory for it
b. need not explicitly allocate memory for it
c. must explicitly allocate memory for it only if it has a constructor
d. can declare it to use no memory

19. If a class is named Student, the class constructor name is .

a. any legal Java identifier
b. any legal Java identifier that begins with S
c. StudentConstructor

d. Student

Review Questions

173

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

20. If you use the automatically supplied default constructor when you create an
object, .

a. numeric fields are set to 0 (zero)
b. character fields are set to blank

c. Boolean fields are set to true

d. All of these are true.

Exercises

Programming Exercises

1. Suppose that you have created a program with only the following variables.
int a = 5;
int b = 6;

Suppose that you also have a method with the following header:
public static void mathMethod(int a)

Which of the following method calls are legal?

a. mathMethod(a);

b. mathMethod(b);

c. mathMethod(a + b);

d. mathMethod(a, b);

e. mathMethod(2361);

f. mathMethod(12.78);

g. mathMethod(29987L);

h. mathMethod();

i. mathMethod(x);

j. mathMethod(a / b);

2. Suppose that you have created a program with only the following variables.
int age = 34;
int weight = 180;
double height = 5.9;

Suppose that you also have a method with the following header:
public static void calculate(int age, double size)

Which of the following method calls are legal?

a. calculate(age, weight);

b. calculate(age, height);

c. calculate(weight, height);

d. calculate(height, age);

e. calculate(45.5, 120);

f. calculate(12, 120.2);

g. calculate(age, size);

h. calculate(2, 3);

i. calculate(age);

j. calculate(weight, weight);

C H A P T E R 3 Using Methods, Classes, and Objects

174

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Suppose that a class named Bicycle contains a private nonstatic integer named
height, a public nonstatic String named model, and a public static integer named
wheels. Which of the following are legal statements in a class named BicycleDemo
that has instantiated an object as Bicycle myBike = new Bicycle();?

a. myBike.height = 26;

b. myBike.model = "Cyclone";

c. myBike.wheels = 3;

d. myBike.model = 108;

e. Bicycle.height = 24;

f. Bicycle.model = "Hurricane";

g. Bicycle.int = 3;

h. Bicycle.model = 108;

i. Bicycle.wheels = 2;

j. Bicycle yourBike = myBike;

4. a. Create an application named NumbersDemo whose main() method holds two
integer variables. Assign values to the variables. In turn, pass each value to
methods named displayTwiceTheNumber(), displayNumberPlusFive(), and
displayNumberSquared(). Create each method to perform the task its name
implies. Save the application as NumbersDemo.java.

b. Modify the NumbersDemo class to accept the values of the two integers from a user
at the keyboard. Save the file as NumbersDemo2.java.

5. a. Create an application named Percentages whose main() method holds two
double variables. Assign values to the variables. Pass both variables to a method
named computePercent() that displays the two values and the value of the first
number as a percentage of the second one. For example, if the numbers are 2.0
and 5.0, the method should display a statement similar to “2.0 is 40 percent of 5.0.”
Then call the method a second time, passing the values in reverse order. Save the
application as Percentages.java.

b. Modify the Percentages class to accept the values of the two doubles from a user
at the keyboard. Save the file as Percentages2.java.

6. To encourage good grades, Hermosa High School has decided to award each student
a bookstore credit that is 10 times the student’s grade point average. In other words, a
student with a 3.2 grade point average receives a $32 credit. Create a class that
prompts a student for a name and grade point average, and then passes the values to a
method that displays a descriptive message. The message uses the student’s name,
echoes the grade point average, and computes and displays the credit. Save the
application as BookstoreCredit.java.

7. There are 2.54 centimeters in an inch, and there are 3.7854 liters in a U.S. gallon.
Create a class named MetricConversion. Its main() method accepts an integer value
from a user at the keyboard, and in turn passes the entered value to two methods.
One converts the value from inches to centimeters and the other converts the same
value from gallons to liters. Each method displays the results with appropriate
explanation. Save the application as MetricConversion.java.

Exercises

175

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Assume that a gallon of paint covers about 350 square feet of wall space. Create an
application with a main() method that prompts the user for the length, width, and
height of a rectangular room. Pass these three values to a method that does the
following:

Calculates the wall area for a room

Passes the calculated wall area to another method that calculates and returns the
number of gallons of paint needed

Displays the number of gallons needed

Computes the price based on a paint price of $32 per gallon, assuming that the
painter can buy any fraction of a gallon of paint at the same price as a whole gallon

Returns the price to the main() method

The main() method displays the final price. For example, the cost to paint a 15-by-
20-foot room with 10-foot ceilings is $64. Save the application as PaintCalculator.java.

9. The Harrison Group Life Insurance company computes annual policy premiums
based on the age the customer turns in the current calendar year. The premium is
computed by taking the decade of the customer’s age, adding 15 to it, and multiplying
by 20. For example, a 34 year old would pay $360, which is calculated by adding the
decades (3) to 15, and then multiplying by 20. Write an application that prompts a
user for the current year and a birth year. Pass both to a method that calculates and
returns the premium amount, and then display the returned amount. Save the
application as Insurance.java.

10. Caitlyn’s Crafty Creations computes a retail price for each product as the cost of
materials plus $12 multiplied by the number of hours of work required to create the
product, plus $7 shipping and handling. Create a class that contains a main() method
that prompts the user for the name of a product (for example, “woven purse”), the
cost of materials, and the number of hours of work required. Pass the numeric data to
a method that computes the retail price of the product and returns the computed
value to the main() method where the product name and price are displayed. Save
the program as CraftPricing.java.

11. a. Create a class named Sandwich. Data fields include a String for the main
ingredient (such as “tuna”), a String for bread type (such as “wheat”), and a
double for price (such as 4.99). Include methods to get and set values for each of
these fields. Save the class as Sandwich.java.

b. Create an application named TestSandwich that instantiates one Sandwich object
and demonstrates the use of the set and get methods. Save this application as
TestSandwich.java.

12. a. Create a class named Student. A Student has fields for an ID number, number of
credit hours earned, and number of points earned. (For example, many schools
compute grade point averages based on a scale of 4, so a three-credit-hour class in
which a student earns an A is worth 12 points.) Include methods to assign values
to all fields. A Student also has a field for grade point average. Include a method to

C H A P T E R 3 Using Methods, Classes, and Objects

176

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

compute the grade point average field by dividing points by credit hours earned.
Write methods to display the values in each Student field. Save this class as
Student.java.

b. Write a class named ShowStudent that instantiates a Student object from the
class you created and assign values to its fields. Compute the Student grade point
average, and then display all the values associated with the Student. Save the
application as ShowStudent.java.

c. Create a constructor for the Student class you created. The constructor should
initialize each Student’s ID number to 9999, his or her points earned to 12, and
credit hours to 3 (resulting in a grade point average of 4.0). Write a program that
demonstrates that the constructor works by instantiating an object and displaying
the initial values. Save the application as ShowStudent2.java.

13. a. Create a class named Lease with fields that hold an apartment tenant’s name,
apartment number, monthly rent amount, and term of the lease in months. Include
a constructor that initializes the name to “XXX”, the apartment number to 0, the
rent to 1000, and the term to 12. Also include methods to get and set each of the
fields. Include a nonstatic method named addPetFee() that adds $10 to the
monthly rent value and calls a static method named explainPetPolicy() that
explains the pet fee. Save the class as Lease.java.

b. Create a class named TestLease whose main() method declares four Lease
objects. Call a getData() method three times. Within the method, prompt a user
for values for each field for a Lease, and return a Lease object to the main()

method where it is assigned to one of main()’s Lease objects. Do not prompt the
user for values for the fourth Lease object, but let it continue to hold the default
values. Then, in main(), pass one of the Lease objects to a showValues() method
that displays the data. Then call the addPetFee() method using the passed Lease

object and confirm that the fee explanation statement is displayed. Next, call the
showValues() method for the Lease object again and confirm that the pet fee has
been added to the rent. Finally, call the showValues() method with each of the other
three objects; confirm that two hold the values you supplied as input and one holds
the constructor default values. Save the application as TestLease.java.

Debugging Exercises

1. Each of the following files saved in the Chapter03 folder in your downloadable
student files has syntax and/or logic errors. In each case, determine and fix the
problem. After you correct the errors, save each file using the same filename preceded
with Fix. For example, DebugThree1.java will become FixDebugThree1.java.

a. DebugThree1.java
b. DebugThree2.java
c. DebugThree3.java
d. DebugThree4.java

Exercises

177

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you change a filename, remember to change every instance of the class name within the file so that it
matches the new filename. In Java, the filename and class name must always match.

Game Zone

1. Playing cards are used in many computer games, including versions of such classics
as solitaire, hearts, and poker. Design a Card class that contains a character data field
to hold a suit (s for spades, h for hearts, d for diamonds, or c for clubs) and an
integer data field for a value from 1 to 13. (When you learn more about string
handling in the chapter “Characters, Strings, and the StringBuilder,” you can
modify the class to hold words for the suits, such as spades or hearts, as well as
words for some of the values—for example, ace or king.) Include get and set
methods for each field. Save the class as Card.java.

Write an application that randomly selects two playing cards and displays their
values. Simply assign a suit to each of the cards, but generate a random number for
each card’s value. Appendix D contains information on generating random num-
bers. To fully understand the process, you must learn more about Java classes and
methods. However, for now, you can copy the following statements to generate a
random number between 1 and 13 and assign it to a variable:
final int CARDS_IN_SUIT = 13;
myValue = ((int)(Math.random() * 100) % CARDS_IN_SUIT + 1);

After reading the chapter “Making Decisions,” you will be able to have the game
determine the higher card. For now, just observe how the card values change as you
execute the program multiple times. Save the application as PickTwoCards.java.

You use the Math.random() function to generate a random number. The function call uses only a
class and method name—no object—so you know the random() method must be a static method.

2. Computer games often contain different characters or creatures. For example, you
might design a game in which alien beings possess specific characteristics such as
color, number of eyes, or number of lives. Design a character for a game, creating a
class to hold at least three attributes for the character. Include methods to get and
set each of the character’s attributes. Save the file as MyCharacter.java. Then write
an application in which you create at least two characters. In turn, pass each
character to a display method that displays the character’s attributes. Save the
application as TwoCharacters.java.

C H A P T E R 3 Using Methods, Classes, and Objects

178

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Problems

1. a. Carly’s Cate.ring provides meals for parties and special events. In Chapter 2,
you wrote an application that prompts the user for the number of guests
attending an event, displays the company motto with a border, and then displays
the price of the event and whether the event is a large one. Now modify the
program so that the main() method contains only three executable statements
that each call a method as follows:

The first executable statement calls a public static int method that
prompts the user for the number of guests and returns the value to the
main() method.

The second executable statement calls a public static void method that
displays the company motto with the border.

The last executable statement passes the number of guests to a public

static void method that computes the price of the event, displays the price,
and displays whether the event is a large event.

Save the file as CarlysEventPriceWithMethods.java.

b. Create a class to hold Event data for Carly’s Catering. The class contains:

Two public final static fields that hold the price per guest ($35) and the
cutoff value for a large event (50 guests)

Three private fields that hold an event number, number of guests for the
event, and the price. The event number is stored as a String because Carly
plans to assign event numbers such as M312.

Two public set methods that set the event number (setEventNumber()) and
the number of guests (setGuests()). The price does not have a set method
because the setGuests() method will calculate the price as the number of
guests multiplied by the price per guest every time the number of guests is set.

Three public get methods that return the values in the three nonstatic fields

Save the file as Event.java.

c. Use the CarlysEventPriceWithMethods class you created in Step 1a as a
starting point for a program that demonstrates the Event class you created in
Step 1b, but make the following changes:

You already have a method that gets a number of guests from a user; now
add a method that gets an event number. The main() method should declare
an Event object, call the two data entry methods, and use their returned
values to set the fields in the Event object.

Exercises

179

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Call the method from the CarlysEventPriceWithMethods class that dis-
plays the company motto with the border. The method is accessible
because it is public, but you must fully qualify the name because it is in
another class.

Revise the method that displays the event details so that it accepts the
newly created Event object. The method should display the event number,
and it should still display the number of guests, the price per guest, the
total price, and whether the event is a large event.

Save the program as EventDemo.java.

2. a. Sammy’s Seashore Supplies rents beach equipment such as kayaks, canoes,
beach chairs, and umbrellas to tourists. In Chapter 2, you wrote an applica-
tion that prompts the user for the number of minutes a piece of sports
equipment was rented, displays the company motto with a border, and
displays the price for the rental. Now modify the program so that the main()

method contains only three executable statements that each call a method
as follows:

The first executable statement calls a method that prompts the user for
the rental time in minutes and returns the value to the main() method.

The second executable statement calls a method that displays the com-
pany motto with the border.

The last executable statement passes the number of minutes to a method
that computes the hours, extra minutes, and price for the rental, and then
displays all the details.

Save the file as SammysRentalPriceWithMethods.java.

b. Create a class to hold Rental data for Sammy’s Seashore Supplies. The class
contains:

Two public final static fields that hold the number of minutes in an
hour and the hourly rental rate ($40)

Four private fields that hold a contract number, number of hours for the
rental, number of minutes over an hour, and the price. The contract
number is stored as a String because Sammy plans to assign contract
numbers such as K681.

Two public set methods. One sets the contract number
(setContractNumber()). The other is named setHoursAndMinutes(),
and it accepts the number of minutes for the rental and then sets the
hours, extra minutes over an hour, and the total price. Recall from
Chapter 2 that the price is $40 per hour plus $1 for every extra minute.

Four public get methods that return the values in the four nonstatic fields

Save the file as Rental.java.

C H A P T E R 3 Using Methods, Classes, and Objects

180

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

c. Use the SammysRentalPriceWithMethods class you created in Step 2a as a starting
point for a program that demonstrates the Rental class you created in Step 2b,
but make the following changes:

You already have a method that gets a number of minutes from a user; now
add a method that gets a contract number. The main() method should declare
a Rental object, call the two data entry methods, and use their returned values
to set the fields in the Rental object.

From the SammysRentalPriceWithMethods class, call the RentalDemo method
that displays the company motto with the border. The method is accessible
because it is public, but you must fully qualify the name because it is in another
class.

Revise the method that displays the rental details so that it accepts the
newly created Rental object. The method should display the contract
number, and it should still display the hours and minutes, the hourly rate,
and the total price.

Save the program as RentalDemo.java.

Exercises

181

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4
More Object
Concepts

In this chapter, you will:

Understand blocks and scope

Overload a method

Avoid ambiguity

Create and call constructors with parameters

Use the this reference

Use static fields

Use automatically imported, prewritten constants
and methods

Use composition and nest classes

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Blocks and Scope
Within any class or method, the code between a pair of curly braces is called a block. For
example, the method shown in Figure 4-1 contains two blocks. An outer block begins at the
first opening curly brace and ends at the last closing curly brace, at the end of the method.
The inner block starts with the second opening curly brace and ends with the first closing
curly brace. It contains two executable statements: the declaration of anotherNumber and a
println() statement. The inner block is nested, or contained entirely, within the outer block.

A block can exist entirely within another block or entirely outside and separate from another
block, but blocks can never overlap. For example, if a method contains two opening curly
braces, indicating the start of two blocks, the first opening brace and last closing brace are a
pair that define the outer block, and the second opening brace and first closing brace are a
pair that define the inner block.

You cannot refer to a variable outside the block in which it is declared. As you learned in
Chapter 3, the portion of a program within which you can refer to a variable is the variable’s
scope; in this part of the program, the variable exists and can be accessed using its unqualified
name. In Java, a variable comes into existence, or comes into scope, when you declare it, and
a variable ceases to exist, or goes out of scope, at the end of the block in which it is declared.
Programmers say that a Java variable’s scope level is its block.

Although you can create as many variables and blocks as you need within any program, it is
not wise to do so without a reason. The use of unnecessary variables and blocks increases the
likelihood of improper use of variable names and scope.

public static void methodWithNestedBlocks()
{

int aNumber = 10;

System.out.println
("In outer block, aNumber is " + aNumber);

{
int anotherNumber = 512;
System.out.println

("In inner block, aNumber is " +
aNumber + " and another number is " +
anotherNumber);

}

System.out.println("In outer block, aNumber is " + aNumber);
}

aNumber comes into existence

anotherNumber comes into existence

anotherNumber ceases to exist; it goes out of scope

aNumber ceases to exist; it goes out of scope

Outer block
starts with
opening brace

Inner block
starts with next
opening brace

Outer block
ends

Inner block ends

Figure 4-1 A method with nested blocks

C H A P T E R 4 More Object Concepts

184

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the methodWithNestedBlocks() method shown in Figure 4-1, the variable aNumber exists
from the point of its declaration until the end of the method. This means aNumber exists both
in the outer block and in the inner block and can be used anywhere in the method. The
variable anotherNumber comes into existence within the inner block; anotherNumber goes out
of scope when the inner block ends and cannot be used beyond its block. Figure 4-2 shows the
output when the method in Figure 4-1 executes.

The program that produces the output shown in Figure 4-2 is available in your downloadable student files.

You cannot use a data item that is not in scope. For example, Figure 4-3 shows a method that
contains two blocks and some shaded, invalid statements. The opening and closing braces for
each block are vertically aligned. You are not required to vertically align the opening and
closing braces for a block, but your programs are much easier to read if you do.

public static void methodWithInvalidStatements()
{

aNumber = 75;
int aNumber = 22;
aNumber = 6;
anotherNumber = 489;
{
anotherNumber = 165;
int anotherNumber = 99;
anotherNumber = 2;

}
aNumber = 50;
anotherNumber = 34;

}
aNumber = 29;

Illegal statement; this variable has not been declared yet

Illegal statement; this variable has not been declared yet

Illegal statement; this variable still has not been declared

Illegal statement; this variable was declared in the inner block
and has gone out of scope here

Illegal statement; this variable has gone out of scope

Figure 4-3 The methodWithInvalidStatements() method

Figure 4-2 Output produced by application that uses methodWithNestedBlocks()

Understanding Blocks and Scope

185

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The first assignment statement in the first, outer block in Figure 4-3, aNumber = 75;, is invalid
because aNumber has not been declared yet. Similarly, the statements that attempt to assign
489 and 165 to anotherNumber are invalid because anotherNumber has not been declared yet.
After anotherNumber is declared, it can be used for the remainder of the inner block, but the
statement that attempts to assign 34 to it is outside the block in which anotherNumber was
declared. The last shaded statement in Figure 4-3, aNumber = 29;, does not work because it
falls outside the block in which aNumber was declared; it actually falls outside the entire
methodWithInvalidStatements() method.

Within a method, you can declare a variable with the same name multiple times, as long as
each declaration is in its own nonoverlapping block. For example, the two declarations of
variables named someVar in Figure 4-4 are valid because each variable is contained within its
own block. The first instance of someVar has gone out of scope before the second instance
comes into scope.

You cannot declare the same variable name more than once within a block, even if a block
contains other blocks. When you declare a variable more than once in a block, you are attempting
to redeclare the variable, which is an illegal action. For example, in Figure 4-5, the second
declaration of aValue causes an error because you cannot declare the same variable twice within
the outer block of the method. By the same reasoning, the third declaration of aValue is also
invalid, even though it appears within a new block. The block that contains the third declaration is
entirely within the outer block, so the first declaration of aValue has not gone out of scope.

public static void invalidRedeclarationMethod()
{

int aValue = 35;
int aValue = 44;
{
int anotherValue = 0;
int aValue = 10;

}
}

Invalid redeclaration of aValue because it is
in the same block as the first declaration

Invalid redeclaration of aValue; even though this
is a new block, this block is inside the first block

Figure 4-5 The invalidRedeclarationMethod()

public static void twoDeclarations()
{

{
int someVar = 7;
System.out.println(someVar);

}
{

int someVar = 845;
System.out.println(someVar);

}
}

This variable is totally different from the one
in the previous block even though their
identifiers are the same.

This variable will go out of scope at the next
closing curly brace.Don’t declare

blocks for no
reason. A
new block
starts here
only to
demonstrate
scope.

Figure 4-4 The twoDeclarations() method

C H A P T E R 4 More Object Concepts

186

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Although you cannot declare a variable twice within the same block, you can declare a
variable within one method of a class and use the same variable name within another method
of the class. In this case, the variable declared inside each method resides in its own location
in computer memory. When you use the variable’s name within the method in which it is
declared, it takes precedence over, or overrides, any other variable with the same name in
another method. In other words, a locally declared variable always masks or hides another
variable with the same name elsewhere in the class.

For example, consider the class in Figure 4-6. In the main() method of the
OverridingVariable class, aNumber is declared and assigned the value 10. When the
program calls firstMethod(), a new variable is declared with the same name but with a
different memory address and a new value. The new variable exists only within firstMethod(),
where it is displayed holding the value 77. After firstMethod() executes and the logic
returns to the main() method, the original aNumber is displayed, containing 10. When
aNumber is passed to secondMethod(), a copy is made within the method. This copy has
the same identifier as the original aNumber, but a different memory address. So, within
secondMethod(), when the value is changed to 862 and displayed, it has no effect on the
original variable in main(). When the logic returns to main() after secondMethod(),
the original value is displayed again. Examine the output in Figure 4-7 to understand
the sequence of events.

public class OverridingVariable
{

public static void main(String[] args)
{
int aNumber = 10;
System.out.println("In main(), aNumber is " + aNumber);
firstMethod();
System.out.println("Back in main(), aNumber is " + aNumber);
secondMethod(aNumber);
System.out.println("Back in main() again, aNumber is " + aNumber);

}
public static void firstMethod()
{
int aNumber = 77;
System.out.println("In firstMethod(), aNumber is "

+ aNumber);
}
public static void secondMethod(int aNumber)
{
System.out.println("In secondMethod(), at first " +

"aNumber is " + aNumber);
aNumber = 862;
System.out.println("In secondMethod(), after an assignment " +

"aNumber is " + aNumber);
}

}

aNumber is declared in
main().

Whenever aNumber
is used in main(), it
retains its value of 10.

This aNumber resides at a different
memory address from the one in main().
It is declared locally in this method.

This aNumber also resides at a different
memory address from the one in main().
It is declared locally in this method.

Figure 4-6 The OverridingVariable class

Understanding Blocks and Scope

187

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Object-oriented programmers also use the term override when a child class contains a field or method that
has the same name as one in the parent class. You will learn more about inheritance in the chapters
“Introduction to Inheritance” and “Advanced Inheritance Concepts.”

You are familiar with local names overriding names defined elsewhere. If someone in your household is
named Eric, and someone in the house next door is named Eric, members of your household who talk about
Eric are referring to the local version. They would add a qualifier such as Eric Johnson or Eric next door to
refer to the nonlocal version.

When they have the same name, variables within methods of a class override or hide the
class’s fields. Java calls this phenomenon shadowing; a variable that hides another shadows it.
For example, Figure 4-8 shows an Employee class that contains two instance variables and
three void methods. The setValues() method provides values for the two class instance
fields. Whenever the method named methodThatUsesInstanceAttributes() is used with an
Employee object, the instance values for empNum and empPayRate are used. However, when the
other method, methodThatUsesLocalVariables(), is used with an Employee object, the local
variable values within the method, 33333 and 555.55, shadow the class’s instance variables.
Figure 4-9 shows a short application that declares an Employee object and uses each method;
Figure 4-10 shows the output.

Figure 4-7 Output of the OverridingVariable application

C H A P T E R 4 More Object Concepts

188

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class TestEmployeeMethods
{

public static void main(String[] args)
{

Employee aWorker = new Employee();
aWorker.setValues();
aWorker.methodThatUsesInstanceAttributes();
aWorker.methodThatUsesLocalVariables();

}
}

Figure 4-9 The TestEmployeeMethods application

public class Employee
{

private int empNum;
private double empPayRate;
public void setValues()
{

empNum = 111;
empPayRate = 22.22;

}
public void methodThatUsesInstanceAttributes()
{

System.out.println("Employee number is " + empNum);
System.out.println("Pay rate is " + empPayRate);

}
public void methodThatUsesLocalVariables()
{

int empNum = 33333;
double empPayRate = 555.55;
System.out.println("Employee number is " + empNum);
System.out.println("Pay rate is " + empPayRate);

}
}

This method uses the class fields.

This method also uses
the class fields.

This method uses the locally declared
variables that happen to have the
same names as the class fields.

Figure 4-8 The Employee class

Figure 4-10 Output of the TestEmployeeMethods application

Understanding Blocks and Scope

189

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the methodThatUsesLocalVariables() method in Figure 4-8, the locally declared empNum

and empPayRate are assigned 33333 and 555.55, respectively. These local variables are said to
be closer in scope than the variables with the same name at the top of the class that are
shadowed. When you write programs, you might choose to avoid confusing situations that
arise when you give the same name to a class’s instance field and to a local method variable.
But, if you do use the same name, be aware that within the method, the method’s local
variable overrides the instance variable.

Programmers frequently use the same name for an instance field and a parameter to a method in the same
class simply because it is the “best name” to use; in these cases, the programmer must use the this
reference, which you will learn about later in this chapter.

It is important to understand the impact that blocks and methods have on your variables.
Variables and fields with the same names represent different memory locations when they are
declared within different scopes. After you understand the scope of variables, you can avoid
many potential errors in your programs.

TWO TRUTHS & A LIE

Understanding Blocks and Scope

1. A variable ceases to exist, or goes out of scope, at the end of the block in which it
is declared.

2. You cannot declare the same variable name more than once within a block, even if
a block contains other blocks.

3. A class’s instance variables override locally declared variables with the same
names that are declared within the class’s methods.

. sel bai r av ecnat sni s’ ssal c a edi rr evo ssal c af o
sdoht e mni hti wsel bai r av, e man e mas eht evah yeht neh W. 3# si t ne met at s esl af ehT

You Do It

Demonstrating Scope

In this section, you create a method with several blocks to demonstrate block scope.

1. Start your text editor, and then open a new document, if necessary.

2. Type the first few lines for a class named DemoBlock:
(continues)

C H A P T E R 4 More Object Concepts

190

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class DemoBlock
{

public static void main(String[] args)
{

3. Add a statement that displays the purpose of the program:
System.out.println("Demonstrating block scope");

4. On a new line, declare an integer named x, assign the value 1111 to it,
and display its value:
int x = 1111;
System.out.println("In first block x is " + x);

5. Begin a new block by typing an opening curly brace on the next line. Within
the new block, declare another integer named y, and display x and y. The value
of x is 1111, and the value of y is 2222:
{

int y = 2222;
System.out.println("In second block x is " + x);
System.out.println("In second block y is " + y);

}

6. On the next line, begin another new block. Within this new block, declare a
new integer with the same name as the integer declared in the previous block;
then display x and y. The value of y is 3333. Call a method named demoMethod(),
and display x and y again. Even though you will include statements within
demoMethod() that assign different values to x and y, the x and y displayed
here are still 1111 and 3333:
{

int y = 3333;
System.out.println("In third block x is " + x);
System.out.println("In third block y is " + y);
demoMethod();
System.out.println("After method x is " + x);
System.out.println("After method block y is " + y);

}

7. On a new line after the end of the block, type the following:
System.out.println("At the end x is " + x);

This last statement in the main() method displays the value of x, which is
still 1111. Type a closing curly brace.

(continued)

(continues)

Understanding Blocks and Scope

191

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Finally, enter the following demoMethod() that creates its own x and y variables,
assigns different values, and then displays them:
public static void demoMethod()
{

int x = 8888, y = 9999;
System.out.println("In demoMethod x is " + x);
System.out.println("In demoMethod block y is " + y);

}

9. Type the final closing curly brace, and then save the file as DemoBlock.java.
At the command prompt, compile the file by typing the command
javac DemoBlock.java. If necessary, correct any errors, and compile
the program again.

10. Run the program by typing the
command java DemoBlock.
Your output should look like
Figure 4-11. Make certain you
understand how the values of
x and y are determined in each
line of output.

11. To gain a more complete
understanding of blocks and
scope levels, change the values
of x and y in several locations
throughout the program, and
try to predict the exact output
before resaving, recompiling,
and rerunning the program.

Overloading a Method
Overloading a method allows you to use one identifier to execute diverse tasks. In Java, it
more specifically means writing multiple methods in the same scope that have the same name
but different parameter lists. In overloaded methods, the parameter identifiers do not have to
be different, but the parameter lists must satisfy one or both of these conditions:

The lists must have different numbers of parameters. For example, one list could have one
double, another list could have two doubles, and a third list could have 10 doubles.

The lists must have parameter data types in different orders. For example, one list could
have two doubles, another could have an int and a double, and a third could have a
double and an int.

Figure 4-11 Output of the DemoBlock

application

(continued)

C H A P T E R 4 More Object Concepts

192

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you use the English language, you overload words all the time. When you say “open the
door,” “open your eyes,” and “open a computer file,” you are talking about three very different
actions using very different methods and producing very different results. However, anyone
who speaks English fluently has no trouble understanding your meaning because the verb
open is understood in the context of the noun that follows it.

When you overload a Java method, multiple methods share a name, and the compiler
understands which one to use based on the arguments in the method call. For example,
suppose you create a class method to apply a simple interest rate to a bank balance. The
method is named calculateInterest(); it receives two double parameters—the balance and
the interest rate—and displays the multiplied result. Figure 4-12 shows the method.

public static void calculateInterest(double bal, double rate)
{

double interest;
interest = bal * rate;
System.out.println("Simple interest on $" + bal +

" at " + rate + "% rate is " + interest);
}

Figure 4-12 The calculateInterest() method with two double parameters

When an application calls the calculateInterest() method and passes two double values, as
in calculateInterest(1000.00, 0.04), the interest is calculated correctly as 4% of $1000.00.

Assume, however, that different users want to calculate interest using different argument
types. Some users who want to indicate an interest rate of 4% might use 0.04; others might use
4 and assume that it means 4%. When the calculateInterest() method is called with the
arguments 1000.00 and 0.04, the interest is calculated correctly as 40.00. When the method
is called using 1000.00 and 4, the method works because the integer argument is promoted to
a double, but the interest is calculated incorrectly as 4000.00, which is 100 times too high.

A solution for the conflicting use of numbers to represent parameter values is to overload the
calculateInterest() method. For example, in addition to the calculateInterest()

method shown in Figure 4-12, you could add the method shown in Figure 4-13.

public static void calculateInterest(double bal, int rate)
{

double interest, rateAsPercent;
rateAsPercent = rate / 100.0;
interest = bal * rateAsPercent;
System.out.println("Simple interest on $" +

bal + " at " + rate + "% rate is " +
interest);

}

Notice the data type
for rate.

Dividing by 100.0 converts rate
to its percent equivalent.

Figure 4-13 The calculateInterest() method with a double parameter and an int parameter

Overloading a Method

193

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 4-13, note that rateAsPercent is calculated by dividing by 100.0 and not by 100. If two integers
are divided, the result is a truncated integer; dividing by a double 100.0 causes the result to be a double.
Alternatively, you could use an explicit cast such as rateAsPercent = (double)rate / 100.

If an application calls the method calculateInterest() using two double arguments—for
example, calculateInterest(1000.00, 0.04)—the first version of the method, the one
shown in Figure 4-12, executes. However, if an integer is used as the second argument in a call
to calculateInterest()—as in calculateInterest(1000.00, 4)—the second version of the
method, the one shown in Figure 4-13, executes. In this second example, the whole number
rate figure is correctly divided by 100.0 before it is used to determine the interest earned.

Of course, you could use methods with different names to solve the dilemma of producing
an accurate interest figure—for example, calculateInterestUsingDouble() and
calculateInterestUsingInt(). However, it is easier and more convenient for programmers
who use your methods to remember just one method name they can use in the form that is
most appropriate for their programs. It is convenient to be able to use one reasonable name
for tasks that are functionally identical except for the argument types that can be passed to
them. The compiler knows which method version to call based on the passed arguments.

In Chapter 3, you learned that the print() and println() methods have been created to accept
different argument types (including no argument) and that this feature is called method overloading.

Automatic Type Promotion in Method Calls
In Chapter 2, you learned that Java casts variables to a unifying type when you perform
arithmetic with unlike types. For example, when you multiply an int and a double, the
result is a double. In a similar way, Java can promote one data type to another when you
pass a parameter to a method. For example, if a method has a double parameter and you
pass in an integer, the integer is promoted to a double. Recall that the order of promotion is
double, float, long, and int. Any type in this list can be promoted to any type that
precedes it.

When an application contains just one version of a method, you can call the method using a
parameter of the correct data type or one that can be promoted to the correct data type. For
example, consider the simple method shown in Figure 4-14.

public static void simpleMethod(double d)
{

System.out.println("Method receives double parameter");
}

Figure 4-14 The simpleMethod() method with a double parameter

C H A P T E R 4 More Object Concepts

194

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you write an application in which you declare doubleValue as a double variable and
intValue as an int variable (as shown in Figure 4-15), either of the two method calls
simpleMethod(doubleValue); or simpleMethod(intValue); results in the output
“Method receives double parameter”. The call that uses the integer works because the
integer is cast as (or promoted to) a double. The output of the program in Figure 4-15
is shown in Figure 4-16.

Note that if the method with the declaration void simpleMethod(double d) did not
exist, but the declaration void simpleMethod(int i) did exist, then the method call
simpleMethod(doubleValue); would fail. Although an int can be promoted to a double,
a double is not automatically reduced to an int. This makes sense if you consider the
potential loss of information when a double value is reduced to an integer.

Suppose that you add an overloaded version of simpleMethod() to the program in
Figure 4-15. This version accepts an integer parameter, as shown in Figure 4-17. When
you properly overload a method, you can call it providing different argument lists, and

public class CallSimpleMethod
{

public static void main(String[] args)
{
double doubleValue = 45.67;
int intValue = 17;
simpleMethod(doubleValue);
simpleMethod(intValue);

}
public static void simpleMethod(double d)
{

System.out.println("Method receives double parameter");
}

}

Either a double or an
int can be sent to a
method that accepts a
double.

Figure 4-15 The CallSimpleMethod application that calls simpleMethod() with a double
and an int

Figure 4-16 Output of the CallSimpleMethod application

Overloading a Method

195

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the appropriate version of the method executes. Now, the output changes when you call
simpleMethod(intValue);. Instead of promoting an integer argument to a double, the
compiler recognizes a more exact match for the method call that uses the integer argument,
so it calls the version of the method that produces the output “Method receives integer
parameter”. Figure 4-18 shows the output.

Figure 4-18 Output of the CallSimpleMethodAgain application

public class CallSimpleMethodAgain
{

public static void main(String[] args)
{
double doubleValue = 45.67;
int intValue = 17;
simpleMethod(doubleValue);
simpleMethod(intValue);

}
public static void simpleMethod(double d)
{

System.out.println("Method receives double parameter");
}
public static void simpleMethod(int d)
{

System.out.println("Method receives integer parameter");
}

}

The call with an int
argument uses the
method that is a better
match when it is
available.

Figure 4-17 The CallSimpleMethodAgain application that calls simpleMethod() with a double
and an int

C H A P T E R 4 More Object Concepts

196

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Overloading a Method

1. When you overload Java methods, you write multiple methods with a shared name.

2. When you overload Java methods, the methods are called using different
arguments.

3. Instead of overloading methods, it is preferable to write methods with unique
identifiers.

. meht ot dessap
eb nact aht sepyt t ne mugr a eht r of t pecxe,l aci t nedi yll anoi t cnuf er at aht sksat

r of e man el banosaer eno esu ot sr e mmar gor pr of t nei nevnoc si ti esuaceb sr eifi t nedi
euqi nu gni su ot el bar ef er p si sdoht e mgni daol r ev O. 3# si t ne met at s esl af ehT

You Do It

Overloading Methods

In this section, you overload methods to display dates. The date-displaying methods
might be used by many different applications in an organization, such as those that
schedule jobs, appointments, and employee reviews. The methods take one, two, or
three integer arguments. If there is one argument, it is the month, and the date
becomes the first day of the given month in the year 2016. If there are two
arguments, they are the month and the day in the year 2016. Three arguments
represent the month, day, and year.

Instead of creating your own class to store dates, you can use the built-in Java class LocalDate
to handle dates. You work with the class later in this chapter. This exercise provides you with some
insight into considerations taken by the creators of Java’s built-in LocalDate class.

1. Open a new file in your text editor.

2. Begin the following DemoOverload class with three integer variables to test the
method and three calls to a displayDate() method:
public class DemoOverload
{

public static void main(String[] args)

(continues)

Overloading a Method

197

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

{
int month = 6, day = 24, year = 2017;
displayDate(month);
displayDate(month, day);
displayDate(month, day, year);

}

3. Create the following displayDate() method that requires one parameter
to represent the month and uses default values for the day and year:
public static void displayDate(int mm)
{

System.out.println("Event date " + mm + "/1/2016");
}

4. Create the following displayDate() method that requires two parameters
to represent the month and day and uses a default value for the year:
public static void displayDate(int mm, int dd)
{

System.out.println("Event date " + mm + "/" + dd + "/2016");
}

5. Create the following displayDate() method that requires three parameters
used as the month, day, and year:
public static void displayDate(int mm, int dd, int yy)
{

System.out.println("Event date " + mm + "/" + dd + "/" + yy);
}

6. Type the closing curly brace for the DemoOverload class.

7. Save the file as DemoOverload.java.

8. Compile the program, correct
any errors, recompile if
necessary, and then execute
the program. Figure 4-19
shows the output. Notice
that whether you call the
displayDate() method
using one, two, or three
arguments, the date is
displayed correctly because
you have successfully
overloaded the displayDate()

method.

(continued)

Figure 4-19 Output of the DemoOverload

application

C H A P T E R 4 More Object Concepts

198

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning About Ambiguity
Overloading methods is useful because you can use a single identifier to execute different
instructions depending on the arguments you send to the method. However, when you
overload methods, you risk creating an ambiguous situation—one in which the compiler
cannot determine which method to use. For example, consider the following overloaded
computeBalance() method declarations:
public static void computeBalance(double deposit)
public static void computeBalance(double withdrawal)

If you declare a double variable named myDeposit and make a method call such as
computeBalance(myDeposit);, you will have created an ambiguous situation. Both methods
are exact matches for your call. You might argue that a call using a variable named myDeposit
“seems” like it should go to the version of the method with the parameter named deposit, but
Java makes no assumptions based on variable names. Each version of computeBalance()
could accept a double, and Java does not presume which one you intended to use.

Sometimes, it is hard to recognize potentially ambiguous situations. For example, consider
the following two method declarations:
public static void calculateInterest(int bal, double rate)
public static void calculateInterest(double bal, int rate)

These calculateInterest() methods have different types in their parameter lists. A call
to calculateInterest() with an int and a double argument (in that order) executes the
first version of the method, and a call to calculateInterest() with a double and an int

argument executes the second version of the method. With each of these calls, the compiler
can find an exact match for the arguments you send. However, if you call calculateInterest()
using two integer arguments, as in calculateInterest(300, 6);, an ambiguous situation
arises because there is no exact match for the method call. Because either of the two integers
in the method call can be promoted to a double, the call matches both versions of the
method. The compiler can’t determine which version of the calculateInterest()

method to use, and the program does not compile.

The two versions of calculateInterest() could coexist if no ambiguous calls were ever
made. An overloaded method is not ambiguous on its own—it only becomes ambiguous if
you create an ambiguous situation. A program containing a potentially ambiguous situation
will run problem-free if you do not make any ambiguous method calls.

It is important to note that you can overload methods correctly by providing different
parameter lists for methods with the same name. Methods with identical names that have
identical parameter lists but different return types are not overloaded—they are illegal.

For example, the following two methods are illegal in the same class:
int aMethod(int x)
void aMethod(int x)

The compiler determines which of several versions of a method to call based on the
arguments in the method call, and does not consider the return type.

Learning About Ambiguity

199

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The compiler determines which version of a method to call by the method’s signature. In Chapter 3, you
learned that a method’s signature is the combination of the method name and the number, types, and order
of parameters.

If the keyword final appears in a method’s parameter list, it is ignored when determining ambiguity. In other
words, two methods with the headers void aMethod(int x) and void aMethod(final int x) are
ambiguous.

Watch the video Overloading Methods.

TWO TRUTHS & A LIE

Learning About Ambiguity

1. When it is part of the same program as void myMethod(int age, String name),
the following method would be ambiguous:

void myMethod(String name, int age)

2. When it is part of the same program as void myMethod(int age, String name),
the following method would be ambiguous:

String myMethod(int zipCode, String address)

3. When it is part of the same program as void myMethod(int age, String name),
the following method would be ambiguous:

void myMethod(int x, String y)

.r edr o esr ever
eht ni sr et e mar ap eht st peccat aht eno hti wsuougi b mat on si gnirtS a yb

dewoll of r et e mar ap tni na st peccat aht doht e mA. 1# si t ne met at s esl af ehT

Creating and Calling Constructors with Parameters
In Chapter 3, you learned that Java automatically provides a constructor when you create
a class. You also learned that you can write your own constructor, and that you often do so
when you want to ensure that fields within classes are initialized to some appropriate default
value. You learned that the automatically provided constructor is a default constructor
(one that does not require arguments), and that you can write a custom default constructor.
However, when you write your own constructors, you can also write versions that receive
parameters. Such parameters are often used to initialize data fields for an object.

C H A P T E R 4 More Object Concepts

200

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, consider the Employee class
with just one data field, shown in Figure 4-20.
Its constructor assigns 999 to the empNum of
each potentially instantiated Employee object.
Anytime an Employee object is created using a
statement such as Employee partTimeWorker =

new Employee();, even if no other data-
assigning methods are ever used, you
ensure that the partTimeWorker Employee,
like all Employee objects, will have an initial
empNum of 999.

Alternatively, you might choose to create
Employee objects with initial empNum values that
differ for each Employee. To accomplish this when the object is instantiated, you can pass an
employee number to the constructor. Figure 4-21 shows an Employee class that contains a
constructor that receives a parameter. With this constructor, an argument is passed using a
statement such as the following:
Employee partTimeWorker = new Employee(881);

When the constructor executes, the integer
within the constructor call is passed to
Employee() as the parameter num, which is
assigned to the empNum field.

When you create an Employee class with
a constructor such as the one shown in Figure 4-21,
every Employee object you create must have
an integer argument in its constructor call. In
other words, with this new version of the class,
the following statement no longer works:
Employee partTimeWorker = new Employee();

After you write a constructor for a class, you no longer receive the automatically
provided default constructor. If a class’s only constructor requires an argument, you
must provide an argument for every object of the class that you create. If you want to
create a constructor with parameters and provide a default constructor, you can
overload the constructors.

Overloading Constructors
As with any other method, you can overload constructors. Overloading constructors
provides you with a way to create objects with different initializing arguments, or none, as
needed. For example, in addition to using the provided constructor shown in Figure 4-21,
you can create a second constructor for the Employee class; Figure 4-22 shows an Employee

public class Employee
{

private int empNum;
Employee()
{

empNum = 999;
}

}

Figure 4-20 The Employee class with
a default constructor that initializes the
empNum field

public class Employee
{

private int empNum;
Employee(int num)
{

empNum = num;
}

}

Figure 4-21 The Employee class with a
constructor that accepts a value

Creating and Calling Constructors with Parameters

201

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

class that contains two constructors. When you
use this class to create an Employee object, you
have the option of creating the object either
with or without an initial empNum value. When you
create an Employee object with the statement
Employee aWorker = new Employee();, the
constructor with no parameters is called, and
the Employee object receives an initial empNum
value of 999. When you create an Employee

object with Employee anotherWorker = new
Employee(7677);, the constructor version that
requires an integer is used, and the
anotherWorker Employee receives an initial
empNum of 7677.

You can use constructor arguments to initialize
field values, but you can also use them for any other purpose. For example, you could use the
presence or absence of an argument simply to determine which of two possible constructors
to call, yet not make use of the argument within the constructor. As long as the constructor
parameter lists differ, the constructors are not ambiguous.

Watch the video Overloading Constructors.

TWO TRUTHS & A LIE

Creating and Calling Constructors with Parameters

1. A default constructor is one that is automatically created.

2. When you write a constructor, it can be written to receive parameters or not.

3. If a class’s only constructor requires an argument, you must provide an argument
for every object of the class that you create.

. st ne mugr a on ekat ot eti r wuoy t aht eno si os t ub,r ot curt snoctl uaf ed a si noi sr ev
n wor uoy eti r wt on od uoy neh w det aer c yll aci t a mot ua si t aht r ot curt snoc ehT

. st ne mugr a on sekat t aht eno si r ot curt snoctl uaf ed A. 1# si t ne met at s esl af ehT

public class Employee
{

private int empNum;
Employee(int num)
{

empNum = num;
}
Employee()
{

empNum = 999;
}

}

Figure 4-22 The Employee class that
contains two constructors

C H A P T E R 4 More Object Concepts

202

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Creating Overloaded Constructors

In this section, you create a class with overloaded constructors and demonstrate how
they work.

1. Open a new file in your text editor, and start the CarInsurancePolicy class as
follows. The class contains three fields that hold a policy number, the number
of payments the policyholder will make annually, and the policyholder’s city of
residence.
public class CarInsurancePolicy
{

private int policyNumber;
private int numPayments;
private String residentCity;

2. Create a constructor that requires parameters for all three data fields.
public CarInsurancePolicy(int num, int payments, String city)
{

policyNumber = num;
numPayments = payments;
residentCity = city;

}

3. Suppose the agency that sells car insurance policies is in the city of Mayfield.
Create a two-parameter constructor that requires only a policy number and
the number of payments. This constructor assigns Mayfield to residentCity.
public CarInsurancePolicy(int num, int payments)
{

policyNumber = num;
numPayments = payments;
residentCity = "Mayfield";

}

4. Add a third constructor that requires only a policy number parameter. This
constructor uses the default values of two annual payments and Mayfield as
the resident city. (Later in this chapter, you will learn how to eliminate the
duplicated assignments in these constructors.)
public CarInsurancePolicy(int num)
{

policyNumber = num;
numPayments = 2;
residentCity = "Mayfield";

}

(continues)

Creating and Calling Constructors with Parameters

203

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Add a display() method that outputs all the insurance policy data:
public void display()
{

System.out.println("Policy #" + policyNumber + ". " +
numPayments + " payments annually. Driver resides in " +
residentCity + ".");

}

6. Add a closing curly brace for the class. Save the file as
CarInsurancePolicy.java.

7. Open a new text file to create a short application that demonstrates the
constructors at work. The application declares three CarInsurancePolicy

objects using a different constructor version each time. Type the following code:
public class CreatePolicies
{

public static void main(String[] args)
{

CarInsurancePolicy first = new CarInsurancePolicy(123);
CarInsurancePolicy second = new CarInsurancePolicy(456, 4);
CarInsurancePolicy third = new CarInsurancePolicy

(789, 12, "Newcastle");

8. Display each object, and add closing curly braces for the method and the class:
first.display();
second.display();
third.display();

}
}

9. Save the file as CreatePolicies.java, and then compile and test the program.
The output appears in Figure 4-23.

(continued)

Figure 4-23 Output of the CreatePolicies program

(continues)

C H A P T E R 4 More Object Concepts

204

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Add a fourth declaration to the CreatePolicies class that attempts to create
a CarInsurancePolicy object using a default constructor:
CarInsurancePolicy fourth = new CarInsurancePolicy();

11. Save and compile the revised CreatePolicies program. The class does not
compile because the CarInsurancePolicy class does not contain a default
constructor. Change the newly added declaration to a comment, compile the
class again, and observe that the class now compiles correctly.

Examining Prewritten Overloaded Methods

In this section, you examine some built-in classes and recognize their correctly
overloaded methods.

1. Using a Web browser, go to the Java Web site at www.oracle.com/
technetwork/java/index.html, and select Java APIs and Java SE 8.

2. Using the alphabetical list of classes, find the PrintStream class, and select it.

3. Examine the list of constructors for the class, and notice that each version
has a unique parameter list.

4. Examine the list of methods named print() and println(). Notice that each
overloaded version has a unique parameter list.

5. Using the alphabetical list of classes, find the JOptionPane class, and select it.

6. Examine the list of constructors for the class, and notice that each version
has a unique parameter list.

7. Examine the list of methods named showConfirmDialog() and
showInputDialog(). Notice that each overloaded version has a unique
parameter list.

Learning About the this Reference
When you start creating classes, they can become large very quickly. Besides data fields, each
class can have many methods, including several overloaded versions. On paper, a single class
might require several pages of coded statements.

When you instantiate an object from a class, memory is reserved for each instance field in the
class. For example, if a class contains 20 data fields, when you create one object from that
class, enough memory is reserved to hold the 20 field values for that object. When you create
200 objects of the same class, the computer reserves enough memory for 4,000 data fields—20
fields for each of the 200 objects. In many applications, the computer memory requirements
can become substantial. Fortunately, objects can share some variables and methods.

(continued)

Learning About the this Reference

205

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Chapter 3, you learned that if a field or method name is preceded by the keyword
static when it is declared, only one field or method exists, no matter how many objects
are instantiated. In other words, if a field is static, then only one copy of the field exists,
and all objects created have the same value for that field. However, you frequently want
each instantiation of a class to have its own copy of each data field so that each object can
hold unique values. For example, if an Employee class contains fields for employee
number, name, and salary, every individual Employee object needs a unique number,
name, and salary value. Fields that hold unique values for each object are not defined
as static.

When you create a method that uses a nonstatic field value for a class—for example, to get or
set the field value—the method must be nonstatic. That means it performs in a different way
for each object. However, it would take an enormous amount of memory to store a separate
copy of each method for every object created from a class, and it would be wasteful, especially
because each method’s code would be identical. Luckily, in Java just one copy of each
nonstatic method in a class is stored, and all instantiated objects can use that copy. The secret
behind a single method copy’s ability to work with multiple object fields is that each nonstatic
method in a class automatically receives the memory address of the object it references.

When you use a nonstatic method, you use the object name, a dot, and the method name—
for example, aWorker.getEmpNum() or anotherWorker.getEmpNum(). When you execute
the getEmpNum() method, you are running the only copy of the method. However, within
the getEmpNum() method, when you access the empNum field, you access a different field
depending on the object. The compiler accesses the correct object’s field because every time you
call a nonstatic method, a reference—an object’s memory address—is implicitly understood. The
reference to an object that is passed to any object’s nonstatic method is called the this reference;
this is a reserved word in Java. Only nonstatic, instance methods have a this reference. For
example, the two getEmpNum() methods for the Employee class shown in Figure 4-24 perform
identically. The first method simply uses the this reference without your being aware of it; the
second method uses the this reference explicitly. Both methods return the empNum of the object
used to call the method.

public int getEmpNum()
{

return empNum;
}

public int getEmpNum()
{

return this.empNum;
}

The this reference is sent into this nonstatic
method as a parameter automatically; you do
not (and cannot) write code for it. You do not
need to use this with empNum.

However, you can explicitly use the this
reference with empNum. The two methods
in this figure operate identically.

Figure 4-24 Two versions of the getEmpNum() method, with and without an explicit this reference

C H A P T E R 4 More Object Concepts

206

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Frequently, you neither want nor need to refer to the this reference within the instance
methods that you write, but the this reference is always there, working behind the scenes, so
that the data field for the correct object can be accessed.

On a few occasions, you must use the this reference to make your classes work correctly; one
example is shown in the Student class in Figure 4-25. Within the constructor for this class,
the parameter names stuNum and gpa are identical to the class field names. Within the
constructor, stuNum and gpa refer to the locally declared names, not the class field names.
The statement stuNum = stuNum accomplishes nothing—it assigns the local variable value to
itself. The client application in Figure 4-26 attempts to create a Student object with an ID
number of 111 and a grade point average of 3.5, but Figure 4-27 shows the incorrect output.
The values are not assigned to the fields; instead, they are just zeroes.

public class TestStudent
{

public static void main(String[] args)
{

Student aPsychMajor = new Student(111, 3.5);
aPsychMajor.showStudent();

}
}

Figure 4-26 The TestStudent class that instantiates a Student object

public class Student
{

private int stuNum;
private double gpa;
public Student (int stuNum, double gpa)
{
stuNum = stuNum;
gpa = gpa;

}
public void showStudent()
{
System.out.println("Student #" + stuNum +

" gpa is " + gpa);
}

}

Don’t Do It
All four variables used in these
two statements are the local versions declared
in the method’s parameter list. The fields are
never accessed because the local variables
shadow the fields. These two assignment
statements accomplish nothing.

Figure 4-25 A Student class whose constructor does not work

Learning About the this Reference

207

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

One way to fix the problem with the Student class is to use different identifiers for the
class’s fields and the parameters to the constructor. However, sometimes the identifiers
you have chosen are the best and simplest identifiers for a value. If you choose to use the
same identifiers, you can use the this reference explicitly to identify the fields. Figure 4-28
shows a modified Student class. The only difference between this class and the one in
Figure 4-25 is the explicit use of the this reference within the constructor. When the this
reference is used with a field name in a method, the reference is to the class’s data field
instead of to the local variable declared within the method. When the TestStudent

application uses this new version of the Student class, the output appears as expected,
as shown in Figure 4-29.

Figure 4-27 Output of the TestStudent application using the incorrect Student class in Figure 4-25

public class Student

These are
the Student
fields.

These parameters are
locally declared in the
Student constructor.

These identifiers, without this, refer to the
locally declared variables and not the fields.

Because these
identifiers are preceded
by this, they refer
to the fields in the
Student class.

The showStudent() method
has no locally declared variables,
so these identifiers refer to the
Student fields.

{

{

}

}
}

{

private int stuNum;

private double gpa;

public Student(int stuNum, double gpa)

this.stuNum = stuNum;
this.gpa = gpa;

public void showStudent()

System.out.printIn("Student #" +
stuNum + " gpa is " + gpa);

Figure 4-28 The Student class using the explicit this reference within the constructor

C H A P T E R 4 More Object Concepts

208

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the this Reference to Make Overloaded Constructors
More Efficient
Suppose you create a Student class with data fields for a student number and a grade point
average. Further suppose you want four overloaded constructors as follows:

A constructor that accepts an int and a double and assigns them the student number and
grade point average, respectively

A constructor that accepts a double and assigns it to the grade point average, but
initializes every student number to 999

A constructor that accepts an int and assigns it to the student number, but initializes
every grade point average to 0.0

A default constructor that assigns 999 to every student number and 0.0 to every grade
point average

Figure 4-30 shows the class. Although this class works, and allows Students to be constructed
in four different ways, there is a lot of repetition within the constructors.

Figure 4-29 Output of the TestStudent application using the new version of the Student class

Learning About the this Reference

209

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can reduce the amount of repeated code in Figure 4-30 and make the code less error-
prone by calling one constructor version from the others. To do so, you use the this

reference from one constructor version to call another version. Figure 4-31 shows how the
Student class can be rewritten.

Each constructor contains
similar statements.

public class Student

private int stuNum;
private double gpa;

stuNum = num;

stuNum = 999;

stuNum = num;

stuNum = 999;

gpa = avg;

gpa = avg;

gpa = 0.0;

gpa = 0.0;

}

}

}

}
}

Student(int num, double avg)

Student(double avg)

Student(int num)

Student()

{

{

{

{

{

Figure 4-30 Student class with four constructors

C H A P T E R 4 More Object Concepts

210

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

By writing each constructor to call one master constructor, you save coding and reduce the
chance for errors. For example, if code is added later to ensure that all student ID numbers
are three digits, or that no grade point average is greater than 4.0, the new code will be written
only in the two-parameter version of the constructor, and all the other versions will use it.
(Testing a variable to ensure it falls within the proper range of values requires decision
making. The next chapter covers this topic.)

Although you can use the this reference with field names in any method within a class, you
cannot call this() from other methods in a class; you can only call it from constructors.
Additionally, if you call this() from a constructor, it must be the first statement within the
constructor.

Watch the video The this Reference.

public class Student

this(999, avg);

this(num, 0.0);

this(999, 0.0);

{

{

{

{

{

private int stuNum;
private double gpa;
Student(int num, double avg)

stuNum = num;
gpa = avg;

Student(double avg)

Student(int num)

Student()

}

}

}
}

}

Each of these calls to
this() calls the two-
parameter version of the
constructor.

Figure 4-31 The Student class using this in three of four constructors

Learning About the this Reference

211

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Learning About the this Reference

1. Usually, you want each instantiation of a class to have its own nonstatic data fields,
but each object does not need its own copy of most methods.

2. When you use a nonstatic method, the compiler accesses the correct object’s field
because you implicitly pass an object reference to the method.

3. The this reference is supplied automatically in classes; you cannot use it
explicitly.

. sel bai r avl acol dna sdl eif r of sr eifi t nedi neewt eb st cil f noc er a er eht neh w
, el p maxe r of —ti esu nac uoy t ub, eti r wuoy sdoht e meht ni hti w ecner ef er siht eht

ot r ef er ot deen r ont na wr ehti en uoy , yll ausU. 3# si t ne met at s esl af ehT

You Do It

Using the this Reference to Make Constructors More Efficient

In this section, you modify the CarInsurancePolicy class so that its constructors are
more efficient.

1. Open the CarInsurancePolicy.java file. Change the class name
to CarInsurancePolicy2, and immediately save the file as
CarInsurancePolicy2.java.

2. Change the name of the three-parameter constructor from
CarInsurancePolicy() to CarInsurancePolicy2().

3. Replace the constructor that accepts a single parameter for the policy
number with the following constructor. The name of the constructor is
changed from the earlier version, and this one passes the policy number
and two constant values to the three-parameter constructor:
public CarInsurancePolicy2(int num)
{

this(num, 2, "Mayfield");
}

(continues)

C H A P T E R 4 More Object Concepts

212

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Replace the constructor that accepts two parameters (for the policy number
and number of payments) with the following constructor. This constructor has
a new name and passes the two parameters and one constant value to the
three-parameter constructor:
public CarInsurancePolicy2(int num, int payments)
{

this(num, payments, "Mayfield");
}

5. Save the file, and compile it.

6. Open the CreatePolicies.java file that demonstrates the use of the different
constructor versions. Change the class name to CreatePolicies2, and save
the file as CreatePolicies2.java.

7. Add the digit 2 in six places—three times to change the class name
CarInsurancePolicy to CarInsurancePolicy2 when the name is used as
a data type, and in the three constructor calls.

8. Save the file, and then compile and execute it. The output is identical to that
shown in Figure 4-23 in the previous “You Do It” section, but the repetitious
constructor code has been eliminated.

9. You can further reduce the code in the CarInsurancePolicy class by chan-
ging the single-parameter constructor to the following, which removes the
constant "Mayfield" from the constructor call:
public CarInsurancePolicy2(int num)
{

this(num, 2);
}

Now, the single-parameter version calls the two-parameter version and
passes the policy number and the constant 2. In turn, the two-parameter
version calls the three-parameter version, adding "Mayfield" as the city.

10. Save this version of the CarInsurancePolicy2 class, and compile it. Then recom-
pile the CreatePolicies2.java file, and execute it. The output remains the same.

Using static Fields
In Chapter 3, you learned that methods you create to use without objects are static. For
example, the main() method in a program and the methods that main() calls without an
object reference are static. You also learned that most methods you create within a class from
which objects will be instantiated are nonstatic. Static methods do not have a this reference
because they have no object associated with them; therefore, they are called class methods.

(continued)

Using static Fields

213

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can also create class variables, which are variables that are shared by every instantiation
of a class. Whereas instance variables in a class exist separately for every object you create,
there is only one copy of each static class variable per class. For example, consider the
BaseballPlayer class in Figure 4-32. The BaseballPlayer class contains a shaded static

field named count, and two nonstatic fields named number and battingAverage. The
BaseballPlayer constructor sets values for number and battingAverage and increases the
count by one. In other words, every time a BaseballPlayer object is constructed, it contains
individual values for number and battingAverage, and the count field contains a count of the
number of existing objects and is shared by all BaseballPlayer objects.

public class BaseballPlayer
{

private static int count = 0;
private int number;
private double battingAverage;
public BaseballPlayer(int id, double avg)
{

number = id;
battingAverage = avg;
count = count + 1;

}
public void showPlayer()
{

System.out.println("Player #" + number +
" batting average is " + battingAverage +
" There are " + count + " players");

}
}

Figure 4-32 The BaseballPlayer class

The showPlayer() method in the BaseballPlayer class displays a BaseballPlayer’s
number, batting average, and a count of all current players. The showPlayer() method is not
static—it accesses an individual object’s data. Methods declared as static cannot access
instance variables, but nonstatic instance methods like showPlayer() can access both static

and instance variables.

The TestPlayer class in Figure 4-33 is an application that declares two BaseballPlayer

objects, displays them, and then creates a third BaseballPlayer object and displays it. When
you examine the output in Figure 4-34, you can see that by the time the first two objects are
declared, the count value that they share is 2. Whether count is accessed using the aCatcher

object or the aShortstop object, the count is the same. After the third object is declared, its
count value is 3, as is the value of count associated with both of the previously declared objects.
In other words, the count variable is incremented within the constructor, so its value changes
with each new instantiation, and because the field is static, each object has access to the
single memory location that holds the count value. No matter how many BaseballPlayer

objects are eventually instantiated, each refers to the single count field.

C H A P T E R 4 More Object Concepts

214

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class TestPlayer
{

public static void main(String[] args)
{

BaseballPlayer aCatcher = new BaseballPlayer(12, .218);
BaseballPlayer aShortstop = new BaseballPlayer(31, .385);
aCatcher.showPlayer();
aShortstop.showPlayer();
BaseballPlayer anOutfielder = new BaseballPlayer(44, .505);
anOutfielder.showPlayer();
aCatcher.showPlayer();

}
}

Figure 4-33 The TestPlayer class

Using Constant Fields
In Chapter 2, you learned to create named constants by using the keyword final. Sometimes
a data field in a class should be constant. For example, you might want to store a school ID
value that is the same for every Student object you create, so you declare it to be static. In
addition, if you want the value for the school ID to be fixed so that all Student objects use the
same ID value—for example, when applying to scholarship-granting organizations or when
registering for standardized tests—you might want to make the school ID unalterable. As
with ordinary variables, you use the keyword final with a field to make its value unalterable
after construction. For example, the class in Figure 4-35 contains the symbolic constant
SCHOOL_ID. Because it is static, all objects share a single memory location for the field, and
because it is final, it cannot change during program execution.

Figure 4-34 Output of the TestPlayer application

Using static Fields

215

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class Student
{

private static final int SCHOOL_ID = 12345;
private int stuNum;
private double gpa;
public Student(int stuNum, double gpa)
{

this.stuNum = stuNum;
this.gpa = gpa;

}
public void showStudent()
{

System.out.println("Student #" + stuNum +
" gpa is " + gpa);

}
}

Figure 4-35 The Student class containing a symbolic constant

A nonstatic final field’s value can be assigned a value in a constructor. For example, you
can set it using a constant, or you can set it using a parameter passed into the constructor.
However, a static final field’s value must be set at declaration, as in the Student class
example in Figure 4-35. This makes sense because only one static field is stored for every
object instantiated, so it would be redundant to continually reset the field’s value during
object construction.

You can use the keyword final with methods or classes as well as with fields. When used in this manner,
final indicates limitations placed on inheritance. You will learn more about inheritance in the chapters
“Introduction to Inheritance” and “Advanced Inheritance Concepts.”

Fields that are final can also be initialized in a static initialization block. For more details about this
technique, see the Java Web site.

Fields declared to be static are not always final. Conversely, final fields are not always
static. In summary:

If you want to create a field that all instantiations of the class can access, but the field value
can change, then it is static but not final. For example, in the last section you saw a
nonfinal static field in the BaseballPlayer class that held a changing count of all
instantiated objects.

If you want each object created from a class to contain its own final value, you
would declare the field to be final but not static. For example, you might want
each BaseballPlayer object to have its own, nonchanging date of joining the team.

If you want all objects to share a single nonchanging value, then the field is static

and final.

C H A P T E R 4 More Object Concepts

216

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using static Fields

1. Methods declared as static receive a this reference that contains a reference
to the object associated with them.

2. Methods declared as static are called class methods.

3. A final static field’s value is shared by every object of a class.

. meht hti w det ai cossat cej bo on evah yeht
esuaceb ecner ef er siht a evaht on od sdoht e mcit at S. 1# si t ne met at s esl af ehT

You Do It

Using Static and Nonstatic final Fields

In this section, you create a class for the Riverdale Kennel Club to demonstrate the use
of static and nonstatic final fields. The club enters its dogs in an annual triathlon event
in which each dog receives three scores in agility, conformation, and obedience.

1. Open a new file in your text editor, and enter the first few lines for a
DogTriathlonParticipant class. The class contains a final field that holds
the number of events in which the dog participated. Once a final field is set,
it should never change. The field is not static because it is different for each
dog. The class also contains a static field that holds the total cumulative
score for all the participating dogs. The field is not final because its value
increases as each dog participates in the triathlon, but it is static because at
any moment in time, it is the same for all participants.
public class DogTriathlonParticipant
{

private final int NUM_EVENTS;
private static int totalCumulativeScore = 0;

2. Add six private fields that hold the participating dog’s name, the dog’s score in
three events, the total score, and the average score:
private String name;
private int obedienceScore;
private int conformationScore;
private int agilityScore;
private int total;
private double avg;

(continues)

Using static Fields

217

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. The constructor for the class requires five parameters—the dog’s name, the
number of events in which the dog participated, and the dog’s scores in the
three events. (After you read the chapter on decision making, you will be able
to ensure that the number of nonzero scores entered matches the number of
events, but for now no such checks will be made.) The constructor assigns
each value to the appropriate field.
public DogTriathlonParticipant(String name,

int numEvents, int score1, int score2, int score3)
{

this.name = name;
NUM_EVENTS = numEvents;
obedienceScore = score1;
conformationScore = score2;
agilityScore = score3;

4. After the assignments, the constructor calculates the total score for the
participant and the participant’s average score. Notice the result of the
division is cast to a double so that any fractional part of the calculated
average is not lost. Also, add the participant’s total score to the cumulative
score for all participants. Recall that this field is static because it should be
the same for all participants at any point in time. After these statements, add
a closing curly brace for the constructor.

total = obedienceScore +
conformationScore + agilityScore;

avg = (double) total / NUM_EVENTS;
totalCumulativeScore = totalCumulativeScore +

total;
}

5. Start a method that displays the data for each triathlon participant.
public void display()
{

System.out.println(name + " participated in " +
NUM_EVENTS +
" events and has an average score of " + avg);

System.out.println(" " + name +
" has a total score of " + total +
" bringing the total cumulative score to " +
totalCumulativeScore);

}

6. Add a closing curly brace for the class. Then, save the file as
DogTriathlonParticipant.java. Compile the class, and correct any errors.

(continued)

(continues)

C H A P T E R 4 More Object Concepts

218

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Open a new file in your text editor, and then enter the header and
opening and closing curly braces for a class you can use to test the
DogTriathlonParticipant class. Also include a main() method header
and its opening and closing braces.
public class TestDogs
{

public static void main(String[] args)
{
}

}

8. Between the braces of the main() method, declare a DogTriathlonParticipant

object. Provide values for the participant’s name, number of events, and three
scores, and then display the object.
DogTriathlonParticipant dog1 =

new DogTriathlonParticipant("Bowser", 2, 85, 89, 0);
dog1.display();

9. Create and display two more objects within the main() method.
DogTriathlonParticipant dog2 =

new DogTriathlonParticipant("Rush", 3, 78, 72, 80);
dog2.display();
DogTriathlonParticipant dog3 =

new DogTriathlonParticipant("Ginger", 3, 90, 86, 72);
dog3.display();

10. Save the file as TestDogs.java. Compile and execute the program. The
output looks like Figure 4-36. Visually confirm that each total, average,
and cumulative total is correct.

(continued)

Figure 4-36 Output of the TestDogs program

(continues)

Using static Fields

219

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11. Experiment with the DogTriathlonParticipant class and its test class.
For example, try the following:

Add a new statement at the end of the TestDogs class that again displays
the data for any one of the participants. Note that as long as no new
objects are created, the cumulative score for all participants remains the
same no matter which participant uses it.

Try to assign a value to the NUM_EVENTS constant from the display()

method, and then compile the class and read the error message gener-
ated.

Remove the keyword static from the definition of totalCumulativeScore
in the DogTriathlonParticipant class, and then recompile the classes
and run the program. Notice in the output that the nonstatic cumulative
score no longer reflects the cumulative score for all objects, but only the
score for the current object using the display() method.

Use 0 as the number of events for an object. When the participant’s
average is calculated, the result is not numeric, and NaN is displayed.
NaN is an acronym for Not a Number. In the next chapter, you will learn to
make decisions, and then you can prevent the NaN output.

Using Automatically Imported, Prewritten
Constants and Methods
If you write Java programs for an organization, you will most likely create dozens or hundreds
of custom-made classes eventually. For example, you might create an Employee class with
fields appropriate for describing employees in your organization, and an Inventory class
with fields appropriate for whatever type of item you sell or manufacture. However, many
classes do not require customization for specific businesses. Instead, they are commonly used
by a wide variety of programmers. Rather than have each Java programmer “reinvent the
wheel,” the creators of Java have produced hundreds of classes for you to use in your
programs.

You have already used several of these prewritten classes; for example, you have used the
System and JOptionPane classes to produce output. Each of these classes is stored in a
package, or a library of classes, which is simply a folder that provides a convenient grouping
for classes. Java has two categories of packages:

The java.lang package is implicitly imported into every program you write. The classes
it contains are fundamental classes that provide the basis of the Java programming
language. The System class, which you have used to access print() and println(), is

(continued)

C H A P T E R 4 More Object Concepts

220

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

an automatically imported class in the java.lang package. Others include the Object

class, which you will learn about in Chapter 11; wrapper classes such as Integer, Float,
and Double, which you will learn about in Chapter 7; and the Math class, which is
discussed in the next section. Some references list a few other Java classes as also being
“fundamental,” but the java.lang package is the only automatically imported, named
package.

All other Java packages are available only if you explicitly name them within your
program. These packages contain the optional classes. For example, when you use
JOptionPane, you must import the javax.swing package into your program, and when
you use the LocalDate class, you must import the java.time package, as you learn later in
this chapter.

The Math Class
The class java.lang.Math contains constants and methods that you can use to perform
common mathematical functions. All of the constants and methods in the Math class are
static—they are class variables and class methods. In other words, you do not create any
Math objects when you use the class.

For example, PI is a commonly used Math class constant. In geometry, pi is an approximation
of a circle’s radius based on the ratio of the circumference of the circle to its diameter. Within
the Math class, the declaration for PI is as follows:
public final static double PI = 3.14159265358979323846;

Notice that PI is:

public, so any program can access it directly

final, so it cannot be changed

static, so only one copy exists and you can access it without declaring a Math object

double, so it holds a floating-point value

You can use the value of PI within any program you write by referencing the full package path
in which PI is defined; for example, you can calculate the area of a circle using the following
statement:
areaOfCircle = java.lang.Math.PI * radius * radius;

However, the java.lang package is imported automatically into your programs, so if you
simply reference Math.PI, Java recognizes this code as a shortcut to the full package path.
Therefore, the preferred (and simpler) statement is the following:
areaOfCircle = Math.PI * radius * radius;

In addition to constants, many useful methods are available within the Math class.
For example, the Math.max() method returns the larger of two values, and the method
Math.abs() returns the absolute value of a number. Table 4-1 lists some common Math

class methods.

Using Automatically Imported, Prewritten Constants and Methods

221

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Because all constants and methods in the Math class are classwide (that is, static), there is no
need to create an instance of the Math class. You cannot instantiate objects of type Math

because the constructor for the Math class is private, and your programs cannot access the
constructor.

Unless you are a mathematician, you won’t use many of these Math class methods, and it is unwise to do so
unless you understand their purposes. For example, because the square root of a negative number is
undefined, if you display the result after the method call imaginaryNumber = Math.sqrt(-12);,
you see NaN.

Method Value that the Method Returns

abs(x) Absolute value of x

acos(x) Arc cosine of x

asin(x) Arc sine of x

atan(x) Arc tangent of x

atan2(x, y) Theta component of the polar coordinate (r, theta) that corresponds to the
Cartesian coordinate x, y

ceil(x) Smallest integral value not less than x (ceiling)

cos(x) Cosine of x

exp(x) Exponent, where x is the base of the natural logarithms

floor(x) Largest integral value not greater than x

log(x) Natural logarithm of x

max(x, y) Larger of x and y

min(x, y) Smaller of x and y

pow(x, y) x raised to the y power

random() Random double number between 0.0 and 1.0

rint(x) Closest integer to x (x is a double, and the return value is expressed as a
double)

round(x) Closest integer to x (where x is a float or double, and the return value is
an int or long)

sin(x) Sine of x

sqrt(x) Square root of x

tan(x) Tangent of x

Table 4-1 Common Math class methods

C H A P T E R 4 More Object Concepts

222

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Importing Classes that Are Not Imported Automatically
Java contains hundreds of classes, only a few of which—those in the java.lang package—are
included automatically in the programs you write. To use any of the other prewritten classes,
you must use one of three methods:

Use the entire path with the class name.

Import the class.

Import the package that contains the class you are using.

For example, in its java.time package, Java includes several classes that are useful when
working with dates and time. One of the classes, LocalDate, holds data about a date,
including a month, day, and year, and contains methods that allow you to easily work with
dates. You can declare a LocalDate reference by using the full class path, as in the following:
java.time.LocalDate myAnniversary;

The java.time package is new in Java 8. Several other classes such as Calendar and
GregorianCalendar were used for working with time in earlier Java versions. The classes
defined in java.time base their calendar system on the ISO calendar, which is an international
standard for expressing dates and times.

However, you probably prefer to use a shorter statement. You have seen examples in this
book in which the Scanner and JOptionPane classes were imported using the following
statements:
import java.util.Scanner;
import javax.swing.JOptionPane;

These import statements allow you to create Scanner and JOptionPane references without
typing the complete paths.

Similarly, you can import the LocalDate class using the following statement:
import java.time.LocalDate;

Then you can declare a LocalDate reference with a shortened statement such as the
following:
LocalDate myAnniversary;

An alternative to importing a class is to import an entire package of classes. You can use
the asterisk (*) as a wildcard symbol, which indicates that it can be replaced by any set of
characters. In a Java import statement, you use a wildcard symbol to represent all the classes
in a package. Therefore, the following statement imports the LocalDate class and any other
java.time classes as well:
import java.time.*;

The import statement does not move the entire imported class or package into your program,
as its name implies. Rather, it simply notifies the program that you will use the data and
method names that are part of the imported class or package.

Using Automatically Imported, Prewritten Constants and Methods

223

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

There is no performance disadvantage to importing an entire package instead of just the
classes you need, and you will commonly see the wildcard method in professionally written
Java programs. However, you have the alternative of importing each class you need
individually. Importing all of a package’s classes at once saves typing, but importing each
class by name, without wildcards, can be a form of documentation, specifically to show
which parts of the package are being used. Additionally, if two or more packages contain
classes with the same identifiers, then using the wildcard can result in conflicts.

You cannot use the import statement wildcard exactly like a DOS or UNIX wildcard because
you cannot import all the Java classes with import java.*;. The Java wildcard works only
with specific packages such as import java.util.*; or import java.time.*;. Also, note that
the asterisk in an import statement imports all of the classes in a package, but not other
packages that are within the imported package.

Your own classes are included in applications without import statements because of your classpath
settings. See Appendix A for more information on classpath.

Java also uses the question mark character (?) as a wildcard when instantiating generic data types. You will
learn about this topic as you continue to study Java.

Using the LocalDate Class
Several ways exist to create a LocalDate object. For example, you can create two LocalDate

objects with the current date and May 29, 2018, using the following statements:
LocalDate today = LocalDate.now();
LocalDate graduationDate = LocalDate.of(2018, 5, 29);

The LocalDate class is so named to distinguish it from other Java classes that include time zone
information in their dates—in other words, dates that are not “local.”

These statements use the static methods now() and of(), respectively. You can tell the
methods are static because they are used with the class name and without an object. The now()
method accepts no arguments, and the of() method accepts three integers that represent a
year, month, and day. You can tell from these two statements that both the now() and of()

methods have a return type of LocalDate because their returned values are assigned to
LocalDate objects.

Unlike the other classes you have seen, you do not use the new operator and call a constructor
when creating LocalDate objects; instead you use of() or now(). The class’s constructors are
not usable because they are not public.

A LocalDate object can be displayed as a String with dashes separating the year, month, and
day. For example, Figure 4-37 shows a program that creates two LocalDate objects on
October 15, 2015, and then displays them. Figure 4-38 shows the output.

C H A P T E R 4 More Object Concepts

224

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.time.*;
public class LocalDateDemo
{

public static void main(String[] args)
{

LocalDate today = LocalDate.now();
LocalDate graduationDate = LocalDate.of(2018, 5, 29);
System.out.println("Today is " + today);
System.out.println("Graduation is " + graduationDate);

}
}

Figure 4-37 The LocalDateDemo application

Specific data field values can be retrieved from a LocalDate object by using the getYear(),
getMonthValue(), and getDayOfMonth() methods that each return an integer. For example,
assuming that graduationDate has been created with arguments 2018, 5, and 29, as in the
program in Figure 4-37, the following statement produces the output “Graduation will be on
day 29 in month 5”:
System.out.println("Graduation will be on day " +

graduationDate.getDayOfMonth() + " in month " +
graduationDay.getMonthValue());

Other useful LocalDate methods include getMonth() and getDayOfWeek(). Each of these
methods returns an enumeration, which is a data type that consists of a list of values. You will
learn to create your own enumerations in Chapter 9, but for now, you can use Java’s Month

and DayOfWeek enumerations returned by these methods. The enumerations are constants
with names such as JANUARY, FEBRUARY, and MARCH and SUNDAY, MONDAY, and TUESDAY. For
example, assuming that graduationDate has been set as in Figure 4-37, the following
statement displays “Graduation is on TUESDAY”.
System.out.println("Graduation is on " +
graduationDate.getDayOfWeek());

You might choose to create a LocalDate object using one of the Month enumerations, as in
the following declaration:
LocalDate annualMeeting = LocalDate.of(2017, Month.OCTOBER, 1);

Figure 4-38 Execution of the LocalDateDemo application

Using Automatically Imported, Prewritten Constants and Methods

225

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Another set of methods adds and subtracts time from an existing date. Some of the most useful
method names are plusDays(), plusWeeks(), plusMonths(), plusYears(), minusDays(),
minusWeeks(), minusMonths(), and minusYears(). Each of these methods accepts a long
argument; of course, you can pass any of the methods an int to promote it to a long. For example,
Figure 4-39 shows an application that prompts a user for a furniture order date and displays details
about the delivery date, which is two weeks later. Figure 4-40 shows a typical execution.

import java.time.*;
import java.util.Scanner;
public class DeliveryDate
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
LocalDate orderDate;
int mo;
int day;
int year;
final int WEEKS_FOR_DELIVERY = 2;
System.out.print("Enter order month ");
mo = input.nextInt();
System.out.print("Enter order day ");
day = input.nextInt();
System.out.print("Enter order year ");
year = input.nextInt();
orderDate = LocalDate.of(year, mo, day);
System.out.println("Order date is " + orderDate);
System.out.println("Delivery date is " +

orderDate.plusWeeks(WEEKS_FOR_DELIVERY));
}

}

Figure 4-39 The DeliveryDate application

Figure 4-40 Typical execution of the DeliveryDate application

C H A P T E R 4 More Object Concepts

226

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notice in Figure 4-40 that the two-week delivery date is displayed correctly, even though
it falls both in the next month and the next year. Without the built-in methods of the
LocalDate class, this output would require some fairly complicated calculations and
decisions, but because the creators of Java have provided the class and its methods for you,
your task is greatly simplified. Many programmers need the methods in LocalDate,
including those who manage personnel, inventory, and billing systems and programmers
who write games that keep track of player records. Their jobs are easier because Java’s creators
implemented so many useful LocalDate methods. Additionally, when programmers advance
to writing different types of applications or change employers, they do not have to learn
how to use obscure date-handling methods that might have been written by previous
programmers. Once programmers have learned about LocalDate’s built-in methods and
constants, they know how to work with dates in many situations.

TWO TRUTHS & A LIE

Using Automatically Imported, Prewritten Constants and Methods

1. The creators of Java have produced hundreds of classes for you to use in your
programs.

2. Java packages are available only if you explicitly name them within your program.

3. The implicitly imported java.lang package contains fundamental Java classes.

. detr op mi yll aci t a mot ua er a sr eht ot ub, mar gor pr uoy ni hti w meht e man
yl ti cil pxe uoy fi yl no el bali ava er a segakcap avaJ yna M. 2# si t ne met at s esl af ehT

You Do It

Using the Java Web Site

In this section, you learn more about using the LocalDate class and are introduced to
the LocalDateTime class.

1. Using a Web browser, go to the Java Web site, and select Java APIs and
Java SE 8. Using the alphabetical list of classes, find the LocalDate class
and select it.

2. Notice that java.time is cited at the top of the description, indicating that it is
the containing package.

(continues)

Using Automatically Imported, Prewritten Constants and Methods

227

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Read the history and background of the LocalDate class to get an idea of how
many issues are involved in determining values like the first day of the week
and a week’s number in a year. Then read the rest of the documentation to
get a feel for the fields and methods that are available with the class.

4. Find the documentation for the LocalDateTime class. It is similar to the
LocalDate class, except it includes information about the time of day. Read
descriptions of the methods getHour(), getMinute(), getSecond(), and
getNano(). (A nanosecond is one-billionth of a second.)

Using an Explicitly Imported, Prewritten Class

Next, you use the LocalDateTime class to create an application that outputs a user’s
response time to a question.

1. Open a new file in your text editor, and type the following two import

statements. You need the JOptionPane class to use the showConfirmDialog()

method, and you need the java.time package to use the LocalDateTime class:
import javax.swing.JOptionPane;
import java.time.*;

2. Begin the TimedResponse application as follows. Declare two LocalDateTime

objects named time1 and time2. These objects will hold the exact time before
a user is prompted and the exact time after the user responds. Also declare
integers to hold the value of the seconds for both times. The difference
between these two values is the elapsed time between the creations of the
two LocalDateTime values.
public class TimedResponse
{

public static void main(String[] args)
{

LocalDateTime time1, time2;
int seconds1, seconds2, difference;

3. Assign the current time to the time1 object, and then extract the value of the
current seconds field.
time1 = LocalDateTime.now();
seconds1 = time1.getSecond();

4. Display a dialog box that asks the user to make a difficult choice.
JOptionPane.showConfirmDialog
(null, "Is stealing ever justified? ");

(continued)

(continues)

C H A P T E R 4 More Object Concepts

228

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Next, get the system time immediately after the user responds to the dialog
box, and extract its seconds component.
time2 = LocalDateTime.now();
seconds2 = time2.getSecond();

6. Compute the difference between the times, and display the result in a dialog box.
difference = seconds2 - seconds1;

JOptionPane.showMessageDialog(null, "End seconds: " + seconds2 +
"\nStart seconds: " + seconds1 +
"\nIt took " + difference + " seconds for you to answer");

7. Add two closing curly braces—one for the method and the other for the
class—and then save the file as TimedResponse.java.

8. Compile and execute the program. When the question appears, ponder it for a
few seconds, and then choose a response. Figure 4-41 shows a typical
execution.

9. The output in the TimedResponse application is accurate only when the first
and second LocalDateTime objects are created during the same minute, as in
the output in Figure 4-41, when the question was asked at 27 seconds after
the minute and then answered 47 seconds after the same minute. If the first
object is created 58 seconds after a minute starts and the user doesn’t
respond to the question until 2 seconds after the next minute starts, the
difference between the second values will be calculated incorrectly as –56
instead of 4 seconds. On your own, modify the TimedResponse application to
rectify this problem. Save the file as TimedResponse2.java.

(continued)

Figure 4-41 Typical execution of the TimedResponse application

Using Automatically Imported, Prewritten Constants and Methods

229

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Composition and Nested Classes
Two of the ways that you can group classes are by using composition and by nesting classes.
This section takes a brief look at both concepts.

Composition
The fields in a class can be simple data types like int and double, but they can also be class
types. Composition describes the relationship between classes when an object of one class is a
data field within another class. You have already studied many classes that contain String
object fields. These classes employ composition.

When you use an object as a data member of another object, you must remember to supply
values for the contained object if it has no default constructor. For example, you might create
a class named NameAndAddress that stores name and address information. Such a class could
be used for employees, customers, students, or anyone else who has a name and address.
Figure 4-42 shows a NameAndAddress class. The class contains three fields, all of which are set
by the constructor. A display() method displays the name and address information on three
lines.

public class NameAndAddress
{

private String name;
private String address;
private int zipCode;
public NameAndAddress(String nm, String add, int zip)
{

name = nm;
address = add;
zipCode = zip;

}
public void display()
{

System.out.println(name);
System.out.println(address);
System.out.println(zipCode);

}
}

Figure 4-42 The NameAndAddress class

Suppose you want to create a School class that holds information about a school. Instead
of declaring fields for the School’s name and address, you could use the NameAndAddress

class. The relationship created is sometimes called a has-a relationship because one class
“has an” instance of another. Figure 4-43 shows a School class that declares and uses a
NameAndAddress object.

C H A P T E R 4 More Object Concepts

230

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As Figure 4-43 shows, the School constructor requires four parameters. Within the constructor,
three of the items—the name, address, and zip code—are passed to the NameAndAddress

constructor to provide values for the appropriate fields. The fourth constructor parameter
(the school’s enrollment) is assigned to the School class enrollment field.

In the School class display method, the NameAndAddress object’s display() method is called to
display the school’s name and address. The enrollment value is displayed afterward. Figure 4-44
shows a simple program that instantiates one School object. Figure 4-45 shows the execution.

public class SchoolDemo
{

public static void main(String[] args)
{

School mySchool = new School
("Audubon Elementary",
"3500 Hoyne", 60618, 350);

mySchool.display();
}

}

Figure 4-44 The SchoolDemo program

public class School

public void display()

private NameAndAddress nameAdd;
private int enrollment;
public School(String name, String add; int zip, int enrolled)

{

{

{
nameAdd = new NameAndAddress(name, add, zip);
enrollment = enrolled;

nameAdd.display();
System.out.printIn("Enrollment is " + enrollment);

System.out.printIn("The school information:");

}

}
}

This statement
declares a
NameAndAddress
object.

This statement calls the
constructor in the
NameAndAddress
class.

This statement calls the
display() method in
the NameAndAddress
class.

Figure 4-43 The School class

Figure 4-45 Output of the SchoolDemo program

Understanding Composition and Nested Classes

231

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Nested Classes
Every class you have studied so far has been stored in its own file, and the filename has always
matched the class name. In Java, you can create a class within another class and store them
together; such classes are nested classes. The containing class is the top-level class. There
are four types of nested classes:

static member classes: A static member class has access to all static methods of the
top-level class.

Nonstatic member classes, also known as inner classes: This type of class requires an
instance; it has access to all data and methods of the top-level class.

Local classes: These are local to a block of code.

Anonymous classes: These are local classes that have no identifier.

The most common reason to nest a class inside another is because the inner class is used only
by the top-level class; in other words, it is a “helper class” to the top-level class. Being able to
package the classes together makes their connection easier to understand and their code
easier to maintain.

For example, consider a RealEstateListing class used by a real estate company to describe
houses that are available for sale. The class might contain separate fields for a listing number,
the price, the street address, and the house’s living area. As an alternative, you might decide
that although the listing number and price “go with” the real estate listing, the street address
and living area really “go with” the house. So you might create an inner class like the one
shaded in Figure 4-46.

public class RealEstateListing
{

private int listingNumber;
private double price;
private HouseData houseData;
public RealEstateListing(int num, double price, String address,

int sqFt)
{

listingNumber = num;
this.price = price;
houseData = new HouseData(address, sqFt);

}
public void display()
{

System.out.println("Listing number #" + listingNumber +
" Selling for $" + price);

System.out.println("Address: " + houseData.streetAddress);
System.out.println(houseData.squareFeet + " square feet");

}

Figure 4-46 The RealEstateListing class (continues)

C H A P T E R 4 More Object Concepts

232

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

private class HouseData
{

private String streetAddress;
private int squareFeet;
public HouseData(String address, int sqFt)
{

streetAddress = address;
squareFeet = sqFt;

}
}

}

Figure 4-46 The RealEstateListing class

Notice that the inner HouseData class in Figure 4-46 is a private class. You don’t have to
make an inner class private, but doing so keeps its members hidden from outside classes. If
you wanted a class’s members to be accessible, you would not make it an inner class. An inner
class can access its top-level class’s fields and methods, even if they are private, and an outer
class can access its inner class’s members.

You usually will not want to create inner classes. For example, if you made the HouseData

class a regular class (as opposed to an inner class) and stored it in its own file, you could use
it with composition in other classes—perhaps a MortgageLoan class or an Appraisal class.
As it stands, it is usable only in the class in which it now resides. You probably will not
create nested classes frequently, but you will see them implemented in some built-in Java
classes.

TWO TRUTHS & A LIE

Understanding Composition and Nested Classes

1. Exposition describes the relationship between classes when an object of one class
is a data field within another class.

2. When you use an object as a data member of another object, you must remember
to supply values for the contained object if it has no default constructor.

3. A nested class resides within another class.

. ssal c r eht ona ni hti w dl eif at ad a si ssal c enof ot cej bo na neh w
sessal c neewt eb pi hsnoi t al er eht sebi r csed noi ti sop moC. 1# si t ne met at s esl af ehT

(continued)

Understanding Composition and Nested Classes

233

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It
Don’t try to use a variable that is out of scope.

Don’t assume that a constant is still a constant when passed to a method’s parameter.
If you want a parameter to be constant within a method, you must use final in the
parameter list.

Don’t try to overload methods by giving them different return types. If their identifiers
and parameter lists are the same, then two methods are ambiguous no matter what their
return types are.

Don’t think that default constructor means only the automatically supplied version.
A constructor with no parameters is a default constructor, whether it is the one that is
automatically supplied or one you write.

Don’t forget to write a default constructor for a class that has other constructors if you
want to be able to instantiate objects without using arguments.

Don’t assume that a wildcard in an import statement works like a DOS or UNIX wildcard.
The wildcard works only with specific packages and does not import embedded packages.

Key Terms
A block is the code between a pair of curly braces.

An outer block contains another block.

An inner block is contained within another block.

Nested describes the state of an inner block.

Scope is the part of a program in which a variable exists and can be accessed using its
unqualified name.

Comes into scope describes what happens to a variable when it becomes usable.

Goes out of scope describes what happens to a variable when it ceases to exist at the end of
the block in which it is declared.

Scope level is the part of a program in which a variable exists and can be accessed using its
unqualified name; in Java, this is the variable’s block.

To redeclare a variable is to attempt to declare it twice, which is an illegal action.

A variable overrides another with the same name when it takes precedence over the
other variable.

Shadowing is the action that occurs when a local variable hides a variable with the same name
that is further away in scope.

Closer in scope describes the status of a local variable over others that it shadows.

C H A P T E R 4 More Object Concepts

234

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Overloading involves using one term to indicate diverse meanings, or writing multiple
methods with the same name but with different arguments.

An ambiguous situation is one in which the compiler cannot determine which method to use.

A reference is an object’s memory address.

The this reference is a reference to an object that is passed to any object’s nonstatic class
method.

Class methods are static methods that do not have a this reference (because they have no
object associated with them).

Class variables are static variables that are shared by every instantiation of a class.

NaN is an acronym for Not a Number.

A package is a library of classes.

A library of classes is a folder that provides a convenient grouping for classes.

The java.lang package provides classes that are fundamental to the design of the Java
programming language; it is implicitly imported into every Java program.

The fundamental classes are basic classes contained in the java.lang package that are
automatically imported into every program you write.

The optional classes reside in packages that must be explicitly imported into your programs.

A wildcard symbol is a symbol used to indicate that it can be replaced by any set of
characters. In a Java import statement, the wildcard symbol is an asterisk.

An enumeration is a data type that consists of a list of values.

A nanosecond is one-billionth of a second.

Composition describes the relationship between classes when an object of one class is a data
field within another class.

A has-a relationship is a relationship based on composition.

Nested classes are classes contained in other classes.

The top-level class is the containing class in nested classes.

A static member class is a type of nested class that has access to all static methods of its
top-level class.

Nonstatic member classes, also known as inner classes, are nested classes that require an
instance.

Local classes are a type of nested class that are local to a block of code.

Anonymous classes are nested, local classes that have no identifier.

Key Terms

235

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary
A variable’s scope is the portion of a program within which it can be referenced. A block is
the code between a pair of curly braces. Within a method, you can declare a variable with
the same name multiple times, as long as each declaration is in its own nonoverlapping
block. If you declare a variable within a class and use the same variable name within a
method of the class, the variable used inside the method takes precedence over (or
overrides, or masks) the first variable.

Overloading involves writing multiple methods with the same name but different
parameter lists. Methods that have identical parameter lists but different return types are
not overloaded; they are illegal.

When you overload methods, you risk creating an ambiguous situation—one in which the
compiler cannot determine which method to use.

When you write your own constructors, they can receive parameters. Such parameters
are often used to initialize data fields for an object. After you write a constructor for a class,
you no longer receive the automatically provided default constructor. If a class’s only
constructor requires an argument, you must provide an argument for every object of
the class that you create. You can overload constructors just as you can other methods.

Within nonstatic methods, data fields for the correct object are accessed because a this

reference is implicitly passed to nonstatic methods. Static methods do not have a this
reference because they have no object associated with them; static methods are also called
class methods.

Static class fields and methods are shared by every instantiation of a class. When a field in
a class is final, it cannot change after it is assigned its initial value.

Java contains hundreds of prewritten classes that are stored in packages, which are folders
that provide convenient groupings for classes. The package that is implicitly imported into
every Java program is named java.lang. The classes it contains are the fundamental
classes, as opposed to the optional classes, which must be explicitly named. The class
java.lang.Math contains constants and methods that can be used to perform common
mathematical functions. The LocalDate and LocalDateTime classes allow you to define
and manipulate dates and time.

Composition describes the relationship between classes when an object of one class is a data
field within another class. You can create nested classes that are stored in the same file. The
most common reason to nest a class inside another is because the inner class is used only by
the outer or top-level class; in other words, it is a “helper class” to the top-level class.

Review Questions
1. The code between a pair of curly braces in a method is a .

a. function
b. block

c. brick
d. sector

C H A P T E R 4 More Object Concepts

236

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. When a block exists within another block, the blocks are .

a. structured
b. nested

c. sheltered
d. illegal

3. The portion of a program within which you can reference a variable is the vari-
able’s .

a. range
b. space

c. domain
d. scope

4. You can declare variables with the same name multiple times .

a. within a statement
b. within a block
c. within a method
d. You never can declare multiple variables with the same name.

5. If you declare a variable as an instance variable within a class, and you declare and use
the same variable name within a method of the class, then within the
method, .

a. the variable used inside the method takes precedence
b. the class instance variable takes precedence
c. the two variables refer to a single memory address
d. an error will occur

6. A method variable a class variable with the same name.

a. acquiesces to
b. destroys

c. overrides
d. alters

7. Nonambiguous, overloaded methods must have the same .

a. name
b. number of parameters

c. parameter names
d. types of parameters

8. If a method is written to receive a double parameter, and you pass an integer to the
method, then the method will .

a. work correctly; the integer will be promoted to a double

b. work correctly; the integer will remain an integer
c. execute, but any output will be incorrect
d. not work; an error message will be issued

9. A constructor parameters.

a. can receive
b. cannot receive

c. must receive
d. can receive a maximum of 10

Review Questions

237

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. A constructor overloaded.

a. can be
b. cannot be

c. must be
d. is always automatically

11. Usually, you want each instantiation of a class to have its own copy
of .

a. the data fields
b. the class methods

c. both of the above
d. none of the above

12. If you create a class that contains one method, and instantiate two objects, you
usually store for use with the objects.

a. one copy of the method
b. two copies of the method
c. two different methods containing two different this references
d. data only (the methods are not stored)

13. The this reference .

a. can be used implicitly
b. must be used implicitly

c. must not be used implicitly
d. must not be used

14. Methods that you reference with individual objects are .

a. private

b. public

c. static

d. nonstatic

15. Variables that are shared by every instantiation of a class are .

a. class variables
b. private variables

c. public variables
d. illegal

16. The keyword final used with a variable declaration indicates .

a. the end of the program
b. a static field
c. a symbolic constant
d. that no more variables will be declared in the program

17. Java classes are stored in a folder or .

a. packet
b. package

c. bundle
d. gaggle

18. Which of the following statements determines the square root of a number and
assigns it to the variable s?

a. s = sqrt(number);

b. s = Math.sqrt(number);

c. number = sqrt(s);

d. number = Math.sqrt(s);

C H A P T E R 4 More Object Concepts

238

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

19. A LocalDate object .

a. can be displayed as a String

b. contains static fields with data such as the current year
c. is created using a public default constructor
d. all of the above

20. Which of the following expressions correctly returns an integer that represents the
month of a LocalDate object named hireDate?

a. getMonth(hireDate)

b. getMonthValue(hireDate)

c. hireDate.getMonthValue()

d. all of the above

Exercises

Programming Exercises

1. Create a class named FormLetterWriter that includes two overloaded methods
named displaySalutation(). The first method takes one String parameter that
represents a customer’s last name, and it displays the salutation “Dear Mr. or Ms.”
followed by the last name. The second method accepts two String parameters that
represent a first and last name, and it displays the greeting “Dear” followed by the first
name, a space, and the last name. After each salutation, display the rest of a short
business letter: “Thank you for your recent order.” Write a main() method that tests
each overloaded method. Save the file as FormLetterWriter.java.

2. Create a class named Billing that includes three overloaded computeBill() methods
for a photo book store.

When computeBill() receives a single parameter, it represents the price of one
photo book ordered. Add 8% tax, and return the total due.

When computeBill() receives two parameters, they represent the price of a
photo book and the quantity ordered. Multiply the two values, add 8% tax, and
return the total due.

When computeBill() receives three parameters, they represent the price of a
photo book, the quantity ordered, and a coupon value. Multiply the quantity and
price, reduce the result by the coupon value, and then add 8% tax and return the
total due.

Write a main() method that tests all three overloaded methods. Save the application
as Billing.java.

3. a. Create a FitnessTracker class that includes data fields for a fitness activity, the
number of minutes spent participating, and the date. The class includes methods
to get each field. In addition, create a default constructor that automatically
sets the activity to “running,” the minutes to 0, and the date to January 1 of the

Exercises

239

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

current year. Save the file as FitnessTracker.java. Create an application that
demonstrates each method works correctly, and save it as TestFitnessTracker.java.

b. Create an additional overloaded constructor for the FitnessTracker class you
created in Exercise 3a. This constructor receives parameters for each of the data
fields and assigns them appropriately. Add any needed statements to the
TestFitnessTracker application to ensure that the overloaded constructor works
correctly, save it, and then test it.

c. Modify the FitnessTracker class so that the default constructor calls the three-
parameter constructor. Save the class as FitnessTracker2.java. Create an application
to test the new version of the class, and name it TestFitnessTracker2.java.

4. a. Create a class named BloodData that includes fields that hold a blood type (the
four blood types are O, A, B, and AB) and an Rh factor (the factors are + and –).
Create a default constructor that sets the fields to “O” and “+”, and an overloaded
constructor that requires values for both fields. Include get and set methods for
each field. Save this file as BloodData.java. Create an application named
TestBloodData that demonstrates each method works correctly. Save the
application as TestBloodData.java.

b. Create a class named Patient that includes an ID number, age, and BloodData.
Provide a default constructor that sets the ID number to “0”, the age to 0, and the
BloodData to “O” and “+”. Create an overloaded constructor that provides values
for each field. Also provide get methods for each field. Save the file as Patient.java.
Create an application that demonstrates that each method works correctly, and
save it as TestPatient.java.

5. a. Create a class for the Tip Top Bakery named Bread with data fields for bread type
(such as “rye”) and calories per slice. Include a constructor that takes parameters
for each field, and include get methods that return the values of the fields. Also
include a public final static String named MOTTO and initialize it to The staff of
life. Write an application named TestBread to instantiate three Bread objects with
different values, and then display all the data, including the motto, for each object.
Save both the Bread.java and TestBread.java files.

b. Create a class named SandwichFilling. Include a field for the filling type (such as
“egg salad”) and another for the calories in a serving. Include a constructor that takes
parameters for each field, and include get methods that return the values of the
fields. Write an application named TestSandwichFilling to instantiate three
SandwichFilling objects with different values, and then display all the data for each
object. Save both the SandwichFilling.java and TestSandwichFilling.java files.

c. Create a class named Sandwich. Include a Bread field and a SandwichFilling

field. Include a constructor that takes parameters for each field needed in the two
objects and assigns them to each object’s constructor. Write an application named
TestSandwich to instantiate three Sandwich objects with different values, and
then display all the data for each object, including the total calories in a Sandwich,
assuming that each Sandwich is made using two slices of Bread. Save both the
Sandwich.java and TestSandwich.java files.

C H A P T E R 4 More Object Concepts

240

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. a. Create a class named Circle with fields named radius, diameter, and area.
Include a constructor that sets the radius to 1 and calculates the other two values. Also
include methods named setRadius()and getRadius(). The setRadius() method
not only sets the radius, it also calculates the other two values. (The diameter of a circle
is twice the radius, and the area of a circle is pi multiplied by the square of the radius.
Use the Math class PI constant for this calculation.) Save the class as Circle.java.

b. Create a class named TestCircle whose main() method declares several Circle
objects. Using the setRadius() method, assign one Circle a small radius value,
and assign another a larger radius value. Do not assign a value to the radius of the
third circle; instead, retain the value assigned at construction. Display all the
values for all the Circle objects. Save the application as TestCircle.java.

7. Write a Java application that uses the Math class to determine the answers for each of
the following:
a. The square root of 37
b. The sine and cosine of 300
c. The value of the floor, ceiling, and round of 22.8
d. The larger and the smaller of the character ‘D’ and the integer 71
e. A random number between 0 and 20 (Hint: The random() method returns a

value between 0 and 1; you want a number that is 20 times larger.)

Save the application as MathTest.java.

8. Write a program that declares two LocalDate objects and assign values that
represent January 31 and December 31 in the current year. Display output that
demonstrates the dates displayed when one, two, and three months are added to
each of the objects. Save the application as TestMonthHandling.java.

9. Write an application that computes and displays the day on which you become (or
became) 10,000 days old. Save the application as TenThousandDaysOld.java.

10. The LocalDate class includes an instance method named lengthOfMonth() that
returns the number of days in the month. Write an application that uses methods in
the LocalDate class to calculate how many days are left until the first day of next
month. Display the result, including the name of the next month. Save the file as
DaysTilNextMonth.java.

11. a. Create a CertOfDeposit class. The class contains data fields that hold a certificate
number, account holder’s last name, balance, issue date, and maturity date, using
LocalDate objects for each date. Provide get and set methods for each field. Also
provide a constructor that requires parameters used to set the first four fields, and
sets the maturity date to exactly one year after the issue date. Save the class as
CertOfDeposit.java.

b. Create an interactive application that prompts the user for data for two
CertOfDeposit objects. Prompt the user for certificate number, name, balance,
and issue date for each CertOfDeposit, and then instantiate the objects. Display
all the values, including the maturity dates. Save the application as
TestCertOfDeposit.java.

Exercises

241

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12. Create a class named Person that holds the following fields: two String objects
for the person’s first and last name and a LocalDate object for the person’s
birthdate. Create a class named Couple that contains two Person objects. Create
a class named Wedding for a wedding planner that includes the date of the wedding,
the names of the Couple being married, and a String for the location. Provide
constructors for each class that accept parameters for each field, and provide
get methods for each field. Then write a program that creates two Wedding objects
and in turn passes each to a method that displays all the details. Save the files
as Person.java, Couple.java, Wedding.java, and TestWedding.java.

Debugging Exercises
1. Each of the following files in the Chapter04 folder of your downloadable student

files has syntax and/or logic errors. In each case, determine the problem and fix the
program. After you correct the errors, save each file using the same filename
preceded with Fix. For example, save DebugFour1.java as FixDebugFour1.java.

a. DebugFour1.java
b. DebugFour2.java
c. DebugFour3.java and DebugBox.java
d. DebugFour4.java

When you change a filename, remember to change every instance of the class name within the file so that it
matches the new filename. In Java, the filename and class name must always match.

Game Zone
1. Dice are used in many games. One die can be thrown to randomly show a value

from 1 through 6. Design a Die class that can hold an integer data field for a value
(from 1 to 6). Include a constructor that randomly assigns a value to a die object.
Appendix D contains information on generating random numbers. To fully under-
stand the process, you must learn more about Java classes and methods. However,
for now, you can copy the following statement to generate a random number
between 1 and 6 and assign it to a variable. Using this statement assumes you have
assigned appropriate values to the static constants.

randomValue = ((int)(Math.random() * 100) % HIGHEST_DIE_VALUE +
LOWEST_DIE_VALUE);

Also include a method in the class to return a die’s value. Save the class as Die.java.
Write an application that randomly “throws” two dice and displays their values.
After you read the chapter “Making Decisions,” you will be able to have the game
determine the higher die. For now, just observe how the values change as you
execute the program multiple times. Save the application as TwoDice.java.

C H A P T E R 4 More Object Concepts

242

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Using the Die class, write an application that randomly “throws” five dice for the
computer and five dice for the player. Display the values and then, by observing
the results, decide who wins based on the following hierarchy of Die values. (The
computer will not decide the winner; the player will determine the winner based on
observation.) Any higher combination beats a lower one; for example, five of a kind
beats four of a kind.

Five of a kind

Four of a kind

Three of a kind

A pair

After you learn about decision making in the next chapter, you will be able to
make the program determine whether you or the computer had the better roll,
and after you read the chapter “Introduction to Arrays,” you will be able to
make the determination more efficient. For now, just observe how the values
change as you execute the program multiple times. Save the application as
FiveDice.java.

Case Problems
These projects build on the ones you created in Chapter 3, so they have the same
filenames. If you want to retain both versions of the files, save them in different
folders.

1. a. Carly’s Catering provides meals for parties and special events. In Chapter 3,
you created an Event class for the company. The Event class contains two
public final static fields that hold the price per guest ($35) and the cutoff
value for a large event (50 guests), and three private fields that hold an event
number, number of guests for the event, and the price. It also contains two
public set methods and three public get methods.

Now, modify the Event class to contain two overloaded constructors.

One constructor accepts an event number and number of guests as parameters.
Pass these values to the setEventNumber() and setGuests() methods, respec-
tively. The setGuests() method will automatically calculate the event price.

The other constructor is a default constructor that passes “A000” and 0 to
the two-parameter constructor.

Save the file as Event.java.

b. In Chapter 3, you also created an EventDemo class to demonstrate using two
Event objects. Now, modify that class to instantiate two Event objects, and
include the following new methods in the class:

Instantiate one object to retain the constructor default values.

Exercises

243

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Accept user data for the event number and guests fields, and use this data
set to instantiate the second object. Display all the details for both objects.

Save the file as EventDemo.java.
2. a. Sammy’s Seashore Supplies rents beach equipment such as kayaks, canoes,

beach chairs, and umbrellas to tourists. In Chapter 3, you created a Rental

class for the company. The Rental class contains two public final static
fields that hold the number of minutes in an hour and the hourly rental rate
($40), and four private fields that hold a contract number, number of hours
for the rental, number of minutes over an hour, and the price. It also
contains two public set methods and four public get methods.

Now, modify the Rental class to contain two overloaded constructors.

One constructor accepts a contract number and number of minutes
as parameters. Pass these values to the setContractNumber() and
setHoursAndMinutes() methods, respectively. The setHoursAndMinutes()

method will automatically calculate the hours, extra minutes, and price.

The other constructor is a default constructor that passes “A000” and 0 to
the two-parameter constructor.

Save the file as Rental.java.

b. In Chapter 3, you also created a RentalDemo class to demonstrate a Rental

object. Now, modify that class to instantiate two Rental objects.

Instantiate one object to retain the constructor default values.

Accept user data for the contract number and minutes fields and use this
data set to instantiate the second object. Display all the details for both
objects.

Save the file as RentalDemo.java.

C H A P T E R 4 More Object Concepts

244

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5
Making Decisions

In this chapter, you will:

Plan decision-making logic

Make decisions with the if and if…else statements

Use multiple statements in if and if…else clauses

Nest if and if…else statements

Use AND and OR operators

Make accurate and efficient decisions

Use the switch statement

Use the conditional and NOT operators

Assess operator precedence

Add decisions and constructors to instance methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Planning Decision-Making Logic
When computer programmers write programs, they rarely just sit down at a keyboard and
begin typing. Programmers must plan the complex portions of programs using paper and
pencil. Programmers often use pseudocode, a tool that helps them plan a program’s logic
by writing down in plain English the steps needed to accomplish a given task. You write
pseudocode in everyday language, not the syntax used in a programming language. In fact, a
task you write in pseudocode does not have to be computer-related. If you have ever written a
list of directions to your house—for example, (1) go west on Algonquin Road, (2) turn left
on Roselle Road, (3) enter expressway heading east, and so on—you have written pseudocode.
A flowchart is similar to pseudocode, but you write the steps in diagram form, as a series of
shapes connected by arrows.

Some programmers use a variety of shapes to represent
different tasks in their flowcharts, but you can draw simple
flowcharts that express very complex situations using just
rectangles, diamonds, and arrows. You use a rectangle to
represent any unconditional step and a diamond to represent
any decision. For example, Figure 5-1 shows a flowchart
describing driving directions to a friend’s house. The logic in
Figure 5-1 is an example of a sequence structure—a logical
structure in which one step follows another unconditionally.
A sequence structure might contain any number of steps in
which one task follows another with no chance to branch away
or skip a step.

Sometimes, logical steps do not follow in an unconditional
sequence—some tasks might or might not occur based on
decisions you make. To represent a decision, flowchart creators
use a diamond shape to hold a question, and they draw paths to
alternative courses of action emerging from the sides of the
diamonds. Figure 5-2 includes a decision structure—one that
involves choosing between alternative courses of action based
on some value within a program. Making decisions is what
makes computer programs seem “smart.”

Go west on
Algonquin Road

Turn left on
Roselle Road

Enter expressway
heading east

Exit south at
Arlington
Heights Road

Proceed to 688
Arlington
Heights Road

Figure 5-1 Flowchart of
a series of sequential steps

C H A P T E R 5 Making Decisions

246

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When reduced to their
most basic form, all computer
decisions are yes-or-no
decisions. That is, the answer
to every computer question is
yes or no (or true or false, or
on or off). This is because
computer circuitry consists of
millions of tiny switches that
are either on or off, and the
result of every decision sets
one of these switches in
memory. As you learned in
Chapter 2, the values true

and false are Boolean values;
every computer decision
results in a Boolean value.
Thus, internally, a program
never asks, for example, “What
number did the user enter?”
Instead, the decisions might be
“Did the user enter a 1?” “If
not, did the user enter a 2?” “If
not, did the user enter a 3?”

Sir George Boole lived from
1815 to 1864. He devel-
oped a type of linguistic
algebra, based on 0s and
1s, the three most basic
operations of which were
(and still are) AND, OR, and
NOT. Programming logic is
based on his discoveries.

Go west on
Algonquin Road

Turn left on
Roselle Road

Is the expressway
backed up?

Enter expressway
heading east

no yes

Exit south at
Arlington
Heights Road

Proceed to 688
Arlington
Heights Road

Continue on
Roselle to Golf
Road

Turn left on
Golf Road

Turn right on
Arlington
Heights Road

Figure 5-2 Flowchart including a decision

Planning Decision-Making Logic

247

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Planning Decision-Making Logic

1. Pseudocode and flowcharts are both tools that are used to check the syntax
of computer programs.

2. In a sequence structure, one step follows another unconditionally.

3. In a decision structure, alternative courses of action are chosen based on
a Boolean value.

. ci gol s’ mar gor p a nal p sr e mmar gor p
pl eht aht sl oot ht ob er a str ahc wolf dna edocoduesP. 1# si t ne met at s esl af ehT

The if and if…else Statements
In Java, when you want to take an action if a Boolean expression is true, you use an if

statement. If you want to take an action when a Boolean expression is true but take a different
action when the expression is false, you use an if…else statement.

The if Statement
The simplest statement you can use to make a decision is the if statement. An if statement
is sometimes called a single-alternative selection because there is only one alternative—the
true alternative.

For example, suppose you have declared an integer variable named quizScore, and you want
to display a message when the value of quizScore is 10. The if statement in Figure 5-3 makes
the decision whether to produce output. Note that the double equal sign (==) is used to
determine equality; it is Java’s equivalency operator.

false true

if(quizScore == 10)
 System.out.println("The score is perfect");

quizScore
== 10?

output "The
score is perfect"

Figure 5-3 A Java if statement and its logic

C H A P T E R 5 Making Decisions

248

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 5-3, if quizScore holds the value 10, the Boolean value of the expression
quizScore == 10 is true, and the subsequent output statement executes. If the value of the
expression quizScore == 10 is false, the output statement does not execute. As the flowchart
segment shows, whether the tested expression is true or false, the program continues and
executes any statements that follow the if statement.

A Java if statement always includes parentheses. Within the parentheses, you can place any
Boolean expression. Most often you use a comparison that includes one of the relational
operators you learned about in Chapter 2 (==, <, >, <=, >=, or !=). However, you can use any
expression that evaluates as true or false, such as a simple boolean variable or a call to a
method that returns a boolean value.

Pitfall: Misplacing a Semicolon in an if Statement
In Figure 5-3, there is no semicolon at the end of the first line of the if statement following the
parentheses because the statement does not end there. The statement ends after the println()
call, so that is where you type the semicolon. You could type the entire if statement on one line
and it would execute correctly; however, the two-line format for the if statement is more
conventional and easier to read, so you usually type if and the Boolean expression on one line,
press the Enter key, and then indent a few spaces before coding the action that occurs if the
Boolean expression evaluates as true. Be careful—if you use the two-line format and type a
semicolon at the end of the first line, as in the example shown in Figure 5-4, the results might
not be what you intended.

false true

if(quizScore == 10);
 System.out.println("The score is perfect");

quizScore
== 10?

This indentation
has no effect.

This statement executes
no matter what the
value of quizScore is.

output "The score
is perfect"

This semicolon was
unintentional.

Don’t Do It

Figure 5-4 Logic that executes when an extra semicolon is inserted in an if statement

The if and if…else Statements

249

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When the Boolean expression in Figure 5-4 is true, an empty statement that contains only a
semicolon executes. Whether the tested expression evaluates as true or false, the decision is
over immediately, and execution continues with the next independent statement that displays
a message. In this case, because of the incorrect semicolon, the if statement accomplishes
nothing.

Pitfall: Using the Assignment Operator Instead of the
Equivalency Operator
Another common programming error occurs when a programmer uses a single equal
sign rather than the double equal sign when attempting to determine equivalency. The
expression quizScore = 10 does not compare quizScore to 10; instead, it attempts to assign
the value 10 to quizScore. When the expression quizScore = 10 is used in the if statement,
the assignment is illegal because only Boolean expressions are allowed. The confusion arises
in part because the single equal sign is used within Boolean expressions in if statements in
several older programming languages, such as COBOL, Pascal, and BASIC. Adding to the
confusion, Java programmers use the word equals when speaking of equivalencies. For
example, you might say, “If quizScore equals 10…”.

The expression if(x = true) will compile only if x is a boolean variable, because it would be legal to
assign true to x. After the assignment, the values of the variable x and the expression (x = true) are
both true, so the if clause of the statement executes.

An alternative to using a Boolean expression in an if statement, such as quizScore == 10, is
to store the Boolean expression’s value in a Boolean variable. For example, if isPerfectScore
is a Boolean variable, then the following statement compares quizScore to 10 and stores true
or false in isPerfectScore:
isPerfectScore = (quizScore == 10);

Then, you can write the if statement as:
if(isPerfectScore)

System.out.println("The score is perfect");

This adds an extra step to the program, but makes the if statement more similar to an
English-language statement.

When comparing a variable to a constant, some programmers prefer to place the constant to the left of
the comparison operator, as in 10 == quizScore. This practice is a holdover from other programming
languages, such as C++, in which an accidental assignment might be made when the programmer types the
assignment operator (a single equal sign) instead of the comparison operator (the double equal sign). In other
words, if(quizScore = 10) would assign 10 to quizScore in some languages instead of making
a comparison. In Java, the compiler does not allow you to make a mistaken assignment in a Boolean
expression, so Java programmers typically place the constant to the right in a Boolean expression because
the statement reads more naturally.

C H A P T E R 5 Making Decisions

250

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Pitfall: Attempting to Compare Objects Using the
Relational Operators
You can use the standard relational operators (==, <, >, <=, >=, and !=) to compare the
values of primitive data types such as int and double. However, you cannot use <, >, <=, or
>= to compare objects; a program containing such comparisons does not compile. You can
use the equals and not equals comparisons (== and !=) with objects, but when you use them,
you compare the objects’ memory addresses instead of their values. Recall that every object
name is a reference; the equivalency operators compare objects’ references. In other words,
== only yields true for two objects when they refer to the same object in memory, not when
they are different objects with the same value. To compare the values of objects, you should
write specialized methods. Remember, Strings are objects, so do not use == to compare
Strings. You will learn how to compare strings in the chapter “Characters, Strings, and the
StringBuilder.”

Object names are references, but values that are simple data types are not. For example,
suppose you have created a class named Student with a double grade point average field and
a nonstatic public method named getGpa(). After instantiating two objects named student1

and student2, you can write a statement such as the following:
if(student1.getGpa() > student2.getGpa())

System.out.println("The first student has a higher gpa");

The values represented by student1.getGpa() and student2.getGpa() are both doubles, so
they can be compared using any of the relational operators.

The if…else Statement
In Java, the if…else statement provides the mechanism to perform one action when a Boolean
expression evaluates as true and a different action when a Boolean expression evaluates as
false. In other words, you use an if…else statement for a dual-alternative selection. For
example, you would use an if…else statement if you wanted to display one message when the
value of quizScore is 10 and a different message when it is not.

The code in Figure 5-5 displays one of two messages. In this example, when the value of
quizScore is 10, the if clause of the statement executes, displaying the message “The score is
perfect”. When quizScore is any other value, the else clause of the statement executes and
the program displays the message “No, it’s not”. You can code an if without an else, but it is
illegal to code an else without an if that precedes it.

The if and if…else Statements

251

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The indentation shown in the example code in Figure 5-5 is not required but is standard
usage. You vertically align the keyword if with the keyword else, and then indent the action
statements that depend on the evaluation.

When you execute an if…else statement, only one of the resulting actions takes place
depending on the evaluation of the Boolean expression. Each statement, the one dependent
on the if and the one dependent on the else, is a complete statement, so each ends with a
semicolon.

Watch the video Making Decisions.

TWO TRUTHS & A LIE

The if and if…else Statements

1. In a Java if statement, the keyword if is followed by a Boolean expression within
parentheses.

2. In a Java if statement, a semicolon follows the Boolean expression.

3. When determining equivalency in Java, you use a double equal sign.

. yt p me si
t ne met at s fi eht f o ydob eht neht , noi sser pxe nael ooB eht s woll of nol oci mes afI
. eurt si noi sser pxe nael ooB eht fi r ucco dl uohs t aht noi t ca eht gni woll of desu si tI

.t ne met at s eht sdne nol oci mes a,t ne met at s fi avaJ a nI . 2# si t ne met at s esl af ehT

false true

if(quizScore == 10)
 System.out.println("The score is perfect");
else
 System.out.println("No, it's not");

quizScore
== 10?

output "The score
is perfect"

output "No,
it's not"

Figure 5-5 An if…else statement and its logic

C H A P T E R 5 Making Decisions

252

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Using an if…else Statement

In this section, you start writing a program for Sacks Fifth Avenue, a nonprofit thrift
shop. The program determines which volunteer to assign to price a donated item. To
begin, you prompt the user to answer a question about whether a donation is clothing
or some other type, and then the program displays the name of the volunteer who
handles such donations. Clothing donations are handled by Regina, and other dona-
tions are handled by Marco.

1. Start a new application by entering the following lines of code to create a
class named AssignVolunteer. You import the Scanner class so that you can
use keyboard input. The class contains a main() method that performs all the
work of the class:
import java.util.Scanner;
public class AssignVolunteer
{

public static void main(String[] args)
{

2. On new lines, declare the variables and constants this application uses. The
user will be prompted to enter one of the values stored in the two constants.
That value will then be assigned to the integer donationType and compared to
the CLOTHING_CODE constant. Then, based on the results of that comparison,
the program will assign the value of one of the PRICER constants to the
String variable volunteer.
int donationType;
String volunteer;
final int CLOTHING_CODE = 1;
final int OTHER_CODE = 2;
final String CLOTHING_PRICER = "Regina";
final String OTHER_PRICER = "Marco";

3. Define the input device, and then add the code that prompts the user to
enter a 1 or 2 for the donation type. Accept the response, and assign it to
donationType:
Scanner input = new Scanner(System.in);
System.out.println("What type of donation is this?");
System.out.print("Enter " + CLOTHING_CODE + " for clothing, " +

OTHER_CODE + " for anything else… ");
donationType = input.nextInt();

(continues)

The if and if…else Statements

253

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Use an if…else statement to choose the name of the volunteer to be
assigned to the volunteer String, as follows:
if(donationType == CLOTHING_CODE)

volunteer = CLOTHING_PRICER;
else

volunteer = OTHER_PRICER;

5. Display the chosen code and corresponding volunteer’s name:
System.out.println("You entered " + donationType);
System.out.println("The volunteer who will price this item is " +

volunteer);

6. Type the two closing curly braces to end the main() method and the
AssignVolunteer class.

7. Save the program as AssignVolunteer.java, and then compile and run the
program. Confirm that the program selects the correct volunteer when you
choose 1 for a clothing donation or 2 for any other donation type. For example,
Figure 5-6 shows a typical execution of the program when the user enters 1 for
a clothing donation.

Using Multiple Statements in if and if…else Clauses
Often, you want to take more than one action following the evaluation of a Boolean
expression within an if statement. For example, you might want to display several separate
lines of output or perform several mathematical calculations. To execute more than one
statement that depends on the evaluation of a Boolean expression, you use a pair of curly
braces to place the dependent statements within a block. For example, the program segment

(continued)

Figure 5-6 Typical execution of the AssignVolunteer application

C H A P T E R 5 Making Decisions

254

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

shown in Figure 5-7 determines whether an employee has worked more than the value of a
FULL_WEEK constant; if so, the program computes regular and overtime pay.

When you place a block within an if statement, it is crucial to place the curly braces
correctly. For example, in Figure 5-8, the curly braces have been omitted. Within the code
segment in Figure 5-8, when hoursWorked > FULL_WEEK is true, regularPay is calculated and
the if expression ends. The next statement that computes overtimePay executes every time
the program runs, no matter what value is stored in hoursWorked. This last statement does
not depend on the if statement; it is an independent, stand-alone statement. The indentation
might be deceiving; it looks as though two statements depend on the if statement, but
indentation does not cause statements following an if statement to be dependent. Rather,
curly braces are required if multiple statements must be treated as a block.

When you create a block, you do not have to place multiple statements within it. It is perfectly
legal to place curly braces around a single statement. For clarity, some programmers always
use curly braces to surround the actions in an if statement, even when there is only one
statement in the block.

false true

if(hoursWorked > FULL_WEEK)
{
 regularPay = FULL_WEEK * rate;
 overtimePay = (hoursWorked – FULL_WEEK) * OT_RATE * rate;
}

hoursWorked >
FULL_WEEK?

regularPay = FULL_WEEK * rate

overtimePay = (hoursWorked –
FULL_WEEK) * OT_RATE * rate

The if statement
ends here.

Figure 5-7 An if statement that determines pay and its logic

Using Multiple Statements in if and if…else Clauses

255

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Because the curly braces are missing, regardless of whether hoursWorked is more than
FULL_WEEK, the last statement in Figure 5-8 is a new stand-alone statement that is not part
of the if, and so it always executes. If hoursWorked is 30, for example, and FULL_WEEK is 40,
then the program calculates the value of overtimePay as a negative number (because 30
minus 40 results in −10). Therefore, the output is incorrect. Correct blocking is crucial to
achieving valid output.

When you fail to block statements that should depend on an if, and you also use an else
clause, the program will not compile. For example, consider the following code:
if(hoursWorked > FULL_WEEK)

regularPay = FULL_WEEK * rate;
overtimePay = (hoursWorked – FULL_WEEK) * OT_RATE * rate;

else
regularPay = FULL_WEEK * rate;

In this case, the if statement ends after the first regularPay calculation, and the second
complete stand-alone statement performs the overtimePay calculation. The third statement
in this code starts with else, which is illegal. An error message will indicate that the program
contains “else without if”. The error message means that the else does not have
a matching if.

false true

if(hoursWorked > FULL_WEEK)
 regularPay = FULL_WEEK * rate;
 overtimePay = (hoursWorked – FULL_WEEK) * OT_RATE * rate;

hoursWorked >
FULL_WEEK?

regularPay = FULL_WEEK * rate

overtimePay = (hoursWorked –
FULL_WEEK) * OT_RATE * rate

This indentation is
ignored by the
compiler.

The if statement ends
here.

Don’t Do It

The overtime calculation
is always performed no
matter what the value of
hoursWorked is.

Don’t Do It

Figure 5-8 Erroneous overtime pay calculation with missing curly braces

These statements
should be blocked.

Don’t Do It

C H A P T E R 5 Making Decisions

256

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Just as you can block statements to depend on an if, you can also block statements to
depend on an else. Figure 5-9 shows an application that contains an if with two
dependent statements and an else with two dependent statements. The program
executes the final println() statement without regard to the hoursWorked variable’s
value; it is not part of the decision structure. Figure 5-10 shows the output from
two executions of the program. In the first execution, the user entered 39 for the
hoursWorked value and 20.00 for rate; in the second execution, the user entered
42 for hoursWorked and 20.00 for rate.

import java.util.Scanner;
public class Payroll
{

public static void main(String[] args)
{

double rate;
double hoursWorked;
double regularPay;
double overtimePay;
final int FULL_WEEK = 40;
final double OT_RATE = 1.5;
Scanner keyboard = new Scanner(System.in);
System.out.print("How many hours did you work this week? ");
hoursWorked = keyboard.nextDouble();
System.out.print("What is your regular pay rate? ");
rate = keyboard.nextDouble();
if(hoursWorked > FULL_WEEK)
{

regularPay = FULL_WEEK * rate;
overtimePay = (hoursWorked - FULL_WEEK) * OT_RATE * rate;

}
else
{

regularPay = hoursWorked * rate;
overtimePay = 0.0;

}
System.out.println("Regular pay is " +

regularPay + "\nOvertime pay is " + overtimePay);
}

}

Figure 5-9 Payroll application containing an if and else clause with blocks

Using Multiple Statements in if and if…else Clauses

257

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you block statements, you must remember that any variable you declare within a block
is local to that block. For example, the following code segment contains a variable named sum

that is local to the block following the if. The last println() statement causes an error
because the sum variable is not recognized:
if(a == b)
{

int sum = a + b;
System.out.println

("The two variables are equal");
}
System.out.println("The sum is " + sum);

TWO TRUTHS & A LIE

Using Multiple Statements in if and if…else Clauses

1. To execute more than one statement that depends on the evaluation of a Boolean
expression, you use a pair of curly braces to place the dependent statements
within a block.

2. Indentation can be used to cause statements following an if statement to depend
on the evaluation of the Boolean expression.

3. When you declare a variable within a block, it is local to that block.

. kcol b a sa det aert ebt su m
st ne met at s el pi tl u mfi deri uqer er a secar b yl r uc;t nedneped eb ot t ne met at s fi

na gni woll of st ne met at s esuact on seod noi t at nednI . 2# si t ne met at s esl af ehT

Figure 5-10 Two typical executions of the Payroll application

The sum variable is
declared in this block...

...so it is not
recognized here.

C H A P T E R 5 Making Decisions

258

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Using Multiple Statements in if and else Clauses

In this section, you use a block of code to add multiple actions to an if…else

statement.

1. Open the AssignVolunteer application from the previous “You Do It” section.
Change the class name to AssignVolunteer2, and immediately save the file
as AssignVolunteer2.java. Don’t forget that an application’s class name and
its filename must match.

2. Add a String to the variables. This String will be assigned a message that
displays the donation type:
String message;

3. In place of the existing if…else statement in the program, insert the following
statement that takes two blocked actions for each donation type. It assigns a
volunteer and a value to the message String.
if(donationType == CLOTHING_CODE)
{

volunteer = CLOTHING_PRICER;
message = "a clothing donation";

}
else
{

volunteer = OTHER_PRICER;
message = "a non-clothing donation";

}

4. Following the output statement that displays the donation type, add the
following statement that displays the assigned message:
System.out.println("This is " + message);

(continues)

Using Multiple Statements in if and if…else Clauses

259

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Save the file, and compile and execute the program. Figure 5-11 shows two
executions.

Nesting if and if…else Statements
Within an if or an else clause, you can code as many dependent statements as you
need, including other if and else statements. Statements in which a decision is contained
inside either the if or else clause of another decision are nested if statements. Nested
if statements are particularly useful when two or more conditions must be met before
some action is taken.

For example, suppose you want to pay a $50 bonus to a salesperson only if the salesperson
sells at least three items with a total value of $1,000 or more. Figure 5-12 shows the logic and
the code to solve the problem.

(continued)

Figure 5-11 Two typical executions of the AssignVolunteer2 program

C H A P T E R 5 Making Decisions

260

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notice there are no semicolons in the if statement code shown in Figure 5-12 until after the
bonus = SALES_BONUS; statement. The expression itemsSold >= MIN_ITEMS is evaluated first.
Only if this expression is true does the program evaluate the second Boolean expression,
totalValue >= MIN_VALUE. If that expression is also true, the bonus assignment statement
executes, and the nested if statement ends.

When you use nested if statements, you must pay careful attention to placement of any else
clauses. For example, suppose you want to distribute bonuses on a revised schedule as follows:

$10 bonus for selling fewer than three items

$25 bonus for selling three or more items whose combined value is under $1,000

$50 bonus for selling at least three items whose combined value is at least $1,000

Figure 5-13 shows the logic.

The Boolean expression in each
if statement must be true for
the bonus assignment to be
made.

truefalse

false trueitemsSold >=
MIN_ITEMS?

totalValue >=
MIN_VALUE?

bonus =
SALES_BONUS

final int MIN_ITEMS = 3;
final int MIN_VALUE = 1000;
final int SALES_BONUS = 50;
int bonus = 0;

if(itemsSold >= MIN_ITEMS)
 if(totalValue >= MIN_VALUE)
 bonus = SALES_BONUS;

Figure 5-12 Determining whether to assign a bonus using nested if statements

Nesting if and if…else Statements

261

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As Figure 5-13 shows, when one if statement follows another, the first else clause
encountered is paired with the most recent if encountered. In this figure, the complete
nested if…else statement fits entirely within the if portion of the outer if…else statement.
No matter how many levels of if…else statements are needed to produce a solution, the else
statements are always associated with their ifs on a “first in-last out” basis. In Figure 5-13, the
indentation of the lines of code helps to show which else statement is paired with which if

statement. Remember, the compiler does not take indentation into account, but consistent
indentation can help readers understand a program’s logic.

TWO TRUTHS & A LIE

Nesting if and if…else Statements

1. Statements in which an if statement is contained inside another if statement
commonly are called nested if statements.

2. When one if statement follows another, the first else clause encountered is
paired with the first if that occurred before it.

3. A complete nested if…else statement always fits entirely within either the if

portion or the else portion of its outer if…else statement.

. der et nuocne fi t necer t so meht hti w deri ap si der et nuocne esual c
esle t srif eht ,r eht ona s woll of t ne met at s fi eno neh W. 2# si t ne met at s esl af ehT

final int MIN_ITEMS = 3;
final int MIN_VALUE = 1000;
final int LARGE_BONUS= 50;
final int MEDIUM_BONUS = 25;
final int SMALL_BONUS = 10;

int bonus = 0;

if(itemsSold >= MIN_ITEMS)
 if(totalValue >= MIN_VALUE)
 bonus = LARGE_BONUS;
 else
 bonus = MEDIUM_BONUS;
else
 bonus = SMALL_BONUS;

false true

false trueitemsSold >=
MIN_ITEMS?

bonus =
LARGE_BONUS

totalValue >=
MIN_VALUE?

bonus =
MEDIUM_BONUS

bonus =
SMALL_BONUS

The last else goes
with the first if.

Figure 5-13 Determining one of three bonuses using nested if statements

C H A P T E R 5 Making Decisions

262

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Using a Nested if Statement

In this section, you add a nested if statement to the AssignVolunteer2 application.

1. Rerun the AssignVolunteer2 program, and enter an invalid code, such as 3.
The selected volunteer is Marco because the program tests only for an
entered value of 1 or not 1. Modify the program to display the entered code,
volunteer, and donation type message only when the entered value is 1 or 2,
and to display the entered code and an error message otherwise. Rename the
class AssignVolunteer3, and save the file as AssignVolunteer3.java.
Figure 5-14 shows two typical executions of the program.

Using Logical AND and OR Operators
In Java, you can combine Boolean tests into a single expression using the logical AND and OR
operators. Such an expression is a compound Boolean expression or a compound condition.

The AND Operator
For an alternative to some nested if statements, you can use the logical AND operator
between two Boolean expressions to create a compound Boolean expression that is true

Figure 5-14 Two typical executions of the AssignVolunteer3 program

Using Logical AND and OR Operators

263

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

when both of its operands are true. In Java, the AND operator is written as two ampersands
(&&). For example, the two statements shown in Figure 5-15 work exactly the same way. In
each case, both the itemsSold variable must be at least the minimum number of items
required for a bonus and the totalValue variable must be at least the minimum required
value for the bonus to be set to SALES_BONUS.

It is important to note that when you use the && operator, you must include a complete
Boolean expression on each side. In other words, like many arithmetic operators, the &&
operator is a binary operator, meaning it requires an operand on each side. If you want to set a
bonus to $400 when a saleAmount is both over $1,000 and under $5,000, the correct
statement is:
if(saleAmount > 1000 && saleAmount < 5000)

bonus = 400;

Even though the saleAmount variable is intended to be used in both parts of the AND
expression, the following statement is incorrect and does not compile because there is not a
complete expression on both sides of the binary && operator:

if(saleAmount > 1000 && < 5000)
bonus = 400;

For clarity, many programmers prefer to surround each Boolean expression that is part of a
compound Boolean expression with its own set of parentheses, as in the following example:

if(itemsSold > MIN_ITEMS)
 if(totalValue >= MIN_VALUE)
 bonus = SALES_BONUS;

if(itemsSold > MIN_ITEMS && totalValue >= MIN_VALUE)
 bonus = SALES_BONUS;

false

false

true

true

itemsSold >
MIN_ITEMS?

bonus =
SALES_BONUS

totalValue >=
MIN_VALUE?

Figure 5-15 Code and logic for bonus-determining decision using nested ifs and the && operator

This statement will not compile
because it does not have a Boolean
expression on each side of the
&& operator.

Don’t Do It

C H A P T E R 5 Making Decisions

264

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

if((saleAmount > 1000) && (saleAmount < 5000))
bonus = 400;

Use the extra parentheses if doing so makes the compound expression clearer to you.

You are never required to use the && operator because using nested if statements always
achieves the same result, but using the && operator often makes your code more concise, less
error-prone, and easier to understand.

The OR Operator
When you want some action to occur even if only one of two conditions is true, you can use
nested if statements, or you can use the logical OR operator, which is written as ||. The
logical OR operator is used to create a compound Boolean expression that is true when at
least one of its operands is true.

For example, if you want to give a discount to any customer who satisfies at least one of two
conditions—buying a minimum number of items or buying any number of items that total a
minimum value—you can write the code using either of the ways shown in Figure 5-16.

The two vertical lines used in the OR operator are sometimes called “pipes.” The pipe appears on the same
key as the backslash on your keyboard.

if(itemsBought >= MIN_ITEMS)
 discountRate = DISCOUNT;
else
 if(itemsValue >= MIN_VALUE)
 discountRate = DISCOUNT;

if(itemsBought >= MIN_ITEMS || itemsValue >= MIN_VALUE)
 discountRate = DISCOUNT;

truefalse

false true

itemsValue >=
MIN_VALUE?

itemsBought >=
MIN_ITEMS?

discountRate =
DISCOUNT

discountRate =
DISCOUNT

Figure 5-16 Determining customer discount when customer needs to meet only one of two criteria

Using Logical AND and OR Operators

265

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As with the && operator, you are never required to use the || operator because using nested
if statements always achieves the same result. However, using the || operator often makes
your code more concise, less error-prone, and easier to understand.

Short-Circuit Evaluation
The expressions on each side of the && and || operators are evaluated only as far as
necessary to determine whether the entire expression is true or false. This feature is called
short-circuit evaluation. With the && operator, both Boolean expression operands must be
true before the action in the result statement can occur. (The same is true for nested ifs, as
you can see in Figure 5-15.) When you use the && operator, if the first tested expression is
false, the second expression is never evaluated because its value does not matter.

The || operator also uses short-circuit evaluation. In other words, because only one of the
Boolean expressions in an || expression must be true to cause the dependent statements to
execute, if the expression to the left of the || is true, then there is no need to evaluate the
expression to the right of the ||. (The same is true for nested ifs, as you can see in Figure 5-16.)
When you use the || operator, if the first tested expression is true, the second expression is
never evaluated because its value does not matter.

If you are using simple comparisons as the operands for the && or || operators, as in the
examples in Figures 5-15 and 5-16, you won’t notice that short-circuit evaluation is occurring.
However, suppose that you have created two methods that return Boolean values and you use
calls to those methods in an if statement, as in the following:
if(method1() && method2())

System.out.println("OK");

Depending on the actions performed within the methods, it might be important to understand
that in this case, if method1() is false, then method2() will not execute. If method2() contains
statements that you want to execute no matter what the value of method1() is, then you should
not use method2() as part of a compound condition, but should execute it on its own, as in the
following example:
boolean isMethod2True = method2();
if(method1() && isMethod2True)

System.out.println("OK");

Similarly, in the following statement, if method1() returns true, then method2() will not
execute because only one operand in an OR expression needs to be true in order for the
entire expression to be true.
if(method1() || method2())

System.out.println("OK");

Anything a method does besides altering local variables or returning a value is a side effect. Because of
short-circuit evaluation, you have to be aware of the possible side effects from an unexecuted method. In
some languages, any method without side effects is called a function, but Java programmers tend not to
use that term.

C H A P T E R 5 Making Decisions

266

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Watch the video Using && and ||.

TWO TRUTHS & A LIE

Using Logical AND and OR Operators

1. The AND operator is written as two ampersands (&&), and the OR operator is written
as two pipes (||).

2. When you use the && and || operators, you must include a complete Boolean
expression on each side.

3. Whether you use an && or || operator, both Boolean expressions are tested in
order from left to right.

. eslaf r o eurt si
noi sser pxe eri t ne eht r eht eh weni mr et ed ot yr assecen sa hcu msa yl no det aul ave er a
noi sser pxe ROr o DNA naf otr ap hcae ni snoi sser pxe ehT. 3# si t ne met at s esl af ehT

You Do It

Using the && Operator

This section helps you create a program that demonstrates how short-circuiting
works with the && operator.

1. Open a new file in your text editor, and type the header and curly braces for a
class named ShortCircuitTestAnd:
public class ShortCircuitTestAnd
{
}

2. Between the curly braces for the class, type the header and braces for a
main() method:
public static void main(String[] args)
{
}

(continues)

Using Logical AND and OR Operators

267

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Within the main() method, insert an if…else statement that tests the return
values of two method calls. If both methods are true, then “Both are true” is
displayed. Otherwise, “Both are not true” is displayed.
if(trueMethod() && falseMethod())

System.out.println("Both are true");
else

System.out.println("Both are not true");

4. Following the closing curly brace for the main() method, but before the
closing curly brace for the class, insert a method named trueMethod().
The method displays the message “True method” and returns a true value.
public static boolean trueMethod()
{

System.out.println("True method");
return true;

}

5. Following the closing curly brace of trueMethod(), insert a method named
falseMethod() that displays the message “False method” and returns a
false value.
public static boolean falseMethod()
{

System.out.println("False method");
return false;

}

6. Save the file as ShortCircuitTestAnd.java, and then compile and execute it.
Figure 5-17 shows the output. First, “True method” is displayed because
trueMethod()was executed as the first half of the Boolean expression in the
program’s if statement. Then, the second half of the Boolean expression
calls falseMethod(). Finally, “Both are not true” is displayed because both
halves of the tested expression were not true.

(continued)

Figure 5-17 Execution of ShortCircuitTestAnd program

(continues)

C H A P T E R 5 Making Decisions

268

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Change the position of the method calls in the if statement so that the
statement becomes the following:
if(falseMethod() && trueMethod())

System.out.println("Both are true");
else

System.out.println("Both are not true");

8. Save the file, compile it, and execute it. Now the output looks like Figure 5-18.
The if statement makes a call to falseMethod(), and its output is displayed.
Because the first half of the Boolean expression is false, there is no need to
test the second half, so trueMethod() never executes, and the program
proceeds directly to the statement that displays “Both are not true”.

9. Change the class name to ShortCircuitTestOr, and immediately save the file
as ShortCircuitTestOr.java. Replace the && operator with the || operator.
Compile and execute the program with trueMethod()to the right of the ||

operator and falseMethod()to its left. Then, reverse the positions of the
methods, and compile and execute the program again. Make sure that you
understand the output each way.

Making Accurate and Efficient Decisions
When new programmers must make a range check, they often introduce incorrect or
inefficient code into their programs. In this section, you learn how to make accurate and
efficient range checks, and you also learn how to use the && and || operators appropriately.

(continued)

Figure 5-18 Execution of ShortCircuitTestAnd after reversing Boolean expressions

Making Accurate and Efficient Decisions

269

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Making Accurate Range Checks
A range check is a series of statements that determine to which of several consecutive series
of values another value falls. Consider a situation in which salespeople can receive one of
three possible commission rates based on their sales:

8% commission on a sale of $1,000 or more

6% commission on a sale of $500 to $999

5% commission on a sale of less than $500

Using three separate if statements to test single Boolean expressions might result in some
incorrect commission assignments. For example, examine the code shown in Figure 5-19.

Using the code shown in Figure 5-19, when a saleAmount is $5,000, for example, the first if
statement executes, and the Boolean expression (saleAmount >= HIGH_LIM) evaluates as true,
so HIGH_RATE is correctly assigned to commissionRate. However, the next if expression,
(saleAmount >= MED_LIM), also evaluates as true, so the commissionRate, which was just set
to HIGH_RATE, is incorrectly reset to MED_RATE.

A high saleAmount
will result in a medium
rate commission.

Don’t Do It

final double HIGH_LIM = 1000.00;
final double HIGH_RATE = 0.08;
final double MED_LIM = 500.00;
final double MED_RATE = 0.06;
final double LOW_LIM = 499.99;
final double LOW_RATE = 0.05;

if(saleAmount >= HIGH_LIM)
 commissionRate = HIGH_RATE;
if(saleAmount >= MED_LIM)
 commissionRate = MED_RATE;
if(saleAmount <= LOW_LIM)
 commissionRate = LOW_RATE;

true

false

false

false

true

true

saleAmount <=
LOW_LIM?

saleAmount
>= MED_LIM?

saleAmount >=
HIGH_LIM?

commissionRate =
HIGH_RATE

commissionRate =
MED_RATE

commissionRate =
LOW_RATE

Figure 5-19 Incorrect commission-determining code and its logic

C H A P T E R 5 Making Decisions

270

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A partial solution to this problem is to use an else statement following the first evaluation, as
shown in Figure 5-20.

With the new code in Figure 5-20, when the saleAmount is $5,000, the expression
(saleAmount >= HIGH_LIM) is true and the commissionRate becomes HIGH_RATE; then
the entire if statement ends. When the saleAmount is not greater than or equal to $1,000
(for example, $800), the first if expression is false, and the else statement executes and
correctly sets the commissionRate to MED_RATE.

The code shown in Figure 5-20 works, but it is somewhat inefficient. When the saleAmount is
any amount over LOW_RATE, either the first if sets commissionRate to HIGH_RATE for amounts
that are at least $1,000, or its else sets commissionRate to MED_RATE for amounts that are
at least $500. In either of these two cases, the Boolean value tested in the next statement,
if(saleAmount <= LOW_LIM), is always false, so commissionRate retains its correct value.
However, it was unnecessary to make the LOW_LIM comparison.

After you know that saleAmount is not at least MED_LIM, rather than asking if(saleAmount

<= LOW_LIM), it’s easier, more efficient, and less error-prone to use an else. If the saleAmount is
not at least HIGH_LIM and is also not at least MED_LIM, it must by default be less than or equal to
LOW_LIM. Figure 5-21 shows this improved logic. Notice that the LOW_LIM constant is no longer
declared because it is not needed anymore—if a saleAmount is not greater than or equal to
MED_LIMIT, the commissionRate must receive the LOW_RATE.

final double HIGH_LIM = 1000.00;
final double HIGH_RATE = 0.08;
final double MED_LIM = 500.00;
final double MED_RATE = 0.06;
final double LOW_LIM = 499.99;
final double LOW_RATE = 0.05;

if(saleAmount >= HIGH_LIM)
 commissionRate = HIGH_RATE;
else
 if(saleAmount >= MED_LIM)
 commissionRate = MED_RATE;
if(saleAmount <= LOW_LIM)
 commissionRate = LOW_RATE;

true

false

false

false

true

true

saleAmount <=
LOW_LIM?

saleAmount
>= MED_LIM?

saleAmount >=
HIGH_LIM?

commissionRate =
HIGH_RATE

commissionRate =
MED_RATE

commissionRate =
LOW_RATE

This question has
already been answered.

Don’t Do It

Figure 5-20 Improved, but inefficient, commission-determining code and its logic

Making Accurate and Efficient Decisions

271

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Making Efficient Range Checks
Within a nested if…else, like the one shown in Figure 5-21, it is most efficient to ask the
question that is most likely to be true first. In other words, if you know that most saleAmount
values are high, compare saleAmount to HIGH_LIM first. That way, you most frequently avoid
asking multiple questions. If, however, you know that most saleAmounts are small, you
should ask if(saleAmount < LOW_LIM) first. The code shown in Figure 5-22 results in the
same commission value for any given saleAmount, but this sequence of decisions is more
efficient when most saleAmount values are small.

final double HIGH_RATE = 0.08;
final double MED_LIM = 1000.00;
final double MED_RATE = 0.06;
final double LOW_LIM = 500.00;
final double LOW_RATE = 0.05;

if(saleAmount < LOW_LIM)
 commissionRate = LOW_RATE;
else
 if(saleAmount < MED_LIM)
 commissionRate = MED_RATE;
 else
 commissionRate = HIGH_RATE;

truefalse

false true

saleAmount <
MED_LIM?

saleAmount <
LOW_LIM?

commissionRate =
LOW_RATE

commissionRate =
HIGH_RATE

commissionRate =
MED_RATE

Figure 5-22 Commission-determining code and logic that evaluates smallest saleAmount first

final double HIGH_LIM = 1000.00;
final double HIGH_RATE = 0.08;
final double MED_LIM = 500.00;
final double MED_RATE = 0.06;
final double LOW_RATE = 0.05;

if(saleAmount >= HIGH_LIM)
 commissionRate = HIGH_RATE;
else
 if(saleAmount >= MED_LIM)
 commissionRate = MED_RATE;
 else
 commissionRate = LOW_RATE;

truefalse

false true

saleAmount >=
MED_LIM?

saleAmount >=
HIGH_LIM?

commissionRate =
HIGH_RATE

commissionRate =
LOW_RATE

commissionRate =
MED_RATE

Figure 5-21 Improved and efficient commission-determining code and its logic

C H A P T E R 5 Making Decisions

272

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 5-22, notice that the comparisons use the < operator instead of <=. That’s because a
saleAmount of $1,000.00 should result in a HIGH_RATE, and a saleAmount of $500.00 should
result in a MED_RATE. If you wanted to use <= comparisons, then you could change the
MED_LIM and LOW_LIM cutoff values to 999.99 and 499.99, respectively, assuming sales occur
only in whole-cent increments.

Testing for a range over 500 or less than or equal to 499.99 might not always yield the same outcome if half-
cents are involved. As examples, organizations might offer mileage allowances such as 42.5 cents per mile,
and sales taxes are often based on values such as 8.5 percent. When you make calculations based on such
values, you need to learn the business rules that govern the desired outcomes.

Using && and || Appropriately
Beginning programmers often use the && operator when they mean to use ||, and often use
|| when they should use &&. Part of the problem lies in the way we use the English language.
For example, your boss might request, “Display an error message when an employee’s hourly
pay rate is under $5.85 and when an employee’s hourly pay rate is over $60.” You define $5.85
as a named constant LOW and $60 as HIGH. However, because your boss used the word and in
the request, you might be tempted to write a program statement like the following:
if(payRate < LOW && payRate > HIGH)

System.out.println("Error in pay rate");

However, as a single variable, no payRate value can ever be both below 5.85 and over 60 at
the same time, so the output statement can never execute, no matter what value the payRate

has. In this case, you must write the following code that uses the || operator to display the
error message under the correct circumstances:
if(payRate < LOW || payRate > HIGH)

System.out.println("Error in pay rate");

Similarly, your boss might request, “Display the names of those employees in departments 1
and 2.” Because the boss used the word and in the request, you might be tempted to write the
following:
if(department == 1 && department == 2)

System.out.println("Name is: " + name);

However, the variable department can never contain both a 1 and a 2 at the same time, so no
employee name will ever be output, no matter what the value of department is. The correct
statement chooses employees whose department is 1 or 2, as follows:
if(department == 1 || department == 2)

System.out.println("Name is: " + name);

Another type of mistake occurs if you use a single ampersand or pipe when you try to indicate
a logical AND or OR. Both & and | are valid Java operators, but a single & or | with integer
operands operates on individual bits. You will learn more about & and | as you continue to
study Java.

This message can never be output because
the Boolean expression can never be true.

Making Accurate and Efficient Decisions

273

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Making Accurate and Efficient Decisions

1. A range check is a series of statements that determine within which of a set of
ranges a value falls.

2. When you must make a series of decisions in a program, it is most efficient to
first ask the question that is most likely to be true.

3. The statement if(payRate < 6.00 && payRate > 50.00) can be used to select
payRate values that are higher or lower than the specified limits.

. e mit e mas eht t a 00. 05 evoba dna 00. 6 wol eb
ht ob eb nac etaRyap r of eul av on esuaceb noi t cel es a eka mot desu ebt onnac

)00.05 > etaRyap && 00.6 < etaRyap(fi t ne met at s ehT. 3# si t ne met at s esl af ehT

Using the switch Statement
By nesting a series of if and else statements, you can choose from any number of
alternatives. For example, suppose you want to display a student’s class year based on
a stored number. Figure 5-23 shows one possible implementation of the logic.

if(year == 1)
System.out.println("Freshman");

else
if(year == 2)

System.out.println("Sophomore");
else

if(year == 3)
System.out.println("Junior");

else
if(year == 4)

System.out.println("Senior");
else

System.out.println("Invalid year");

Figure 5-23 Determining class status using nested if statements

In program segments like the one in Figure 5-23, many programmers (particularly those familiar with the
Visual Basic programming language) would code each else and the if clause that follows it on the same
line, and refer to the format as an else…if clause. Because Java ignores whitespace, the logic is the
same whether each else and the subsequent if are on the same line or different lines.

C H A P T E R 5 Making Decisions

274

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An alternative to using the series of nested if statements shown in Figure 5-23 is to use the
switch statement. The switch statement is useful when you need to test a single variable
against a series of exact integer (including int, byte, and short types), character, or string
values.

The ability to use strings as the tested values in a switch statement was a new feature in Java 7; only
numbers or characters could be used prior to that release.

The switch statement uses four keywords:

switch starts the statement and is followed immediately by a test expression enclosed
in parentheses.

case is followed by one of the possible values for the test expression and a colon.

break optionally terminates a switch statement at the end of each case.

default optionally is used prior to any action that should occur if the test variable
does not match any case.

Figure 5-24 shows the switch statement used to display the four school years based on an
integer named year.

switch(year)
{

case 1:
System.out.println("Freshman");
break;

case 2:
System.out.println("Sophomore");
break;

case 3:
System.out.println("Junior");
break;

case 4:
System.out.println("Senior");
break;

default:
System.out.println("Invalid year");

}

Figure 5-24 Determining class status using a switch statement

You are not required to list the case values in ascending order, as shown in Figure 5-24,
although doing so often makes a statement easier to understand.

Using the switch Statement

275

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The switch statement shown in Figure 5-24 begins by evaluating the year variable shown in
the first line. For example, if year is equal to 3, the statement that displays “Junior” executes.
The break statement bypasses the rest of the switch statement, and execution continues with
any statement after the closing curly brace of the switch statement. If the year variable does
not contain the same value as any of the case statements, the default statement or
statements execute.

You can leave out the break statements in a switch statement. However, if you omit
the break and the program finds a match for the test variable, all the statements within
the switch statement execute from that point forward. For example, if you omit each
break statement in the code shown in Figure 5-24, when the year is 3, the first two
cases are bypassed, but Junior, Senior, and Invalid year all are output. You should
intentionally omit the break statements if you want all subsequent cases to execute
after the test variable is matched. For example, the switch statement in Figure 5-25
displays all the tasks that remain for the week on any particular day. When day is
“Wednesday”, Send out meeting reminders, Order snacks for delivery, and Meeting 10 am
are all displayed.

switch(day)
{

case "Monday":
System.out.println("Reserve room for Friday meeting");

case "Tuesday":
System.out.println("Prepare PowerPoint slides");

case "Wednesday":
System.out.println("Send out meeting reminders");

case "Thursday":
System.out.println("Order snacks for delivery");

case "Friday":
System.out.println("Meeting 10 am");

default:
System.out.println("Invalid day");

}

Figure 5-25 Determining all the tasks left for the week using a switch statement

You do not need to write code for each case in a switch statement. For example, suppose that
the supervisor for departments 1, 2, and 3 is Jones, but other departments have different
supervisors. In that case, you might use the code in Figure 5-26.

C H A P T E R 5 Making Decisions

276

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

int department;
String supervisor;
// Statements to get department go here
switch(department)
{

case 1:
case 2:
case 3:

supervisor = "Jones";
break;

case 4:
supervisor = "Staples";
break;

case 5:
supervisor = "Tejano";
break;

default:
System.out.println("Invalid department code");

}

Figure 5-26 Using empty case statements so the same result occurs in multiple cases

On the other hand, you might use strings in a switch statement to determine whether a
supervisor name is valid, as shown in the method in Figure 5-27.

public static boolean isValidSupervisor(String name)
{

boolean isValid;
switch(name)
{

case "Jones":
case "Staples":
case "Tejano":

isValid = true;
break;

default:
isValid = false;

}
return isValid;

}

Figure 5-27 A method that uses a switch statement with string values

When several char variables must be checked and you want to ignore whether they are
uppercase or lowercase, one frequently used technique employs empty case statements, as in
Figure 5-28.

Using the switch Statement

277

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

switch(departmentCode)
{

case 'a':
case 'A':

departmentName = "Accounting";
break;

case 'm':
case 'M':

departmentName = "Marketing";
break;

// and so on
}

Figure 5-28 Using a switch statement to ignore character case

You are never required to use a switch statement; you can always achieve the same results
with nested if statements. The switch statement is simply convenient to use when there are
several alternative courses of action that depend on a single integer, character, or string value.
In addition, it makes sense to use switch only when a reasonable number of specific matching
values need to be tested.

Watch the video Using the switch Statement.

TWO TRUTHS & A LIE

Using the switch Statement

1. When you must make more decisions than Java can support, you use a switch

statement instead of nested if…else statements.

2. The switch statement is useful when you need to test a single variable against
a series of exact integer or character values.

3. A break statement bypasses the rest of its switch statement, and execution
continues with any statement after the closing curly brace of the switch

statement.

. evi t anr etl a
t nei nevnoc at suj si t ne met at s hctiws ehT. sevi t anr etl af or eb mun yna morf esoohc

nac uoy , st ne met at s esle dna fif o sei r es a gni t sen yB. 1# si t ne met at s esl af ehT

C H A P T E R 5 Making Decisions

278

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Using the switch Statement

In this section, you alter the AssignVolunteer3 program to add more options for
donation types, and then use a switch statement to assign the appropriate volunteer.

1. Open the AssignVolunteer3.java file that you created in a “You Do It”
section earlier in this chapter. Change the class name to AssignVolunteer4,
and immediately save the file as AssignVolunteer4.java.

2. Keep the declaration CLOTHING_CODE, but replace the OTHER_CODE declaration
with three new ones:
final int FURNITURE_CODE = 2;
final int ELECTRONICS_CODE = 3;
final int OTHER_CODE = 4;

3. Retain the two pricing volunteer declarations, but add two new ones:
final String FURNITURE_PRICER = "Walter";
final String ELECTRONICS_PRICER = "Lydia";

4. Replace the output statement that asks the user to enter 1 or 2 with the
following simpler statement:
System.out.print("Enter an integer… ");

In a professional program, you might want to present the user with details
about all the options, but this example keeps the prompt simple to save you
from excessive typing.

5. Replace the existing if…else statement with the following switch statement:
switch(donationType)
{

case(CLOTHING_CODE):
volunteer = CLOTHING_PRICER;
message = "a clothing donation";
break;

case(FURNITURE_CODE):
volunteer = FURNITURE_PRICER;
message = "a furniture donation";
break;

case(ELECTRONICS_CODE):
volunteer = ELECTRONICS_PRICER;
message = "an electronics donation";
break;

(continues)

Using the switch Statement

279

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

case(OTHER_CODE):
volunteer = OTHER_PRICER;
message = "another donation type";
break;

default:
volunteer = "invalid";
message = "an invalid donation type";

}

6. Save the file, and then compile and execute it. Figure 5-29 shows a typical
execution.

Using the Conditional and NOT Operators
Besides using if statements and switch statements, Java provides one more way to make
decisions. The conditional operator requires three expressions separated with a question
mark and a colon and is used as an abbreviated version of the if…else statement. As with the
switch statement, you are never required to use the conditional operator; it is simply a
convenient shortcut. The syntax of the conditional operator is:
testExpression ? trueResult : falseResult;

The first expression, testExpression, is a Boolean expression that is evaluated as true or
false. If it is true, the entire conditional expression takes on the value of the expression
following the question mark (trueResult). If the value of the testExpression is false, the
entire expression takes on the value of falseResult.

(continued)

Figure 5-29 Typical execution of the AssignVolunteer4 program

C H A P T E R 5 Making Decisions

280

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You have seen many examples of binary operators such as == and &&. The conditional operator is a ternary
operator—one that needs three operands. Through Java 6, the conditional operator is the only ternary
operator in Java, so it is sometimes referred to as “the” ternary operator. Java 7 introduces a collapsed
version of the ternary operator that checks for null values assigned to objects. The new operator is called
the Elvis operator because it uses a question mark and colon together (?:); if you view it sideways, it reminds
you of Elvis Presley.

For example, suppose you want to assign the smallest price to a sale item. Let the variable a be
the advertised price and the variable b be the discounted price on the sale tag. The expression
for assigning the smallest cost is:
smallerNum = (a < b) ? a : b;

When evaluating the expression a < b, where a is less than b, the entire conditional expression
takes the value to the left of the colon, a, which then is assigned to smallerNum. If a is not less
than b, the expression assumes the value to the right of the colon, b, and b is assigned to
smallerNum.

You could achieve the same results with the following if…else statement:
if(a < b)

smallerNum = a;
else

smallerNum = b;

The advantage of using the conditional operator is the conciseness of the statement.

Using the NOT Operator
You use the NOT operator, which is written as the exclamation point (!), to negate the result
of any Boolean expression. Any expression that evaluates as true becomes false when
preceded by the NOT operator, and accordingly, any false expression preceded by the NOT
operator becomes true.

For example, suppose a monthly car insurance premium is $200 if the driver is age 25 or
younger and $125 if the driver is age 26 or older. Each of the if…else statements in Figure 5-30
correctly assigns the premium values.

if(!(age >= 26))
 premium = 200;
else
 premium = 125;

if(age <= 25)
 premium = 200;
else
 premium = 125;

if(!(age <= 25))
 premium = 125;
else
 premium = 200;

if(age >= 26)
 premium = 125;
else
 premium = 200;

Figure 5-30 Four if…else statements that all do the same thing

Using the Conditional and NOT Operators

281

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 5-30, the statements with the ! operator are somewhat harder to read, particularly
because they require the double set of parentheses, but the result of the decision-making
process is the same in each case. Using the ! operator is clearer when the value of a Boolean
variable is tested. For example, a variable initialized as boolean oldEnough = (age >= 25); can
become part of the relatively easy-to-read expression if(!oldEnough)….

TWO TRUTHS & A LIE

Using the Conditional and NOT Operators

1. The conditional operator is used as an abbreviated version of the if…else

statement and requires two expressions separated with an exclamation point.

2. The NOT operator is written as the exclamation point (!).

3. The value of any false expression becomes true when preceded by the NOT
operator.

. nol oc a dna kr a mnoit seuq a hti w det ar apes
snoi sser pxe eer ht seri uqer r ot ar epol anoi ti dnoc ehT. 1# si t ne met at s esl af ehT

Understanding Operator Precedence
You can combine as many && or || operators as you need to make a decision. For example,
if you want to award bonus points (defined as BONUS) to any student who receives a perfect
score on any of four quizzes, you might write a statement like the following:
if(score1 == PERFECT || score2 == PERFECT ||

score3 == PERFECT || score4 == PERFECT)
bonus = BONUS;

else
bonus = 0;

In this case, if at least one of the score variables is equal to the PERFECT constant, the student
receives the bonus points.

Although you can combine any number of && or || operations in an expression, special care
must be taken when you mix them. You learned in Chapter 2 that arithmetic operations have
higher and lower precedences, and an operator’s precedence makes a difference in how an
expression is evaluated. For example, within an arithmetic expression, multiplication and
division are always performed prior to addition or subtraction. In the same way, && has higher
precedence than ||. Table 5-1 shows the precedence of the operators you have used so far.

C H A P T E R 5 Making Decisions

282

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, consider the program segments shown in Figure 5-31. These code segments are
intended to be part of an insurance company program that determines whether an additional
premium should be charged to a driver who meets both of the following criteria:

Has more than two traffic tickets or is under 25 years old

Is male

One way to remember the precedence of the AND and OR operators is to remember that they are evaluated
in alphabetical order.

Precedence Operator(s) Symbol(s)

Highest Logical NOT !

Intermediate Multiplication, division,
modulus

* / %

Addition, subtraction + -

Relational > < >= <=

Equality == !=

Logical AND &&

Logical OR ||

Conditional ?:

Lowest Assignment =

Table 5-1 Operator precedence for operators used so far

// Assigns extra premiums correctly
if((trafficTickets > 2 || age < 25) && gender == 'M')
extraPremium = 200;

// Assigns extra premiums incorrectly
if(trafficTickets > 2 || age < 25 && gender == 'M')
 extraPremium = 200;

The expression within
the inner parentheses
is evaluated first.

The expression that
uses the && operator
is evaluated first.

Figure 5-31 Two comparisons using && and ||

Understanding Operator Precedence

283

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Consider a 30-year-old female driver with three traffic tickets; according to the stated
criteria, she should not be assigned the extra premium because she is not male. With the
first if statement in Figure 5-31, the && operator takes precedence, so age < 25 && gender == 'M'

is evaluated first. The value is false because age is not less than 25, so the expression is
reduced to trafficTickets > 2 or false. Because the value of the tickets variable is greater
than 2, the entire expression is true, and $200 is assigned to extraPremium, even though it
should not be.

In the second if statement shown in Figure 5-31, parentheses have been added so the ||

operator is evaluated first. The expression trafficTickets > 2 || age < 25 is true because the
value of trafficTickets is 3. So the expression evolves to true && gender== 'M'. Because
gender is not ‘M’, the value of the entire expression is false, and the extraPremium value is
not assigned 200, which is the correct outcome. Even when an expression would be evaluated
as you intend without adding extra parentheses, you can always add them to help others more
easily understand your programs.

The following two conventions are important to keep in mind:

The order in which you use operators makes a difference.

You can always use parentheses to change precedence or make your intentions clearer.

TWO TRUTHS & A LIE

Understanding Operator Precedence

1. Assume p, q, and r are all Boolean variables that have been assigned the value
true. After the following statement executes, the value of p is still true.

p = !q || r;

2. Assume p, q, and r are all Boolean variables that have been assigned the value
true. After the following statement executes, the value of p is still true.

p = !(!q && !r);

3. Assume p, q, and r are all Boolean variables that have been assigned the value
true. After the following statement executes, the value of p is still true.

p = !(q || !r);

. p ot ti sngi ssa dna eslaf ot tl user t aht sesr ever r ot ar epo TON gni dael ehT. eurt si
seseht ner ap eht ni hti wnoi sser pxe eri t ne eht os, eurt sa det aul ave si q t sri F. eslaf

si pf o eul av eht , set ucexe ;)r! || q(! = p r etf a neht , eurt eul av eht dengi ssa
neeb evaht aht sel bai r av nael ooBll a er a r dna, q, pfI . 3# si t ne met at s esl af ehT

C H A P T E R 5 Making Decisions

284

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Adding Decisions and Constructors to Instance Methods
You frequently will want to use what you have learned about decision making to control the
allowed values in objects’ fields. Whether values are assigned to objects by constructors or
by mutator methods, you often will need to use decisions to restrict the values assigned to
fields.

For example, suppose that you create an Employee class as shown in Figure 5-32. The
class contains two fields that hold an employee number and pay rate. The constructor
accepts values for these fields as parameters, but instead of simply assigning the parameters
to the fields, the code determines whether each value is within the allowed limits for the
field.

public class Employee
{

private int empNum;
private double payRate;
public int MAX_EMP_NUM = 9999;
public double MAX_RATE = 60.00;
Employee(int num, double rate)
{

if(num <= MAX_EMP_NUM)
empNum = num;

else
empNum = MAX_EMP_NUM;

if(payRate <= MAX_RATE)
payRate = rate;

else
payRate = 0;

}
public int getEmpNum()
{

return empNum;
}
public double getPayRate()
{

return payRate;
}

}

Figure 5-32 The Employee class that contains a constructor that makes decisions

If the Employee class in Figure 5-32 also contained set methods for empNum and payRate, and
the rules governing appropriate values were the same as the rules used in the constructor,
then it would make sense for the decisions to be made in the set methods and to code the
constructor to call the set methods. That way, the decisions would appear only once in the
class, saving time and space. Additionally, if a change to the rules was needed in the future—
for example, if different default values were desired for either of the fields—then the code
would be changed in just one place, reducing the likelihood of error or inconsistency.

Adding Decisions and Constructors to Instance Methods

285

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Adding Decisions to Constructors and Instance Methods

In this section, you modify the DogTriathlonParticipant class you created in
Chapter 4. Because some points are awarded for participation in each event, a score
of 0 is not possible unless a dog did not participate. In the existing class, the
constructor accepts the number of events in which a dog participated and the
participant’s score in each event. Currently, there is no way to check whether these
values are in agreement. Now, you can modify the class so that the number of events
matches the number of valid scores supplied to the constructor.

1. Open the DogTriathlonParticipant.java file that you created in Chapter 4.
Change the class name to DogTriathlonParticipant2, and immediately save
the file as DogTriathlonParticipant2.java.

2. Change the constructor name to DogTriathlonParticipant2.

3. If 0 is assigned to the number of events in the existing program, computing
the average score produces a nonnumeric result. Now that you know how to
use decisions, you can fix this problem. In place of the arithmetic statement
that produces the average score using division, use the following if…else

statement:
if(NUM_EVENTS == 0)

avg = 0;
else

avg = (double) total / NUM_EVENTS;

4. Add a Boolean field to the list of class fields. This field holds true if the
number of events reported matches the number of nonzero scores. Other-
wise, the field holds false:
private boolean scoresAgree;

5. There are several ways to ensure that the number of events passed to the
constructor matches the number of nonzero scores passed. One way is to
add 1 to a total for each nonzero score and then determine whether that total
equals the passed number of events. To accomplish this, first add the
following code to the constructor immediately after the statements that
assign values to the name and number of events. These statements declare a
variable that holds the number of nonzero scores passed to the constructor,
and then add 1 to the variable for each nonzero event score:

(continues)

C H A P T E R 5 Making Decisions

286

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

int totalNot0 = 0;
if(score1 != 0)

totalNot0 = totalNot0 + 1;
if(score2 != 0)

totalNot0 = totalNot0 + 1;
if(score3 != 0)

totalNot0 = totalNot0 + 1;

6. Compare the number of events to the total of nonzero scores, and set the
Boolean variable scoresAgree:
if(numEvents == totalNot0)

scoresAgree = true;
else

scoresAgree = false;

7. Replace the statements that unconditionally assigned values to obedienceScore,
conformationScore, and agilityScore with the following if…else statement,
which assigns the constructor’s parameters to the three scores only when
scoresAgree is true.
if(scoresAgree)
{

obedienceScore = score1;
conformationScore = score2;
agilityScore = score3;

}
else
{

obedienceScore = 0;
conformationScore = 0;
agilityScore = 0;

}

8. In the display() method for the DogTriathlonParticipant2 class, add the
following statement that displays a special notice if an error occurred in the
number of events value.
if(!scoresAgree)

System.out.println("\nNotice! Number of events for " +
name + " does not agree with scores reported.");

9. Save the file and compile it.

10. Open the TestDogs.java file that you created in a “You Do It” section in
Chapter 4. Rename the class TestDogs2, and immediately save the file as
TestDogs2.java.

(continued)

(continues)

Adding Decisions and Constructors to Instance Methods

287

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11. Change DogTriathlonParticipant to DogTriathlonParticipant2 in the six
places it occurs in the three object declarations.

12. Change the object declarations so that the number of events and the number
of nonzero scores used as constructor arguments agree for some objects
but not for others.

13. Save the file, and then compile and execute it. Figure 5-33 shows a typical
execution in which one participant’s entries are valid but the other two contain
errors.

14. Change the values in the TestDogs2 program. Recompile and reexecute the
program several times to ensure that using various combinations of number
of events and event scores produces appropriate results.

15. On your own, modify the DogTriathlonParticipant2 class and rename it
DogTriathlonParticipant3. In this version, do not use a count of the
nonzero score parameters to determine whether the number of events
matches the number of valid scores used as arguments. Instead, use only
decisions to ensure that the parameters are in agreement. Save the file
as DogTriathlonParticipant3.java, and create a file named TestDogs3.java
that you can use to test the class. Be sure to test every possible combination of
constructor parameters in the TestDogs3 class—for example, when the events
parameter is 2, it is correct whether the nonzero scores are the first and
second, the first and third, or the second and third.

(continued)

Figure 5-33 Output of TestDogs2 program

C H A P T E R 5 Making Decisions

288

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It
Don’t ignore subtleties in boundaries used in decision making. For example, selecting
employees who make less than $20 an hour is different from selecting employees who
make $20 an hour or less.

Don’t use the assignment operator instead of the comparison operator when testing
for equality.

Don’t insert a semicolon after the Boolean expression in an if statement; insert the
semicolon after the entire statement is completed.

Don’t forget to block a set of statements with curly braces when several statements
depend on the if or the else clause.

Don’t forget to include a complete Boolean expression on each side of an && or ||
operator.

Don’t try to use a switch statement to test anything other than an integer, character,
or string value.

Don’t forget a break statement if one is required by the logic of your switch statement.

Don’t use the standard relational operators to compare objects; use them only with the
built-in Java types. In the chapter “Characters, Strings, and the StringBuilder,” you will
learn how to compare Strings correctly, and in the chapter “Advanced Inheritance
Concepts” you will learn to compare other objects.

Key Terms
Pseudocode is a tool that helps programmers plan a program’s logic by writing plain English
statements.

A flowchart is a tool that helps programmers plan a program’s logic by writing the steps in
diagram form, as a series of shapes connected by arrows.

A sequence structure is a logical structure in which one step follows another
unconditionally.

A decision structure is a logical structure that involves choosing between alternative courses
of action based on some value within a program.

Boolean values are values that are true or false; every computer decision results in a
Boolean value.

The if statement is used to write a single-alternative selection.

A single-alternative selection is a decision structure that performs an action, or not, based on
one alternative.

Key Terms

289

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The equivalency operator (==) compares values and returns true if they are equal.

An empty statement contains only a semicolon.

The if…else statement provides the mechanism to perform one action when a Boolean
expression evaluates as true and a different action when a Boolean expression evaluates as
false.

A dual-alternative selection takes one of two possible courses of action.

The if clause of an if…else statement is the part that executes when the evaluated Boolean
expression is true.

The else clause of an if…else statement is the part that executes when the evaluated
Boolean expression is false.

A nested if statement contains an if statement within another if statement.

A compound Boolean expression is one that contains an AND or OR operator.

A compound condition is tested in a compound Boolean expression.

The logical AND operator uses two Boolean expressions as operands, and evaluates to true if
both operands are true. The AND operator is written as two ampersands (&&).

The logical OR operator uses two Boolean expressions as operands, and evaluates to true if
either operand is true. The OR operator is written as two pipes (||).

Short-circuit evaluation describes the feature of the AND and OR operators in which
evaluation is performed only as far as necessary to make a final decision.

A side effect is any action in a method other than returning a value.

A function is a method with no side effects in some programming languages.

A range check is a series of statements that determine within which of a set of ranges a
value falls.

An else…if clause is a format used in nested if statements in which each instance of else
and its subsequent if are placed on the same line.

The switch statement uses up to four keywords to test a single variable against a series of
exact integer or character values. The keywords are switch, case, break, and default.

The conditional operator requires three expressions separated with a question mark and a
colon, and is used as an abbreviated version of the if…else statement.

A ternary operator is one that needs three operands.

The NOT operator (!) negates or reverses the result of any Boolean expression.

C H A P T E R 5 Making Decisions

290

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary
Making a decision involves choosing between two alternative courses of action based on
some value within a program.

The if statement is used to make a decision based on a Boolean expression. A single-
alternative selection performs an action based on one alternative; a dual-alternative
selection, or if…else, provides the mechanism for performing one action when a Boolean
expression is true and a different action when the expression is false.

Any number of statements can be blocked to be dependent on an if or an else clause.

Nested if statements are particularly useful when two or more conditions must be met
before some action occurs.

The AND operator (&&) is used to create a compound Boolean expression that is true

when all of its operands are true. The OR operator (||) is used to create a compound
Boolean expression that is true when at least one of its operands is true.

New programmers frequently cause errors in their if statements when they perform a
range check incorrectly or inefficiently, or when they use the wrong operator while trying
to make an AND or OR decision.

The switch statement tests a single variable against a series of exact integer, character, or
string values.

The conditional operator requires three expressions, a question mark, and a colon, and is
used as an abbreviated version of the if…else statement. The NOT operator (!) negates
the result of any Boolean expression.

Operator precedence controls how expressions are evaluated. You can use parentheses to
change precedence or make your intentions clearer.

Decisions are frequently used to control field values.

Review Questions
1. The logical structure in which one instruction occurs after another with no branch-

ing is a .

a. sequence
b. selection

c. loop
d. case

2. Which of the following is typically used in a flowchart to indicate a decision?

a. square
b. rectangle

c. diamond
d. oval

3. Which of the following is not a type of if statement?

a. single-alternative
b. dual-alternative

c. reverse
d. nested

Review Questions

291

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. A decision is based on a(n) value.

a. convoluted
b. absolute

c. definitive
d. Boolean

5. In Java, the value of (14 > 7) is .

a. true

b. false

c. 4
d. 7

6. Assuming the variable score has been assigned the value 13, which of the following
statements displays XXX?

a. if(score > 0) System.out.println("XXX");

b. if(score > 17); System.out.println("XXX");

c. if(score < 7); System.out.println("XXX");

d. All of the above display XXX.

7. What is the output of the following code segment?
t = 10;
if(t > 7)
{

System.out.print("AAA");
System.out.print("BBB");

}

a. AAA
b. BBB

c. AAABBB
d. nothing

8. What is the output of the following code segment?
t = 0;
if(t > 7)

System.out.print("AAA");
System.out.print("BBB");

a. AAA
b. BBB

c. AAABBB
d. nothing

9. What is the output of the following code segment?
t = 7;
if(t > 7)
{

System.out.print("AAA");
System.out.print("BBB");

}

a. AAA
b. BBB

c. AAABBB
d. nothing

C H A P T E R 5 Making Decisions

292

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. When you code an if statement within another if statement, the statements
are .

a. notched
b. nestled

c. nested
d. sheltered

11. The operator that combines two conditions into a single Boolean value that is true

only when both of the conditions are true is .

a. $$

b. !!

c. ||

d. &&

12. The operator that combines two conditions into a single Boolean value that is true
when at least one of the conditions is true is .

a. $$

b. !!

c. ||

d. &&

13. Assuming a variable f has been initialized to 5, which of the following statements
sets g to 0?

a. if(f > 6 || f == 5) g = 0;

b. if(f < 3 || f > 4) g = 0;

c. if(f >= 0 || f < 2) g = 0;

d. All of the above statements set g to 0.

14. Which of the following has the lowest precedence?

a. <

b. ==

c. &&

d. ||

15. Which of the following statements correctly outputs the names of voters who live in
district 6 and all voters who live in district 7?

a. if(district == 6 || 7)
System.out.println("Name is " + name);

b. if(district == 6 || district == 7)
System.out.println("Name is " + name);

c. if(district = 6 && district == 7)
System.out.println("Name is " + name);

d. two of these

16. Which of the following displays “Error” when a student ID is less than 1000 or more
than 9999?

a. if(stuId < 1000) if(stuId > 9999)
System.out.println("Error");

b. if(stuId < 1000 && stuId > 9999)
System.out.println("Error");

Review Questions

293

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

c. if(stuId < 1000)
System.out.println("Error");

else
if(stuId > 9999)

System.out.println("Error");

d. Two of these are correct.

17. You can use the statement to terminate a switch statement.

a. switch

b. end

c. case

d. break

18. Which of the following cannot be the argument tested in a switch statement?

a. int

b. char

c. double

d. String

19. Assuming a variable w has been assigned the value 15, what does the following
statement do?
w == 15 ? x = 2 : x = 0;

a. assigns 15 to w

b. assigns 2 to x

c. assigns 0 to x

d. nothing

20. Assuming a variable y has been assigned the value 6, the value of !(y < 7)
is .

a. 6
b. 7

c. true

d. false

Exercises

Programming Exercises

1. Write an application that asks a user to enter an integer. Display a statement that
indicates whether the integer is even or odd. Save the file as EvenOdd.java.

2. Write an application that asks a user to enter three integers. Display them in
ascending and descending order. Save the file as AscendingAndDescending.java.

3. a. Write an application for the Summerdale Condo Sales office; the program deter-
mines the price of a condominium. Ask the user to choose 1 for park view, 2 for
golf course view, or 3 for lake view. The output is the name of the chosen view as
well as the price of the condo. Park view condos are $150,000, condos with golf
course views are $170,000, and condos with lake views are $210,000. If the user
enters an invalid code, set the price to 0. Save the file as CondoSales.java.

C H A P T E R 5 Making Decisions

294

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. Add a prompt to the CondoSales application to ask the user to specify a (1) garage
or a (2) parking space, but only if the view selection is valid. Add $5,000 to the
price of any condo with a garage. If the parking value is invalid, display an
appropriate message and assume that the price is for a condo with no garage.
Save the file as CondoSales2.java.

4. Write a program for Horizon Phones, a provider of cellular phone service. Prompt a
user for maximum monthly values for talk minutes used, text messages sent, and
gigabytes of data used, and then recommend the best plan for the customer’s needs. A
customer who needs fewer than 500 minutes of talk and no text or data should accept
Plan A at $49 per month. A customer who needs fewer than 500 minutes of talk
and any text messages should accept Plan B at $55 per month. A customer who needs
500 or more minutes of talk and no data should accept either Plan C for up to 100
text messages at $61 per month or Plan D for 100 text messages or more at $70 per
month. A customer who needs any data should accept Plan E for up to 2 gigabytes at
$79 or Plan F for 2 gigabytes or more at $87. Save the file as CellPhoneService.java.

5. a. Write an application that prompts a user for a month, day, and year. Display a
message that specifies whether the entered date is (1) not this year, (2) in an earlier
month this year, (3) in a later month this year, or (4) this month. Save the file as
PastPresentFuture.java.

b. Use the Web to learn how to use the LocalDate Boolean methods isBefore(),
isAfter(), and equals(). Use your knowledge to write a program that prompts a
user for a month, day, and year, and then displays a message specifying whether
the entered day is in the past, the current date, or in the future. Save the file as
PastPresentFuture2.java.

6. Barnhill Fastener Company runs a small factory. The company employs workers who
are paid one of three hourly rates depending on skill level:

Each factory worker might work any number of hours per week; any hours over 40
are paid at one and one-half times the usual rate.

In addition, workers in skill levels 2 and 3 can elect the following insurance options:

Skill Level Hourly Pay Rate ($)

1 17.00

2 20.00

3 22.00

Option Explanation Weekly Cost to Employee ($)

1 Medical insurance 32.50

2 Dental insurance 20.00

3 Long-term disability insurance 10.00

Exercises

295

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Also, workers in skill level 3 can elect to participate in the retirement plan at 3% of
their gross pay.

Write an interactive Java payroll application that calculates the net pay for a factory
worker. The program prompts the user for skill level and hours worked, as well as
appropriate insurance and retirement options for the employee’s skill level category.
The application displays: (1) the hours worked, (2) the hourly pay rate, (3) the regular
pay for 40 hours, (4) the overtime pay, (5) the total of regular and overtime pay, and
(6) the total itemized deductions. If the deductions exceed the gross pay, display an
error message; otherwise, calculate and display (7) the net pay after all the deductions
have been subtracted from the gross. Save the file as Pay.java.

7. Create a class that holds data about a job applicant. Include a name, a phone number,
and four Boolean fields that represent whether the applicant is skilled in each of the
following areas: word processing, spreadsheets, databases, and graphics. Include a
constructor that accepts values for each of the fields. Also include a get method for
each field. Create an application that instantiates several job applicant objects and
pass each in turn to a Boolean method that determines whether each applicant is
qualified for an interview. Then, in the main() method, display an appropriate
method for each applicant. A qualified applicant has at least three of the four skills.
Save the files as JobApplicant.java and TestJobApplicants.java.

8. Create an Automobile class for a dealership. Include fields for an ID number, make,
model, color, year, and miles per gallon. Include get and set methods for each field.
Do not allow the ID to be negative or more than 9999; if it is, set the ID to 0. Do not
allow the year to be earlier than 2000 or later than 2017; if it is, set the year to 0. Do
not allow the miles per gallon to be less than 10 or more than 60; if it is, set the miles
per gallon to 0. Include a constructor that accepts arguments for each field value and
uses the set methods to assign the values. Write an application that declares several
Automobile objects and demonstrates that all the methods work correctly. Save the
files as Automobile.java and TestAutomobiles.java.

9. Create a class named Apartment that holds an apartment number, number of
bedrooms, number of baths, and rent amount. Create a constructor that accepts
values for each data field. Also create a get method for each field. Write an
application that creates at least five Apartment objects. Then prompt a user to enter
a minimum number of bedrooms required, a minimum number of baths required,
and a maximum rent the user is willing to pay. Display data for all the Apartment

objects that meet the user’s criteria or an appropriate message if no such apartments
are available. Save the files as Apartment.java and TestApartments.java.

10. Use the Web to locate the lyrics to the traditional song “The Twelve Days of
Christmas.” The song contains a list of gifts received for the holiday. The list is
cumulative so that as each “day” passes, a new verse contains all the words of the
previous verse, plus a new item. Write an application that displays the words to the
song starting with any day the user enters. (Hint: Use a switch statement with cases
in descending day order and without any break statements so that the lyrics for any
day repeat all the lyrics for previous days.) Save the file as TwelveDays.java.

C H A P T E R 5 Making Decisions

296

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Debugging Exercises
1. Each of the following files in the Chapter05 folder of your downloadable student files

has syntax and/or logic errors. In each case, determine the problem and fix the
program. After you correct the errors, save each file using the same filename
preceded with Fix. For example, save DebugFive1.java as FixDebugFive1.java.

a. DebugFive1.java
b. DebugFive2.java

c. DebugFive3.java
d. DebugFive4.java

Game Zone
1. In Chapter 1, you created a class called RandomGuess. In this game, players guess

a number, the application generates a random number, and players determine
whether they were correct. Now that you can make decisions, modify the applica-
tion so it allows a player to enter a guess before the random number is displayed,
and then displays a message indicating whether the player’s guess was correct, too
high, or too low. Save the file as RandomGuess2.java. (After you finish the next
chapter, you will be able to modify the application so that the user can continue
to guess until the correct answer is entered.)

2. Create a lottery game application. Generate three random numbers (see Appendix D
for help in doing so), each between 0 and 9. Allow the user to guess three numbers.
Compare each of the user’s guesses to the three random numbers and display a
message that includes the user’s guess, the randomly determined three-digit
number, and the amount of money the user has won as follows:

Make certain that your application accommodates repeating digits. For example, if a
user guesses 1, 2, and 3, and the randomly generated digits are 1, 1, and 1, do not give
the user credit for three correct guesses—just one. Save the file as Lottery.java.

Matching Numbers Award ($)

Any one matching 10

Two matching 100

Three matching, not in order 1,000

Three matching in exact order 1,000,000

No matches 0

Exercises

297

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. In Chapter 3, you created a Card class. Modify the Card class so the setValue()

method does not allow a Card’s value to be less than 1 or higher than 13. If the
argument to setValue() is out of range, assign 1 to the Card’s value.

In Chapter 3, you also created a PickTwoCards application that randomly selects two
playing cards and displays their values. In that application, all Card objects arbitrarily
were assigned a suit represented by a single character, but they could have different
values, and the player observed which of two Card objects had the higher value. Now,
modify the application so the suit and the value both are chosen randomly. Using two
Card objects, play a very simple version of the card game War. Deal two Cards—one
for the computer and one for the player—and determine the higher card, then display
a message indicating whether the cards are equal, the computer won, or the player
won. (Playing cards are considered equal when they have the same value, no matter
what their suit is.) For this game, assume the Ace (value 1) is low. Make sure that the
two Cards dealt are not the same Card. For example, a deck cannot contain more than
one Card representing the 2 of Spades. If two cards are chosen to have the same value,
change the suit for one of them. Save the application as War.java. (After you study
the chapter “Arrays,” you will be able to create a more sophisticated War game in
which you use an entire deck without repeating cards.)

4. In Chapter 4, you created a Die class from which you could instantiate an object
containing a random value from 1 through 6. You also wrote an application that
randomly “throws” two dice and displays their values. Modify the application so it
determines whether the two dice are the same, the first has a higher value, or the
second has a higher value. Save the application as TwoDice2.java.

5. In the game Rock Paper Scissors, two players simultaneously choose one of three
options: rock, paper, or scissors. If both players choose the same option, then the
result is a tie. However, if they choose differently, the winner is determined as follows:

Rock beats scissors, because a rock can break a pair of scissors.

Scissors beats paper, because scissors can cut paper.

Paper beats rock, because a piece of paper can cover a rock.

Create a game in which the computer randomly chooses rock, paper, or scissors. Let
the user enter a number 1, 2, or 3, each representing one of the three choices. Then,
determine the winner. Save the application as RockPaperScissors.java. (In the
chapter “Characters, Strings, and the StringBuilder,” you will modify the game so
that the user enters a string for rock, paper, and scissors, rather than just entering a
number.)

C H A P T E R 5 Making Decisions

298

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Problems
1. a. Carly’s Catering provides meals for parties and special events. In Chapters 3 and

4, you created an Event class for the company. Now, make the following changes
to the class:

Currently, the class contains a field that holds the price for an Event. Now
add another field that holds the price per guest, and add a public method to
return its value.

Currently, the class contains a constant for the price per guest. Replace that
field with two fields—a lower price per guest that is $32, and a higher price
per guest that is $35.

Add a new method named isLargeEvent() that returns true if the number
of guests is 50 or greater and otherwise returns false.

Modify the method that sets the number of guests so that a large Event (over
50 guests) uses the lower price per guest to set the new pricePerGuest field
and calculate the total Event price. A small Event uses the higher price.

Save the file as Event.java.

b. In Chapter 4, you modified the EventDemo class to demonstrate two Event

objects. Now, modify that class again as follows:

Instantiate three Event objects, and prompt the user for values for each
object.

Change the method that displays Event details to use the new isLargeEvent()

method and the new price per guest value. Use the display method with all
three objects.

Create a method that accepts two Event objects and returns the larger one
based on number of guests. (If the Events have the same number of guests,
you can return either object.) Call this method three times—once with each
pair of instantiated Events—and display the event number and number of
guests for each argument as well as the event number and number of guests
for the larger Event.

Save the file as EventDemo.java.

2. a. Sammy’s Seashore Supplies rents beach equipment such as kayaks, canoes, beach
chairs, and umbrellas to tourists. In Chapters 3 and 4, you created a Rental class
for the company.

Exercises

299

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Now, make the following change to the class:

Currently, a rental price is calculated as $40 per hour plus $1 for each minute
over a full hour. This means that a customer who rents equipment for 41 or
more minutes past an hour pays more than a customer who waits until the
next hour to return the equipment. Change the price calculation so that a
customer pays $40 for each full hour and $1 for each extra minute up to and
including 40 minutes.

Save the file as Rental.java.

b. In Chapter 4, you modified the RentalDemo class to demonstrate a Rental object.
Now, modify that class again as follows:

Instantiate three Rental objects, and prompt the user for values for each
object. Display the details for each object to verify that the new price
calculation works correctly.

Create a method that accepts two Rental objects and returns the one with
the longer rental time. (If the Rentals have the same time, you can return
either object.) Call this method three times—once with each pair of instan-
tiated Rentals—and display the contract number and time in hours and
minutes for each argument as well as the contract number of the longer
Rental.

Save the file as RentalDemo.java.

C H A P T E R 5 Making Decisions

300

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 6
Looping

In this chapter, you will:

Learn about the loop structure

Create while loops

Use shortcut arithmetic operators

Create for loops

Create do…while loops

Nest loops

Improve loop performance

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning About the Loop Structure
If making decisions is what makes programs seem smart, looping is what makes programs
seem powerful. A loop is a structure that allows repeated execution of a block of statements.
Within a looping structure, a Boolean expression is evaluated. If it is true, a block of
statements called the loop body executes and the Boolean expression is evaluated again. The
loop body can be a single statement, or a block of statements between curly braces. As long as
the expression is true, the statements in the loop body continue to execute. When the
Boolean evaluation is false, the loop ends. One execution of any loop is called an iteration.
Figure 6-1 shows a diagram of the logic of a loop.

In Java, you can use several mechanisms to
create loops. In this chapter, you learn to use
three types of loops:

A while loop, in which the loop-
controlling Boolean expression is the
first statement in the loop

A for loop, which is usually used as a
concise format in which to execute loops

A do…while loop, in which the loop-
controlling Boolean expression is the last
statement in the loop

TWO TRUTHS & A LIE

Learning About the Loop Structure

1. A loop is a structure that allows repeated execution of a block of statements as
long as a tested expression is true.

2. If a loop’s tested Boolean expression is true, a block of statements called the loop
body executes before the Boolean expression is evaluated again.

3. When the Boolean evaluation tested in a loop becomes false, the loop body
executes one last time.

. sdne pool eht
, eslaf si pool a ni det set noi t aul ave nael ooB eht neh W. 3# si t ne met at s esl af ehT

Boolean
expression

false

true
loop body

Figure 6-1 Flowchart of a loop structure

C H A P T E R 6 Looping

302

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating while Loops
You can use a while loop to execute a body of statements continually as long as the Boolean
expression that controls entry into the loop continues to be true. In Java, a while loop
consists of the keyword while followed by a Boolean expression within parentheses, followed
by the body of the loop.

You can use a while loop when you need to perform a task either a predetermined or
unpredictable number of times. A loop that executes a specific number of times is a definite
loop or a counted loop. On the other hand, the number of times the loop executes might not
be determined until the program is running. Such a loop is an indefinite loop because you
don’t know how many times it will eventually loop.

Writing a Definite while Loop
To write a definite loop, you initialize a loop control variable, a variable whose value
determines whether loop execution continues. While the Boolean value that results from
comparing the loop control variable and another value is true, the body of the while loop
continues to execute. In the body of the loop, you must include a statement that alters the
loop control variable; otherwise, the loop will never end. For example, the program segment
shown in Figure 6-2 displays the series of integers 1 through 10. The variable lcv is the loop
control variable—it starts the loop holding a value of 1, and while the value remains under 11,
lcv continues to be output and increased.

When you write applications containing loops, it is easy to make mistakes. For example,
executing the code shown in Figure 6-3 causes the message “Hello” to be displayed forever
(theoretically) because there is no code to end the loop. A loop that never ends is called an
infinite loop.

int lcv;
final int LIMIT = 11;

lcv = 1;
while(lcv < LIMIT)
{
 System.out.println(lcv);
 lcv = lcv + 1;
}

true

false

lcv = 1

lcv <
LIMIT?

output
lcv

lcv =
lcv + 1

Figure 6-2 A while loop that displays the integers 1 through 10

Creating while Loops

303

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An infinite loop might not actually execute infinitely. Depending on the tasks the loop performs, eventually the
computer memory might be exhausted (literally and figuratively) and execution might stop. Also, it’s possible
that the processor has a time-out feature that forces the loop to end. Either way, and depending on your
system, quite a bit of time could pass before the loop stops running.

As an inside joke to programmers, the address of Apple Inc. is 1 Infinite Loop, Cupertino, California. It is the
default start location in Apple’s “Find My Friends” application.

In Figure 6-3, the expression 4 > 2 evaluates to true. You obviously never need to make such
an evaluation, but if you do so in this while loop, the body of the loop is entered and “Hello” is
displayed. Next, the expression is evaluated again. The expression 4 > 2 is still true, so the
body is entered again. “Hello” is displayed repeatedly; the loop never finishes because 4 > 2 is
never false.

It is a bad idea to write an infinite loop intentionally. However, even experienced
programmers write them by accident. So, before you start writing loops, it is good to know
how to exit from an infinite loop. You might suspect an infinite loop if the same output is
displayed repeatedly, or if the screen simply remains idle for an extended period of time
without displaying expected output. If you think your application is in an infinite loop, you
can press and hold the Ctrl key, and then press C or the Break key; the looping program
should terminate. (On many keyboards, the Break key is also the Pause key.)

To prevent a while loop from executing infinitely, three separate actions must occur:

A loop control variable is initialized to a starting value.

The loop control variable is tested in the while statement.

The loop control variable is altered within the body of the loop. The variable must be
altered so that the test expression can eventually evaluate to false and the loop can end.

while(4 > 2)
{
 System.out.println("Hello");
}

true

false

4 > 2?
output
"Hello"

This loop never will end
because the tested
expression is always
true.

Don’t Do It

Figure 6-3 A loop that displays “Hello” infinitely

C H A P T E R 6 Looping

304

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

All of these conditions are met by the example in Figure 6-4. First, a loop control variable
loopCount is named and set to a value of 1. Second, loopCount is compared to 3. Third,
loopCount is altered in the loop body when 1 is added to it. Note that the loop body shown
in Figure 6-4 consists of two statements made into a block by their surrounding curly
braces. When loopCount is 1, it is compared to 3, and because it is less than 3, the loop body
executes, displaying “Hello” and increasing loopCount. The next time loopCount is
evaluated, it is 2. It is still less than 3, so the loop body executes again. “Hello” is displayed a
second time, and loopCount becomes 3. Finally, because the expression loopCount < 3 now
evaluates to false, the loop ends. Program execution then continues with any subsequent
statements.

Pitfall: Failing to Alter the Loop Control Variable
Within the Loop Body
It is important that the loop control variable be altered within the body of the loop. Figure 6-5
shows the same code as in Figure 6-4, but the curly braces have been eliminated. In this case,
the while loop body ends at the semicolon that appears at the end of the “Hello” statement.
Adding 1 to the loopCount is no longer part of a block that contains the loop, so the value of
loopCount never changes, and an infinite loop is created.

loopCount = 1;
while(loopCount < 3)
{
 System.out.println("Hello");
 loopCount = loopCount + 1;
}

true

false

loopCount
< 3?

output
"Hello"

loopCount =
loopCount + 1

loopCount = 1

Loop control variable initialized

Loop control variable tested

Loop control variable altered

Figure 6-4 A while loop that displays “Hello” twice

Creating while Loops

305

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Pitfall: Unintentionally Creating a Loop with an Empty Body
As with the decision-making if statement that you learned about in Chapter 5, placement of
the statement-ending semicolon is important when you work with the while statement. If a
semicolon is mistakenly placed at the end of the partial statement while(loopCount < 3);, as
shown in Figure 6-6, the loop is also infinite. This loop has an empty body, or a body with no
statements in it. So, the Boolean expression is evaluated, and because it is true, the loop body
is entered. Because the loop body is empty, no action is taken, and the Boolean expression is
evaluated again. Nothing has changed, so it is still true, the empty body is entered, and the
infinite loop continues.

loopCount = 1;
while(loopCount < 3)
 System.out.println("Hello");
 loopCount = loopCount + 1;

true

false

loopCount
< 3?

output
"Hello"

loopCount =
loopCount + 1

loopCount = 1

This indentation has
no effect.

Don’t Do It
Loop control variable is
not altered in the loop.

Figure 6-5 A while loop that displays “Hello” infinitely because loopCount is not altered in the
loop body

C H A P T E R 6 Looping

306

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Altering a Definite Loop’s Control Variable
A definite loop is a counter-controlled loop because the loop control variable is changed by
counting. It is very common to alter the value of a loop control variable by adding 1 to it, or
incrementing the variable. However, not all loops are controlled by adding 1. The loop shown
in Figure 6-7 displays “Hello” twice, just as the loop in Figure 6-4 does, but its loop is
controlled by subtracting 1 from a loop control variable, or decrementing it.

loopCount = 3;
while(loopCount > 1)
{

System.out.println("Hello");
loopCount = loopCount - 1;

}

Figure 6-7 A while loop that displays “Hello” twice, decrementing the loopCount variable in the
loop body

loopCount = 1;
while(loopCount < 3);
{
 System.out.println("Hello");
 loopCount = loopCount + 1;
}

true

false

loopCount
< 3?

output
"Hello"

loopCount = 1

Don’t Do It
This semicolon causes
the loop to have an
empty body.

loopCount =
loopCount + 1

Figure 6-6 A while loop that loops infinitely with no output because the loop body is empty

Creating while Loops

307

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the program segment shown in Figure 6-7, the variable loopCount begins with a value
of 3. The loopCount is greater than 1, so the loop body displays “Hello” and decrements
loopCount to 2. The Boolean expression in the while loop is tested again. Because 2 is more
than 1, “Hello” is displayed again, and loopCount becomes 1. Now loopCount is not greater
than 1, so the loop ends. There are many ways to execute a loop two times. For example,
you can initialize a loop control variable to 10 and continue while the value is greater than 8,
decreasing the value by 1 each time you pass through the loop. Similarly, you can initialize
the loop control variable to 12, continue while it is greater than 2, and decrease the value by
5 each time. In general, you should not use such unusual methods to count repetitions
because they simply make a program confusing. To execute a loop a specific number of
times, the clearest and best method is to start the loop control variable at 0 or 1, increment
by 1 each time through the loop, and stop when the loop control variable reaches the
appropriate limit.

When you first start programming, it seems reasonable to initialize counter values to 1, and that is a
workable approach. However, many seasoned programmers start counter values at 0 because they are
used to doing so when working with arrays. When you study arrays in the chapter “Introduction to Arrays,”
you will learn that their elements are numbered beginning with 0.

Watch the video Looping.

Writing an Indefinite while Loop
You are not required to alter a loop control variable by adding to it or subtracting from
it. Often, the value of a loop control variable is not altered by arithmetic, but instead is
altered by user input. Instead of being a counter-controlled loop, an indefinite loop is an
event-controlled loop. That is, an event occurs that determines whether the loop
continues. An event-controlled loop is a type of indefinite loop because you don’t know
how many times it will eventually repeat. For example, perhaps you want to continue
asking a user questions as long as the response is correct. In this case, while you are
writing the program, you do not know whether the loop eventually will be executed two
times or 200 times.

Consider an application in which you ask the user for a bank balance and then ask
whether the user wants to see the balance after interest has accumulated. Each time the
user chooses to continue, an increased balance appears, reflecting one more year of
accumulated interest. When the user finally chooses to exit, the program ends. The
program appears in Figure 6-8.

C H A P T E R 6 Looping

308

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.Scanner;
public class BankBalance
{

public static void main(String[] args)
{

double balance;
int response;
int year = 1;
final double INT_RATE = 0.03;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter initial bank balance > ");
balance = keyboard.nextDouble();
System.out.println("Do you want to see next year's balance?");
System.out.print("Enter 1 for yes");
System.out.print(" or any other number for no >> ");
response = keyboard.nextInt();
while(response == 1)
{

balance = balance + balance * INT_RATE;
System.out.println("After year " + year + " at " + INT_RATE +

" interest rate, balance is $" + balance);
year = year + 1;
System.out.println("\nDo you want to see the balance " +

"at the end of another year?");
System.out.print("Enter 1 for yes");
System.out.print(" or any other number for no >> ");
response = keyboard.nextInt();

}
}

}

Figure 6-8 The BankBalance application

In the BankBalance program, as in any interactive program, the user must enter data that has the
expected data types. If not, an error occurs and the program terminates. You will learn to manage user entry
errors in the chapter “Exception Handling.”

The program shown in Figure 6-8 declares needed variables and a constant for a 3 percent
interest rate, and then asks the user for a balance. The application then asks the user to enter
1 if the user wants see the next year’s balance. As long as the user wants to continue, the
application continues to display increasing bank balances.

The loop in the application in Figure 6-8 begins with the line that contains:
while(response == 1)

If the user enters any integer value other than 1, the loop body never executes; instead, the
program ends. However, if the user enters 1, all the statements within the loop body execute.
The application increases the balance by the interest rate value, displays the new balance,

Creating while Loops

309

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

adds 1 to year, and asks whether the user wants another balance. The last statement in the
loop body accepts the user’s response. After the loop body executes, control returns to the top
of the loop, where the Boolean expression in the while loop is tested again. If the user’s
response is 1, the loop is entered and the process begins again. Figure 6-9 shows the output of
the BankBalance application after the user enters a starting balance and responds with 1 five
times to the prompt for increased interest payments before responding 2.

Many indefinite loops are written to continue while an ending value is not entered. A value that stops a
loop is a sentinel. In the exercises at the end of this chapter, you will write several programs that use
sentinels.

Validating Data
Programmers commonly use indefinite loops when validating input data. Validating data is
the process of ensuring that a value falls within a specified range. For example, suppose you
require a user to enter a value no greater than 3. Figure 6-10 shows an application that does
not progress past the data entry loop until the user enters a correct value. If the user enters 3
or less at the first prompt, the shaded loop never executes. However, if the user enters a
number greater than 3, the shaded loop executes, providing the user with another chance to
enter a correct value. While the user continues to enter incorrect data, the loop repeats.
Figure 6-11 shows a typical execution.

Figure 6-9 Typical execution of the BankBalance application

C H A P T E R 6 Looping

310

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.Scanner;
public class EnterSmallValue
{

public static void main(String[] args)
{

int userEntry;
final int LIMIT = 3;
Scanner input = new Scanner(System.in);
System.out.print("Please enter an integer no higher than " +

LIMIT + " > ");
userEntry = input.nextInt();
while(userEntry > LIMIT)
{

System.out.println("The number you entered was too high");
System.out.print("Please enter an integer no higher than " +

LIMIT + " > ");
userEntry = input.nextInt();

}
System.out.println("You correctly entered " + userEntry);

}
}

Figure 6-10 The EnterSmallValue application

Figure 6-10 illustrates an excellent method for validating input. Before the loop is entered, the
first input is retrieved. This first input might be a value that prevents any executions of the
loop. This first input statement prior to the loop is called a priming read or priming input.
Within the loop, the last statement retrieves subsequent input values for the same variable
that will be checked at the entrance to the loop.

Figure 6-11 Typical execution of the EnterSmallValue program

Creating while Loops

311

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Novice programmers often make the mistake of checking for invalid data using a
decision instead of a loop. That is, they ask whether the data is invalid using an if
statement; if the data is invalid, they reprompt the user. However, they forget that a user
might enter incorrect data multiple times. Usually, a loop is the best structure to use
when validating input data.

TWO TRUTHS & A LIE

Creating while Loops

1. A finite loop executes a specific number of times; an indefinite loop is one that
never ends.

2. A well-written while loop contains an initialized loop control variable that is tested in
the while expression and then altered in the loop body.

3. In an indefinite loop, you don’t know how many times the loop will occur.

. pool eti nif ni na si sdne r event aht pool a; pool det nuoc a r o pool eti nif ed
a si se mit f or eb mun cifi ceps a set ucexet aht pool A. 1# si t ne met at s esl af ehT

You Do It

Writing a Loop to Validate Data Entries

In Chapter 5, you created an AssignVolunteer4 application for Sacks Fifth Avenue, a
nonprofit thrift shop. The application accepts a donation code and assigns the
appropriate volunteer to price the item for sale. Now, you add a loop to ensure that
a valid code always is entered.

1. Open the AssignVolunteer4.java file that you created in Chapter 5. Change
the class name to AssignVolunteer5, and immediately save the file as
AssignVolunteer5.java.

2. After the input statement that gets a code from the user, but before the
switch structure that assigns a volunteer, insert the following loop. The loop
continues while the input donationType is less than the lowest valid code or
higher than the highest valid code. (Recall that the values of CLOTHING_CODE,
FURNITURE_CODE, ELECTRONICS_CODE, and OTHER_CODE are 1 through 4,

(continues)

C H A P T E R 6 Looping

312

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

respectively.) Within the loop body, statements explain the error to the user
and then get a new value for donationType.
while(donationType < CLOTHING_CODE || donationType > OTHER_CODE)
{

System.out.println("You entered " + donationType +
" which is not a valid donation type");

System.out.print("Please enter a value between " +
CLOTHING_CODE + " and " + OTHER_CODE + "... ");

System.out.print("Enter an integer... ");
donationType = input.nextInt();

}

3. Save the file, and compile and execute it. Figure 6-12 shows a typical
execution in which a user enters an invalid code three times before entering a
valid one.

4. In the current program, the default case assigns “invalid” to the volunteer. At
this point, some professionals would advise that you remove the default case
from the case structure because it is no longer possible for the user to enter
an invalid code. Others would argue that leaving the default case in place
serves two purposes. First, it provides documentation that clarifies the course
of action if the entered code does not match any of the listed cases. Second,
the program requirements might change in the future. For example, perhaps
one of the categories will be eliminated. Then, if you remove the case
instructions for that category, a default block will already be in place to handle
the new error.

(continued)

Figure 6-12 Typical execution of the AssignVolunteer5 application

Creating while Loops

313

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using Shortcut Arithmetic Operators
Programmers commonly need to increase the value of a variable in a program. As you saw
in the previous section, many loops are controlled by continually adding 1 to some variable,
as in count = count + 1;. Incrementing a variable in a loop to keep track of the number of
occurrences of some event is also known as counting. Similarly, in the looping bank
balance program shown in Figure 6-8, the program not only incremented the year variable
by adding 1, it also increased the bank balance by an interest amount with the statement
balance = balance + balance * INT_RATE;. In other words, the bank balance became its
old value plus a new interest amount; the process of repeatedly increasing a value by
some amount is known as accumulating.

Because increasing a variable is so common, Java provides you with several shortcuts for
incrementing and accumulating. The statement count += 1; is identical in meaning to
count = count + 1. The += is the add and assign operator; it adds and assigns in one
operation. Similarly, balance += balance * INT_RATE; increases a balance by the INT_RATE

percentage. Besides using the shortcut operator +=, you can use the subtract and assign
operator (-=), the multiply and assign operator (*=), the divide and assign operator (/=),
and the remainder and assign operator (%=). Each of these operators is used to perform the
operation and assign the result in one step. For example, balanceDue -= payment subtracts
payment from balanceDue and assigns the result to balanceDue.

When you want to increase a variable’s value by exactly 1, you can use two other
shortcut operators—the prefix ++, also known as the prefix increment operator, and the
postfix ++, also known as the postfix increment operator. To use a prefix ++, you
type two plus signs before the variable name. The statement someValue = 6; followed by
++someValue; results in someValue holding 7—one more than it held before you applied
the ++. To use a postfix ++, you type two plus signs just after a variable name. The
statements anotherValue = 56; anotherValue++; result in anotherValue containing 57.
Figure 6-13 shows four ways you can increase a value by 1; each method produces the
same result. You are never required to use shortcut operators; they are merely a
convenience.

int value;
value = 24;
++value; // Result: value is 25
value = 24;
value++; // Result: value is 25
value = 24;
value = value + 1; // Result: value is 25
value = 24;
value += 1; // Result: value is 25

Figure 6-13 Four ways to add 1 to a value

C H A P T E R 6 Looping

314

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You cannot use the prefix ++ and postfix ++ operators with constants. An expression
such as ++84; is illegal because an 84 must always remain an 84. However, you can create a
variable named val, assign 84 to it, and then write ++val; or val++; to increase the
variable’s value.

The prefix and postfix increment operators are unary operators because you use them with one value. As you
learned in Chapter 2, most arithmetic operators, such as those used for addition and multiplication, are
binary operators—they operate on two values. Other examples of unary operators include the cast operator,
as well as (+) and (–) when used to indicate positive and negative values.

When you simply want to increase a variable’s value by 1, there is no difference in the
outcome, whether you use the prefix or postfix increment operator. For example, when
value is set to 24 in Figure 6-13, both ++value and value++ result in value becoming 25.
However, when a prefix or postfix operator is used as part of a larger expression, it does
make a difference which operator you use because they function differently in terms of what
they return. When a prefix operator is used in an expression, the value after the calculation
is used, but when a postfix operator is used in an expression, the value before the calculation
is used.

When you use the prefix ++, the result is calculated, and then its value is used. For example,
consider the following statements:
b = 4;
c = ++b;

The result is that both b and c hold the value 5 because b is increased to 5 and then the value
of the expression is assigned to c.

When you use the postfix ++, the value of the expression before the increase is stored. For
example, consider these statements:
b = 4;
c = b++;

The result is still that b is 5, but c is only 4. The value of b is assigned to c and then b is
incremented. In other words, if b = 4, the value of b++ is also 4, but after the statement is
completed, the value of b is 5.

Figure 6-14 shows an application that illustrates the difference between how the prefix
and postfix increment operators work. Notice from the output in Figure 6-15 that when
the prefix increment operator is used on myNumber, the value of myNumber increases from
17 to 18, and the result is stored in answer, which also becomes 18. After the value is
reset to 17, the postfix increment operator is used; 17 is assigned to answer, and
myNumber is incremented to 18.

Using Shortcut Arithmetic Operators

315

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class PrefixPostfixDemo
{

public static void main(String[] args)
{

int myNumber, answer;
myNumber = 17;
System.out.println("Before incrementing, myNumber is " +

myNumber);
answer = ++myNumber;
System.out.println("After prefix increment, myNumber is " +

myNumber);
System.out.println(" and answer is " + answer);
myNumber = 17;
System.out.println("Before incrementing, myNumber is " +

myNumber);
answer = myNumber++;
System.out.println("After postfix increment, myNumber is " +

myNumber);
System.out.println(" and answer is " + answer);

}
}

Figure 6-14 The PrefixPostfixDemo application

Choosing whether to use a prefix or postfix operator is important when one is part of a larger
expression. For example, if d is 5, then 2 * ++d is 12, but 2 * d++ is 10.

Similar logic can be applied when you use the prefix and postfix decrement operators. For
example, if b = 4 and c = b––, 4 is assigned to c, but b is decreased and takes the value 3. If b = 4
and c = ––b, b is decreased to 3 and 3 is assigned to c.

Watch the video Using Shortcut Arithmetic Operators.

Figure 6-15 Output of the PrefixPostfixDemo application

C H A P T E R 6 Looping

316

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using Shortcut Arithmetic Operators

1. Assume that x = 4 and y = 5. The value of ++y + ++x is 11.

2. Assume that x = 4 and y = 5. The value of y == x++ is true.

3. Assume that x = 4 and y = 5. The value of y += x is 9.

. 4 ot l auqet on si
y os dna, 4 si ++xf o eul av eht neht , 5 si y dna 4 si xfI . 2# si t ne met at s esl af ehT

You Do It

Working with Prefix and Postfix Increment Operators

Next, you write an application that demonstrates how prefix and postfix operators are
used to increment variables and how incrementing affects the expressions that
contain these operators.

1. Start a new application named DemoIncrement by typing:
public class DemoIncrement
{

public static void main(String[] args)
{

2. On a new line, add a variable v, and assign it a value of 4. Then declare a
variable named plusPlusV, and assign it a value of ++v by typing:
int v = 4;
int plusPlusV = ++v;

3. The last statement, int plusPlusV = ++v;, increases v to 5, so before
declaring a vPlusPlus variable to which you assign v++, reset v to 4 by
typing:
v = 4;
int vPlusPlus = v++;

(continues)

Using Shortcut Arithmetic Operators

317

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Add the following statements to display the three values:
System.out.println("v is " + v);
System.out.println("++v is " + plusPlusV);
System.out.println("v++ is " + vPlusPlus);

5. Add the closing curly brace for the main() method and the closing curly brace
for the DemoIncrement class. Save the file as DemoIncrement.java, then
compile and execute the program. Your output should look like Figure 6-16.

6. To illustrate how comparisons are made, add a few more variables to the
DemoIncrement program. Change the class name to DemoIncrement2, and
immediately save the file as DemoIncrement2.java.

7. After the last println() statement, add three new integer variables and two
new Boolean variables. The first Boolean variable compares ++w to y; the
second Boolean variable compares x++ to y:
int w = 17, x = 17, y = 18;
boolean compare1 = (++w == y);
boolean compare2 = (x++ == y);

8. Add the following statements to display the values stored in the compare

variables:
System.out.println("First compare is " + compare1);
System.out.println("Second compare is " + compare2);

9. Save, compile, and run the program. The output appears in Figure 6-17. Make
certain you understand why each statement displays the values it does.

(continued)

Figure 6-16 Output of the DemoIncrement class

(continues)

C H A P T E R 6 Looping

318

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Experiment by changing the values of the variables, and see if you can predict
the output before recompiling and rerunning the program.

Creating a for Loop
A for loop is a special loop that is used when a definite number of loop iterations is required;
it provides a convenient way to create a counter-controlled loop. Although a while loop can
also be used to meet this requirement, the for loop provides you with a shorthand notation
for this type of loop. When you use a for loop, you can indicate the starting value for the loop
control variable, the test condition that controls loop entry, and the expression that alters the
loop control variable—all in one convenient place.

You begin a for loop with the keyword for followed by a set of parentheses. Within the
parentheses are three sections separated by exactly two semicolons. The three sections
are usually used for the following:

Initializing the loop control variable

Testing the loop control variable

Updating the loop control variable

The body of the for statement follows the parentheses. As with an if statement or a while
loop, you can use a single statement as the body of a for loop, or you can use a block of
statements enclosed in curly braces. Many programmers recommend that you always use a
set of curly braces to surround the body of a for loop for clarity, even when the body contains
only a single statement. You should use the conventions recommended by your organization.

Assuming that a variable named val has been declared as an integer, the for statement
shown in Figure 6-18 produces the same output as the while statement shown below
it—both display the integers 1 through 10.

(continued)

Figure 6-17 Output of the DemoIncrement2 application

Creating a for Loop

319

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

for(val = 1; val < 11; ++val)
{

System.out.println(val);
}

val = 1;
while(val < 11)
{

System.out.println(val);
++val;

}

Figure 6-18 A for loop and a while loop that display the integers 1 through 10

Within the parentheses of the for statement shown in Figure 6-18, the first section prior to
the first semicolon initializes val to 1. The program executes this statement once, no matter
how many times the body of the for loop executes.

After initialization, program control passes to the middle, or test section, of the for statement
that lies between the two semicolons. If the Boolean expression found there evaluates to true,
the body of the for loop is entered. In the program segment shown in Figure 6-18, val
initially is set to 1, so when val < 11 is tested, it evaluates to true. The loop body displays val.
In this example, the loop body is a single statement, so no curly braces are needed (although
they could be added).

After the loop body executes, the final one-third of the for loop that follows the second
semicolon executes, and val is increased to 2. Following the third section in the for

statement, program control returns to the second section, where val is compared to 11 a
second time. Because val is still less than 11, the body executes: val (now 2) is displayed, and
then the third, altering portion of the for loop executes again. The variable val increases to 3,
and the for loop continues. Eventually, when val is not less than 11 (after 1 through 10 have
been displayed), the for loop ends, and the program continues with any statements that
follow the for loop.

Unconventional for Loops
Although the three sections of the for loop are most commonly used to hold single
expressions for initializing, testing, and incrementing, you can also perform the following
tasks:

Initialization of more than one variable in the first section of the for statement by placing
commas between the separate statements, as in the following:

for(g = 0, h = 1; g < 6; ++g)

C H A P T E R 6 Looping

320

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can declare a variable within a for statement, as in the following:

for(int val = 1; val < 11; ++val)

Programmers often use this technique when the loop control variable is not needed in any
other part of the program. If you declare a variable within a for statement, the variable
can only be used in the block that depends on the for statement; when the block ends, the
variable goes out of scope.

Performance of more than one test using compound conditions in the second section,
as in the following:

for(g = 0; g < 3 && h > 1; ++g)

Decrementation or performance of some other task in the third section, as in the
following:

for(g = 5; g >= 1; ––g)

Performing multiple actions in the third section, separated by commas, as in the
following:

for(g = 0; g < 10; ++g, ++h, sum += g)

You might use method calls in any section of the for statement, as in the following
example. Here, the isFinished() method would be required to return a Boolean value
and the alter() method would be required to return a data type accepted by x.

for(x = initMethod(); isFinished(); x = alter(x))

You can leave one or more portions of a for loop empty, although the two semicolons are
still required as placeholders. For example, if x has been initialized in a previous program
statement, you might write the following:

for(; x < 10; ++x)

You might encounter for loops in which all three sections of the for statement are left
empty. For example, consider the Clock class in Figure 6-19. The program contains a
for loop that is meant to execute infinitely and display a clock with an updated time
every second. Within the loop, the current time is retrieved using the LocalDateTime class.
If the getSecond() value has changed since the last loop execution, the hour, minute, and
second are displayed and the prevSec variable is updated. Figure 6-20 shows a typical
execution; the user stopped the program after several seconds by holding down the Ctrl key
and pressing C.

Creating a for Loop

321

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.time.*;
public class Clock
{

public static void main(String[] args)
{

LocalDateTime now;
int nowSec;
int prevSec = 0;
for (;;)
{

now = LocalDateTime.now();
nowSec = now.getSecond();
if(nowSec != prevSec)
{

System.out.println(now.getHour() + " : " +
now.getMinute() + " : " + nowSec);

prevSec = nowSec;
}

}
}

}

Figure 6-19 The Clock application

You first learned about the LocalDateTime class in Chapter 4. This class is new in Java 8.

Figure 6-20 Typical execution of the Clock application

C H A P T E R 6 Looping

322

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In general, you should use the same loop control variable in all three parts of a for statement,
although you might see some programs written by others in which this is not the case. You
should also avoid altering the loop control variable in the body of the loop. If a variable is
altered both within a for statement and within the block it controls, it can be very difficult to
follow the program’s logic. This technique can also produce program bugs that are hard to
find. Usually, you should use the for loop for its intended purpose—as a shorthand way of
programming a definite loop.

Occasionally, you will encounter a for loop that contains no body, but was purposely written
that way, such as the following:
for(x = 0; x < 100000; ++x);

Notice the final semicolon in this statement. This loop is a do-nothing loop that performs no
actions in its body. It simply uses time—that is, it occupies the central processing unit for
thousands of processing cycles because a brief pause is desired during program execution. As
with if and while statements, usually you do not want to place a semicolon at the end of the
for statement before the body of the loop. Java also contains a built-in method to pause
program execution. The sleep() method is part of the Thread class in the java.lang package,
and the time for which it pauses is more accurate than using a for loop. You will learn how to
use the method as you continue to study Java.

Java also supports an enhanced for loop. You will learn about this loop in the chapter “Introduction to
Arrays.”

Watch the video Using the for Loop.

TWO TRUTHS & A LIE

Creating a for Loop

1. A for loop always must contain two semicolons within its parentheses.

2. The body of a for loop might never execute.

3. Within the parentheses of a for loop, the last section must alter the loop control
variable.

. deri uqer t on si ti t ub, el bai r avl ort noc pool eht r etl a
ot desu si pool rof af o noi t ces dri ht eht , yl t neuqerF. 3# si t ne met at s esl af ehT

Creating a for Loop

323

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Working with Definite Loops

Suppose you want to find all the numbers that divide evenly into 100. You want to
write a definite loop—one that executes exactly 100 times. In this section, you write a
for loop that sets a variable to 1 and increments it to 100. Each of the 100 times
through the loop, if 100 is evenly divisible by the variable, the application displays the
number.

1. Start a new application named DivideEvenly by typing the following code.
Use a named constant for the 100 value and a variable named var that will
hold, in turn, every value from 1 through 100:
public class DivideEvenly
{

public static void main(String[] args)
{

final int LIMIT = 100;
int var;

2. Type a statement that explains the purpose of the program:
System.out.print(LIMIT + " is evenly divisible by ");

3. Write the for loop that varies var from 1 through 100. With each iteration of
the loop, test whether 100 % var is 0. If you divide 100 by a number and there
is no remainder, the number goes into 100 evenly.
for(var = 1; var <= LIMIT; ++var)

if(LIMIT % var == 0)
System.out.print(var + " ");

4. Add an empty println() statement to advance the insertion point to the
next line by typing the following:
System.out.println();

5. Type the closing curly braces for the main() method and the DivideEvenly

class.

6. Save the program as DivideEvenly. Compile and run the program. Figure 6-21
shows the output.

(continues)

C H A P T E R 6 Looping

324

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. By definition, no value that is greater than half of LIMIT can possibly go into
LIMIT evenly. Therefore, the loop in the DivideEvenly program could be made to
execute faster if the loop executes while var is less than or equal to half of LIMIT.
If you decide to make this change to the program, remember that you must
include the value of LIMIT in the output because it is evenly divisible into itself.

Learning How and When to Use a do…while Loop
With all the loops you have written so far, the loop body might execute many times, but it is
also possible that the loop will not execute at all. For example, recall the bank balance
program that displays compound interest, which was shown in Figure 6-8. The program
begins by asking whether the user wants to see next year’s balance. If the user doesn’t enter a
1 for yes, the loop body never executes.

Similarly, recall the EnterSmallValue application in Figure 6-10. The user is prompted to enter a
value, and if the user enters a value that is 3 or less, the error-reporting loop body never executes.

In each of these cases, the loop control variable is evaluated at the “top” of the loop before the
body has a chance to execute. Both while loops and for loops are pretest loops—ones in
which the loop control variable is tested before the loop body executes.

Sometimes, you might need to ensure that a loop body executes at least one time. If so,
you want to write a loop that checks at the “bottom” of the loop after the first iteration. The
do…while loop is such a loop; it is a posttest loop—one in which the loop control variable is
tested after the loop body executes.

Figure 6-22 shows the general structure of a do…while loop. Notice that the loop body
executes before the loop-controlling question is asked even one time. In other words, the
decision is at the end of the loop body, making this a posttest loop. Figure 6-23 shows a
BankBalance2 application that contains a do…while loop. The loop starts with the shaded
keyword do. The body of the loop follows and is contained within curly braces. The first year’s

Figure 6-21 Output of the DivideEvenly application

(continued)

Learning How and When to Use a do…while Loop

325

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

balance is output before the user has any option of responding. At the bottom of the loop, the
user is prompted, “Do you want to see the balance at the end of another year?” Now the user
has the option of seeing more balances, but viewing the first display was unavoidable. The
user’s response is checked in the shaded evaluation at the bottom of the loop; if it is 1 for yes,
the loop repeats. Figure 6-24 shows a typical execution.

import java.util.Scanner;
public class BankBalance2
{

public static void main(String[] args)
{

double balance;
int response;
int year = 1;
final double INT_RATE = 0.03;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter initial bank balance > ");
balance = keyboard.nextDouble();
keyboard.nextLine();
do
{

balance = balance + balance * INT_RATE;
System.out.println("After year " + year + " at " + INT_RATE +

" interest rate, balance is $" + balance);
year = year + 1;
System.out.println("\nDo you want to see the balance " +

"at the end of another year?");
System.out.println("Enter 1 for yes");
System.out.print(" or any other number for no >> ");
response = keyboard.nextInt();

} while(response == 1);
}

}

Figure 6-23 A do…while loop for the BankBalance2 application

test of loop
control variable

false

loop body

true

Figure 6-22 General structure of a do…while loop

C H A P T E R 6 Looping

326

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When the body of a do…while loop contains a single statement, you do not need to use curly
braces to block the statement. For example, the following loop correctly adds numberValue to
total while total remains less than 200:
do

total += numberValue;
while(total < 200);

Even though curly braces are not required in this case, many programmers recommend using
them. Doing so prevents the third line of code from looking like it should begin a new while loop
instead of ending the previous do…while loop. Therefore, even though the result is the same, the
following example that includes curly braces is less likely to be misunderstood by a reader:
do
{

total += numberValue;
} while(total < 200);

You are never required to use a do…while loop. In the bank balance example, you could
achieve the same results as the logic shown in Figure 6-23 by unconditionally displaying the
first year’s bank balance once before starting the loop, prompting the user, and then starting a
while loop that might not be entered. However, when you know you want to perform some
task at least one time, the do…while loop is convenient.

Figure 6-24 Typical execution of the BankBalance2 program

Learning How and When to Use a do…while Loop

327

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Learning How and When to Use a do…while Loop

1. The do…while loop checks the value of the loop control variable at the top of the
loop prior to loop execution.

2. When the statements in a loop body must execute at least one time, it is convenient
to use a do…while loop.

3. When the body of a do…while loop contains a single statement, you do not need to
use curly braces to block the statement.

. derr ucco sah noi ti t eper enor etf a pool eht f o mott ob eht t a el bai r av
l ort noc pool eht f o eul av eht skcehc pool elihw…od ehT. 1# si t ne met at s esl af ehT

Learning About Nested Loops
Just as if statements can be nested, so can loops. You can place a while loop within a while

loop, a for loop within a for loop, a while loop within a for loop, or any other combination.
When loops are nested, each pair contains an inner loop and an outer loop. The inner loop
must be entirely contained within the outer loop; loops can never overlap. Figure 6-25 shows
a diagram in which the shaded inner loop is nested within an outer loop. You can nest
virtually any number of loops; however, at some point, your machine will no longer be able to
store all the necessary looping information.

test of inner
loop control
variable

false

true

test of outer
loop control
variable

false

true

body of
inner loop

Figure 6-25 Nested loops

C H A P T E R 6 Looping

328

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Chapter 5, you learned that decisions can be nested but can never overlap. The same is true for loops.

Suppose you want to display future bank balances while varying both years and interest rates.
Figure 6-26 shows an application that contains an outer loop that varies interest rates
between specified limits. At the start of the outer loop, the working balance is reset to its
initial value so that calculations are correct for each revised interest rate value. The shaded
inner loop varies the number of years and displays each calculated balance. Figure 6-27 shows
a typical execution.

import java.util.Scanner;
public class BankBalanceByRateAndYear
{

public static void main(String[] args)
{

double initialBalance;
double balance;
int year;
double interest;
final double LOW = 0.02;
final double HIGH = 0.05;
final double INCREMENT = 0.01;
final int MAX_YEAR = 4;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter initial bank balance > ");
initialBalance = keyboard.nextDouble();
keyboard.nextLine();
for(interest = LOW; interest <= HIGH; interest += INCREMENT)
{

balance = initialBalance;
System.out.println("\nWith an initial balance of $" +

balance + " at an interest rate of " + interest);
for(year = 1; year <= MAX_YEAR; ++ year)
{

balance = balance + balance * interest;
System.out.println("After year " + year +

" balance is $" + balance);
}

}
}

}

Figure 6-26 The BankBalanceByRateAndYear class containing nested loops

Learning About Nested Loops

329

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 6-27, the floating-point calculations result in balances that contain fractions of pennies. If you wrote
this program for a bank, you would have to ask whether interest should be compounded on fractions of a
cent as it is here, or whether the amounts should be either rounded or truncated.

When you nest loops, sometimes it doesn’t make any difference which variable controls the
outer loop and which variable controls the inner one, but frequently it does make a difference.
When you use a loop within a loop, you should always think of the outer loop as the all-
encompassing loop. The variable in the outer loop changes more infrequently. For example,
suppose a method named outputLabel() creates customer mailing labels in three different
colors to use in successive promotional mailings, and that the color value is stored as an
integer. The following nested loop calls the outputLabel() method 60 times and produces
three labels for the first customer, three labels for the second customer, and so on:
for(customer = 1; customer <= 20; ++customer)

for(color = 1; color <= 3; ++color)
outputLabel();

The following nested loop also calls outputLabel() 60 times, and it ultimately produces the
same 60 labels, but it creates 20 labels in the first color, 20 labels in the second color, and then
20 labels in the third color.
for(color = 1; color <= 3; ++color)

for(customer = 1; customer <= 20; ++customer)
outputLabel();

If changing the ink color is a time-consuming process that occurs in the outputLabel()
method, the second nested loop might execute much faster than the first one.

Figure 6-27 Typical execution of the BankBalanceByRateAndYear program

C H A P T E R 6 Looping

330

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Watch the video Nested Loops.

TWO TRUTHS & A LIE

Learning About Nested Loops

1. You can place a while loop within a while loop or a for loop within a for loop,
but you cannot mix loop types.

2. An inner nested loop must be entirely contained within its outer loop.

3. The body of the following loop executes 20 times:

for(int x = 0; x < 4; ++x)
for(int y = 0; y < 5; ++y)

System.out.println("Hi");

. noi t ani b moc
r eht o yna r o, pool rof a ni hti w pool elihw a, pool rof a ni hti w pool rof a

, pool elihw a ni hti w pool elihw a ecal p nac uoY. 1# si t ne met at s esl af ehT

You Do It

Working with Nested Loops

Suppose you want to know not just what numbers go evenly into 100, but also what
numbers go evenly into every positive number, up to and including 100. You can write
99 more loops—one that shows the numbers that divide evenly into 1, another that
shows the numbers that divide evenly into 2, and so on—or you can place the current
loop inside a different, outer loop, as you do next.

1. If necessary, open the file DivideEvenly.java, change the class name to
DivideEvenly2, and then save the class as DivideEvenly2.java.

2. Add a new variable declaration at the beginning of the file with the other
variable declarations:
int number;

(continues)

Learning About Nested Loops

331

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Replace the existing for loop with the following nested loop. The outer loop
varies number from 1 to 100. For each number in the outer loop, the inner
loop uses each positive integer from 1 up to the number, and tests whether it
divides evenly into the number:
for(number = 1; number <= LIMIT; ++number)
{

System.out.print(number + " is evenly divisible by ");
for(var = 1; var <= number; ++var)

if(number % var == 0)
System.out.print(var + " ");

System.out.println();
}

4. Make certain the file ends with three curly braces—one for the for outer loop
that varies number, one for the main() method, and one for the class. The
inner loop does not need curly braces because it contains a single output
statement, although you could add a set of braces for the loop.

5. Save the file as DivideEvenly2.java, and then compile and execute
the application. When the output stops scrolling, it should look similar to
Figure 6-28.

Figure 6-28 Output of the DivideEvenly2 application when scrolling stops

(continued)

C H A P T E R 6 Looping

332

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Improving Loop Performance
Whether you decide to use a while, for, or do…while loop in an application, you can improve
loop performance by doing the following:

Making sure the loop does not include unnecessary operations or statements

Considering the order of evaluation for short-circuit operators

Making a comparison to 0

Employing loop fusion to combine loops

Using prefix incrementing rather than postfix incrementing

If a loop only executes a few times, implementing the suggestions presented in this section
won’t change program performance very much, but for a large-scale application in which
speed is important, some of these suggestions can make a difference. Thinking about these
suggestions also improves your understanding of how loops work.

Avoiding Unnecessary Operations
You can make loops more efficient by not using unnecessary operations or statements, either
within a loop’s tested expression or within the loop body. For example, suppose a loop should
execute while x is less than the sum of two integers, a and b. The loop could be written as:
while(x < a + b)

// loop body

If this loop executes 1,000 times, then the expression a + b is calculated 1,000 times. Instead, if
you use the following code, the results are the same, but the arithmetic is performed only
once:
int sum = a + b;
while(x < sum)

// loop body

Of course, if a or b is altered in the loop body, then a new sum must be calculated with every
loop iteration. However, if the sum of a and b is fixed prior to the start of the loop, then
writing the code the second way is far more efficient.

Similarly, if the method getNumberOfEmployees() always returns the same value during a
program’s execution, then a loop that begins as follows might unnecessarily call the method
many times:
while(count < getNumberOfEmployees())…

It is more efficient to call the method once, store the result in a variable, and use the variable
in the repeated evaluations, as in this example:
numEmployees = getNumberOfEmployees();
while(count < numEmployees)…

Don’t Do It
It might be inefficient to
recalculate a + b
for every loop iteration.

Improving Loop Performance

333

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Considering the Order of Evaluation of Short-Circuit Operators
In Chapter 5, you learned that the operands in each part of an AND or an OR expression
use short-circuit evaluation; that is, they are evaluated only as much as necessary to
determine whether the entire expression is true or false. When a loop might execute
many times, it becomes increasingly important to consider the number of evaluations
that take place.

For example, suppose a user can request any number of printed copies of a report from 0 to
15, and you want to validate the user’s input before proceeding. If you believe that users are
far more likely to enter a value that is too high than to enter a negative one, then you want to
start a loop that reprompts the user with the following expression:
while(requestedNum > LIMIT || requestedNum < 0)…

Because you believe that the first Boolean expression is more likely to be true than the second
one, you can eliminate testing the second one on more occasions. The order of the
expressions might not be very important in a single loop, but if this loop is nested within
another loop, the difference in the number of comparisons increases. Similarly, when
compound if statements are contained in a loop that might execute thousands of times, the
order of the evaluations in if statements is more important than when the evaluation is made
only once.

Comparing to Zero
Making a comparison to 0 is faster than making a comparison to any other value. Therefore, if
your application makes comparison to 0 feasible, you can improve loop performance by
structuring your loops to compare the loop control variable to 0 instead of some other value.
For example, a loop that performs based on a variable that varies from 0 up to 100,000
executes the same number of times as a loop based on a variable that varies from 100,000
down to 0. However, the second loop performs slightly faster. Comparing a value to 0 instead
of other values is faster because in a compiled language, condition flags for the comparison
are set once, no matter how many times the loop executes. Comparing a value to 0 is faster
than comparing to other values, no matter which comparison operator you use—greater
than, less than, equal to, and so on.

Figure 6-29 contains a program that tests the execution times of two nested do-nothing
loops, which are shaded in the figure. The program declares variables to hold a
startTime before each nested loop begins and an endTime after each nested loop is
complete. Before each nested loop execution, the current time is retrieved from the
LocalDateTime class and the value of the nanoseconds (billionths of a second) is
retrieved using the getNano() method. After each nested loop repeats 100,000 times, the
current time is retrieved again. Subtracting one time from the other computes the
interval, and dividing by 1 million converts nanoseconds to more readable milliseconds.
As the execution in Figure 6-30 shows, there is a small difference in execution time
between the two loops—about 1/20 of a second. The amount of time will vary on
different machines, and varies for subsequent executions on the same machine

C H A P T E R 6 Looping

334

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

depending on events occurring elsewhere on the machine during the same time period,
but the loop that uses the 0 comparison will never be slower than the other one. The
difference would become more pronounced with additional repetitions or further nesting
levels. For example, if the value of the loop control variable was needed within the loops
to display a count to the user, then you might be required to vary the loop starting with
0. However, if the purposes of the loops are just to count iterations, you might consider
making the loop comparison use 0.

import java.time.*;
public class CompareLoopTimes
{

public static void main(String[] args)
{

int startTime, endTime;
final int REPEAT = 100_000;
final int FACTOR = 1_000_000;
LocalDateTime now;
now = LocalDateTime.now();
startTime = now.getNano();
for(int x = 0; x <= REPEAT; ++x)

for(int y = 0; y <= REPEAT; ++y);
now = LocalDateTime.now();
endTime = now.getNano();
System.out.println("Time for loops starting from 0: " +

((endTime - startTime) / FACTOR) + " milliseconds");
now = LocalDateTime.now();
startTime = now.getNano();
for(int x = REPEAT; x >= 0; ––x)

for(int y = REPEAT; y >= 0; ––y);
now = LocalDateTime.now();
endTime = now.getNano();
System.out.println("Time for loops ending with 0: " +

((endTime - startTime) / FACTOR) + " milliseconds");
}

}

Figure 6-29 The CompareLoopTimes application

Improving Loop Performance

335

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Note the use of the underscores in the large numbers in the CompareLoopTimes application. In Chapter
2, you learned that the underscores are not required, but they make the numbers easier to read.

If you execute the program in Figure 6-29, you probably will see different results. With a fast operating
system, you might not see the differences shown in Figure 6-30. If so, experiment with the program by
increasing the value of REPEAT or by adding more nested levels to the loops.

When you execute the CompareLoopTimes program, you will occasionally see a negative number output.
Such output occurs when the nanoseconds values retrieved fall in different seconds so that the start time is a
very high nanosecond number in one second and the end time is a very low number in the next second. An
exercise at the end of this chapter asks you to rectify this problem.

Employing Loop Fusion
Loop fusion is the technique of combining two loops into one. For example, suppose you want
to call two methods 100 times each. You can set a constant named TIMES to 100 and use the
following code:
for(int x = 0; x < TIMES; ++x)

method1();
for(int x = 0; x < TIMES; ++x)

method2();

However, you can also use the following code:
for(int x = 0; x < TIMES; ++x)
{

method1();
method2();

}

Fusing loops will not work in every situation; sometimes all the activities for all the executions
of method1() must be finished before those in method2() can begin. However, if the two
methods do not depend on each other, fusing the loops can improve performance.

Figure 6-30 Typical execution of the CompareLoopTimes application

C H A P T E R 6 Looping

336

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using Prefix Incrementing Rather than Postfix Incrementing
Probably the most common action after the second semicolon in a for statement is to
increment the loop control variable. In most textbooks and in many professional programs,
the postfix increment operator is used for this purpose, as in the following:
for(int x = 0; x < LIMIT; x++)

Because incrementing x is a stand-alone statement in the for loop, the result is identical
whether you use x++ or ++x. However, using the prefix increment operator produces a faster
loop. Consider the program in Figure 6-31. It is similar to the CompareLoopTimes application
in Figure 6-29, but instead of comparing loops that count up and down, it compares loops
that use prefix and postfix incrementing. The two timed, do-nothing loops that repeat 50,000
times each are shaded in the figure.

import java.time.*;
public class CompareLoopTimes2
{

public static void main(String[] args)
{

int startTime, endTime;
final int REPEAT = 50_000;
final int FACTOR = 1_000_000;
LocalDateTime now;
now = LocalDateTime.now();
startTime = now.getNano();
for(int x = 0; x <= REPEAT; ++x);
now = LocalDateTime.now();
endTime = now.getNano();
System.out.println("Time with prefix increment: " +

((endTime - startTime) / FACTOR) + " milliseconds");
now = LocalDateTime.now();
startTime = now.getNano();
for(int x = 0; x <= REPEAT; x++);
now = LocalDateTime.now();
endTime = now.getNano();
System.out.println("Time with postfix increment: " +

((endTime - startTime) / FACTOR) + " milliseconds");
}

}

Figure 6-31 The CompareLoopTimes2 program

Figure 6-32 shows a typical execution of the program. The program that uses prefix
incrementing runs slightly faster than the one that uses postfix incrementing because when
the compiler uses postfix incrementing, it first makes a copy of the variable it uses as the
expression’s value, and then it increments the variable. In other words, the operators are
methods that behave as follows:

Improving Loop Performance

337

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you use the prefix incrementing method, as in ++x, the method receives a reference
to x, increases it, and returns the increased value.

When you use the postfix incrementing method, as in x++, the method receives a
reference to x, makes a copy of the value and stores it, increments the value indicated by
the reference, and returns the copy. The extra time required to make the copy is
what causes postfix incrementing to take longer.

As you can see in Figure 6-32, the difference in duration for 50,000 loops is very
small—only 47/1000 of a second. If you run the program multiple times, you will get
different results. However, using the prefix operator typically saves a small amount of
time. As a professional, you will encounter programmers who insist on using either
postfix or prefix increments in their loops. You should follow the conventions
established by your organization, but now you have the tools to prove that prefix
incrementing is faster.

A Final Note on Improving Loop Performance
In the previous sections, you have learned to improve loop performance by eliminating
unnecessary operations, considering the order of evaluation for short-circuit operators,
making comparisons to 0, employing loop fusion, and using prefix incrementing rather
than postfix incrementing. As you become an experienced programmer, you will
discover other ways to enhance the operation of the programs you write. You should
always be on the lookout for ways to improve program performance. However, almost
all business professionals agree that if saving a few milliseconds ends up making your
code harder to understand, you have not succeeded. You almost always should err in
favor of programs that are more readable and easier to maintain, even if they execute
more slowly.

Figure 6-32 Typical execution of the CompareLoopTimes2 application

C H A P T E R 6 Looping

338

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Improving Loop Performance

1. You can improve the performance of a loop by making sure the loop does not
include unnecessary operations in the tested expression.

2. You can improve loop performance by making sure the loop does not include
unnecessary operations in the body of the loop.

3. You can improve loop performance when two conditions must both be true by
testing for the most likely occurrence first.

. yl t neuqerf ssel de mr ofr ep eb ot deenlli wt set
dnoces eht , ya wt ahT.t srif ecnerr uccoyl ekil t sael eht r of gni t set yb eurt eb ht obt su m
snoiti dnoc owt neh w ecna mr ofr ep pool evor p mi nac uoY. 3# si t ne met at s esl af ehT

You Do It

Comparing Execution Times for Separate and Fused Loops

In this section, you compare the execution times for accomplishing the same tasks
using two loops or a single one.

1. Start a new application named TestFusedLoopTime.
import java.time.*;
public class TestFusedLoopTime
{

public static void main(String[] args)
{

2. Create variables to hold starting and ending times for loop execution. Also
declare a loop control variable, x, and two named constants that hold a number of
times to repeat loops and a factor for converting nanoseconds to milliseconds:
int startTime, endTime;
int x;
final int REPEAT = 5_000_000;
final int FACTOR = 1_000_000;

Recall that the underscore can be used to make long numbers easier to read.
The underscores could be omitted.

(continues)

Improving Loop Performance

339

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Declare a LocalDateTime object, initialize it to a starting time, and extract its
nanoseconds component.
LocalDateTime now;
now = LocalDateTime.now();
startTime = now.getNano();

4. In a loop that repeats 5 million times, call a method named method1(). When
the calls to method1() are complete, execute a second loop that also repeats
5 million times, calling another method named method2().
for(x = 0; x < REPEAT; ++x)

method1();
for(x = 0; x < REPEAT; ++x)

method2();

5. When both loops are finished, get the current time, extract the nanoseconds
value, and display the difference between the start time and end time,
expressed in milliseconds:
now = LocalDateTime.now();
endTime = now.getNano();
System.out.println("Time for loops executed separately: " +

((endTime - startTime) / FACTOR) + " milliseconds");

6. Get a new starting time, and call method1() and method2() 5 million times
each, blocked in a single loop.
now = LocalDateTime.now();
startTime = now.getNano();
for(x = 0; x < REPEAT; ++x)
{

method1();
method2();

}

7. Get the ending time for the loop, and display the value of the elapsed interval.
Add a closing curly brace for the method.

now = LocalDateTime.now();
endTime = now.getNano();
System.out.println("Time for loops executed in a block: " +

((endTime - startTime) / FACTOR) + " milliseconds");
}

(continued)

(continues)

C H A P T E R 6 Looping

340

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Create the two methods named method1() and method2(). Each is simply a
stub—a method that contains no statements. Add a closing curly brace for
the class.

public static void method1()
{
}
public static void method2()
{
}

}

9. Save the file as TestFusedLoopTime.java, and then compile and execute it.
Figure 6-33 shows a typical execution. The times might differ on your system,
but you should be able to see that using a single loop significantly improves
performance over using separate loops.

10. Experiment with increasing and decreasing the value of REPEAT, and observe
the effects. Experiment with adding statements to method1() and method2(),
perhaps including do-nothing loops within one or both of the methods. The
time values you observe might also differ when you run the program at
different times, depending on what other tasks are running on your system
concurrently.

(continued)

Figure 6-33 Typical execution of the TestFusedLoopTime program

Improving Loop Performance

341

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It
Don’t insert a semicolon at the end of a while clause before the loop body; doing so
creates an empty loop body.

Don’t forget to block multiple statements that should execute in a loop.

Don’t make the mistake of checking for invalid data using a decision instead of a loop.
Users might enter incorrect data multiple times, so a loop is the superior choice for input
validation.

Don’t ignore subtleties in the boundaries used to stop loop performance. For example,
looping while interest rates are less than 8% is different than looping while interest rates
are no more than 8%.

Don’t repeat steps within a loop that could just as well be placed outside the loop; your
program performance will improve.

Key Terms
A loop is a structure that allows repeated execution of a block of statements.

A loop body is the block of statements that executes when the Boolean expression that
controls the loop is true.

An iteration is one loop execution.

A while loop executes a body of statements continually as long as the Boolean expression
that controls entry into the loop continues to be true.

A definite loop or a counted loop is one that executes a predetermined number of times.

An indefinite loop is one in which the final number of loops is unknown.

A loop control variable is a variable whose value determines whether loop execution
continues.

An infinite loop is a loop that never ends.

An empty body is a block with no statements in it.

A counter-controlled loop is a definite loop.

Incrementing a variable adds 1 to its value.

Decrementing a variable reduces its value by 1.

An event-controlled loop is an indefinite loop in which the number of executions is
determined by user actions.

A sentinel is a value that stops a loop.

C H A P T E R 6 Looping

342

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Validating data is the process of ensuring that a value falls within a specified range.

A priming read or priming input is the first input statement prior to a loop that will execute
subsequent input statements for the same variable.

Counting is the process of continually incrementing a variable to keep track of the number of
occurrences of some event.

Accumulating is the process of repeatedly increasing a value by some amount to produce a
total.

The add and assign operator (+=) alters the value of the operand on the left by adding the
operand on the right to it.

The subtract and assign operator (–=) alters the value of the operand on the left by
subtracting the operand on the right from it.

The multiply and assign operator (*=) alters the value of the operand on the left by
multiplying the operand on the right by it.

The divide and assign operator (/=) alters the value of the operand on the left by dividing
the operand on the right into it.

The remainder and assign operator (%=) alters the value of the operand on the left by
assigning the remainder when the left operand is divided by the right operand.

The prefix ++, also known as the prefix increment operator, adds 1 to a variable, then
evaluates it.

The postfix ++, also known as the postfix increment operator, evaluates a variable, then adds
1 to it.

The prefix and postfix decrement operators subtract 1 from a variable.

A for loop is a special loop that can be used when a definite number of loop iterations is
required.

A do-nothing loop is one that performs no actions other than looping.

A pretest loop is one in which the loop control variable is tested before the loop body
executes.

The do…while loop executes a loop body at least one time; it checks the loop control variable
at the bottom of the loop after one repetition has occurred.

A posttest loop is one in which the loop control variable is tested after the loop body executes.

An inner loop is contained entirely within another loop.

An outer loop contains another loop.

Loop fusion is the technique of combining two loops into one.

Key Terms

343

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary
A loop is a structure that allows repeated execution of a block of statements. Within
a looping structure, a Boolean expression is evaluated, and if it is true, a block of
statements called the loop body executes; then the Boolean expression is evaluated
again.

You can use a while loop to execute a body of statements continually while some
condition continues to be true. To correctly execute a while loop, you should initialize a
loop control variable, test it in a while statement, and then alter the loop control variable
in the loop body.

The add and assign operator (+=) adds the value on the right to the variable on the left.
Similar operations are available for subtraction, multiplication, and division. The prefix
and postfix increment operators increase a variable’s value by 1. The prefix and postfix
decrement operators reduce a variable’s value by 1. The prefix operator alters its operand,
then uses it; the postfix operator uses the value, then alters it.

A for loop initializes, tests, and increments in one statement. There are three
sections within the parentheses of a for loop that are separated by exactly two
semicolons.

The do…while loop tests a Boolean expression after one repetition has taken place, at the
bottom of the loop.

Loops can be nested, creating inner and outer loops.

You can improve loop performance by making sure the loop does not include unnecessary
operations or statements and by considering factors such as short-circuit evaluation, zero
comparisons, loop fusion, and prefix incrementing.

Review Questions
1. A structure that allows repeated execution of a block of statements is

a .

a. cycle
b. loop

c. ring
d. band

2. A loop that never ends is a(n) loop.

a. iterative
b. infinite

c. structured
d. illegal

3. To construct a loop that works correctly, you should initialize a loop
control .

a. variable
b. constant

c. structure
d. condition

C H A P T E R 6 Looping

344

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. What is the output of the following code?
b = 1;
while(b < 4)

System.out.print(b + " ");

a. 1
b. 1 2 3

c. 1 2 3 4
d. 1 1 1 1 1 1…

5. What is the output of the following code?
b = 1;
while(b < 4)
{

System.out.print(b + " ");
b = b + 1;

}

a. 1
b. 1 2 3

c. 1 2 3 4
d. 1 1 1 1 1…

6. What is the output of the following code?
e = 1;
while(e < 4);

System.out.print(e + " ");

a. Nothing
b. 1 1 1 1 1 1…

c. 1 2 3 4
d. 4 4 4 4 4 4…

7. If total = 100 and amt = 200, then after the statement total += amt, .

a. total is equal to 200
b. total is equal to 300

c. amt is equal to 100
d. amt is equal to 300

8. The prefix ++ is a operator.

a. unary
b. binary

c. tertiary
d. postfix

9. If g = 5, then after h = ++g, the value of h is .

a. 4
b. 5

c. 6
d. 7

10. If m = 9, then after n = m++, the value of m is .

a. 8
b. 9

c. 10
d. 11

11. If m = 9, then after n = m++, the value of n is .

a. 8
b. 9

c. 10
d. 11

Review Questions

345

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12. If j = 5 and k = 6, then the value of j++ == k is .

a. 5
b. 6

c. true

d. false

13. You must always include ___________ in a for loop’s parentheses.

a. two semicolons
b. three semicolons

c. two commas
d. three commas

14. What does the following statement output?
for(a = 0; a < 5; ++a)

System.out.print(a + " ");

a. 0 0 0 0 0
b. 0 1 2 3 4

c. 0 1 2 3 4 5
d. nothing

15. What does the following statement output?
for(b = 1; b > 3; ++b)

System.out.print(b + " ");

a. 1 1 1
b. 1 2 3

c. 1 2 3 4
d. nothing

16. What does the following statement output?
for(f = 1, g = 4; f < g; ++f, ––g)

System.out.print(f + " " + g + " ");

a. 1 4 2 5 3 6 4 7…
b. 1 4 2 3 3 2

c. 1 4 2 3
d. nothing

17. The loop that performs its conditional check at the bottom of the loop
is a loop.

a. while

b. do…while

c. for

d. for…while

18. What does the following program segment output?
d = 0;
do
{

System.out.print(d + " ");
d++;

} while (d < 2);

a. 0
b. 0 1

c. 0 1 2
d. nothing

C H A P T E R 6 Looping

346

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

19. What does the following program segment output?
for(f = 0; f < 3; ++f)

for(g = 0; g < 2; ++g)
System.out.print(f + " " + g + " ");

a. 0 0 0 1 1 0 1 1 2 0 2 1
b. 0 1 0 2 0 3 1 1 1 2 1 3

c. 0 1 0 2 1 1 1 2
d. 0 0 0 1 0 2 1 0 1 1 1 2 2 0 2 1 2 2

20. What does the following program segment output?
for(m = 0; m < 4; ++m);

for(n = 0; n < 2; ++n);
System.out.print(m + " " + n + " ");

a. 0 0 0 1 1 0 1 1 2 0 2 1 3 0 3 1
b. 0 1 0 2 1 1 1 2 2 1 2 2

c. 4 2
d. 3 1

Exercises

Programming Exercises

1. When you execute the CompareLoopTimes program shown in Figure 6-29, you
will occasionally see a negative number output when the nanoseconds values
retrieved fall in different seconds. Modify the program to fix this problem, and
save the file as CompareLoopTimes3.java. (Hint: It might take hundreds or thou-
sands of executions for you to “catch” the program near the end of a second in order
to test your modifications. For testing purposes, you can assign values to the start and
stop times instead of retrieving them from the LocalDateTime class.)

2. a. Write an application that counts by three from 3 through 300 inclusive, and
that starts a new line after every multiple of 30 (30, 60, 90, and so on). Save the file
as CountByThrees.java.

b. Modify the CountByThrees application so that the user enters the value to count
by. Start each new line after 10 values have been displayed. Save the file as
CountByAnything.java.

3. Write an application that asks a user to type an even number or the sentinel value 999
to stop. When the user types an even number, display the message “Good job!” and
then ask for another input. When the user types an odd number, display an error
message and then ask for another input. When the user types the sentinel value 999,
end the program. Save the file as EvenEntryLoop.java.

4. Write an application that displays the factorial for every integer value from 1 to 10.
A factorial of a number is the product of that number multiplied by each positive
integer lower than it. For example, 4 factorial is 4 * 3 * 2 * 1, or 24. Save the file as
Factorials.java.

Exercises

347

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Write an application that prompts a user for two integers and displays every integer
between them. Display a message if there are no integers between the entered values.
Make sure the program works regardless of which entered value is larger. Save the file
as Inbetween.java.

6. Write an application that displays every perfect number from 1 through 1,000. A
perfect number is one that equals the sum of all the numbers that divide evenly into
it. For example, 6 is perfect because 1, 2, and 3 divide evenly into it, and their sum is 6;
however, 12 is not a perfect number because 1, 2, 3, 4, and 6 divide evenly into it, and
their sum is greater than 12. Save the file as Perfect.java.

7. Write an application that uses a loop to create the pattern of Os shown in Figure 6-34,
in which each O is displayed one additional space to the right. Save the file as
DiagonalOs.java.

8. Write an application that allows a user to enter any number of student test scores
until the user enters 999. If the score entered is less than 0 or more than 100, display
an appropriate message and do not use the score. After all the scores have been
entered, display the number of scores entered, the highest score, the lowest score, and
the arithmetic average. Save the file as TestScoreStatistics.java.

9. Write an application that computes a business’s potential profits each year for
20 years using the following assumptions: (1) Gross profit in the first year is
projected to be $20,000. (2) Expenses in the first year are expected to be $35,000.
(3) Net profit or loss is gross profit minus expenses. (4) Gross profits are expected
to increase 10 percent each year. (5) Expenses are expected to increase 4 percent
each year. Display the year, the gross profit, the expenses, and the net profit for each
year. Also display the year in which a net profit is first reported. Save the file as
WhenProfitable.java.

Figure 6-34 Output of the DiagonalOs application

C H A P T E R 6 Looping

348

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. a. Write an application that prompts a user for the number of years the user has until
retirement and the amount of money the user can save annually. If the user enters
0 or a negative number for either value, reprompt the user until valid entries are
made. Assume that no interest is earned on the money. Display the amount of
money the user will have at retirement. Save the file as RetirementGoal.java.

b. Modify the RetirementGoal application to display the amount of money the user
will have if the user earns 5% interest on the balance every year. Save the file as
RetirementGoal2.java.

11. Pickering Manufacturing Company randomly selects one of its four factories to
inspect each week. Write an application that determines which factory will be
selected each week for the next 52 weeks. Use the Math.random() function explained
in Appendix D to generate a factory number between 1 and 4; you use a statement
similar to:
factory = 1 + (int) (Math.random() * 4);

After each selection, display the factory to inspect, and after the 52 selections are
complete, display the percentage of inspections at each factory for the year. Run the
application several times until you are confident that the factory selection is random.
Save the file as Inspections.java.

12. Assume that the population of Mexico is 121 million and that the population
increases 1.01 percent annually. Assume that the population of the United States is
315 million and that the population is reduced 0.15 percent annually. Write an
application that displays the populations for the two countries every year until the
population of Mexico exceeds that of the United States, and display the number of
years it took. Save the file as Population.java.

13. The Huntington High School basketball team has five players named Art, Bob, Cal,
Dan, and Eli. Accept the number of points scored by each player in a game and create
a bar chart that illustrates the points scored, similar to the chart in Figure 6-35. Save
the file as BarChart.java.

Figure 6-35 Typical execution of the BarChart application

Exercises

349

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14. a. Create a class named Purchase. Each Purchase contains an invoice number,
amount of sale, and amount of sales tax. Include set methods for the invoice
number and sale amount. Within the set() method for the sale amount,
calculate the sales tax as 5% of the sale amount. Also include a display method
that displays a purchase’s details. Save the file as Purchase.java.

b. Create an application that declares a Purchase object and prompts the user for
purchase details. When you prompt for an invoice number, do not let the user
proceed until a number between 1,000 and 8,000 has been entered. When you
prompt for a sale amount, do not proceed until the user has entered a
nonnegative value. After a valid Purchase object has been created, display
the object’s invoice number, sale amount, and sales tax. Save the file as
CreatePurchase.java.

Debugging Exercises

1. Each of the following files in the Chapter06 folder of your downloadable student
files has syntax and/or logic errors. In each case, determine the problem and fix the
program. After you correct the errors, save each file using the same filename
preceded with Fix. For example, save DebugSix1.java as FixDebugSix1.java.

a. DebugSix1.java
b. DebugSix2.java

c. DebugSix3.java
d. DebugSix4.java

Game Zone
1. a. Write an application that creates a quiz. The quiz should contain at least five

questions about a hobby, popular music, astronomy, or any other personal
interest. Each question should be a multiple-choice question with at least
four answer options. When the user answers the question correctly, display a
congratulatory message. If the user responds to a question incorrectly, display
an appropriate message as well as the correct answer. At the end of the quiz,
display the number of correct and incorrect answers, and the percentage of
correct answers. Save the file as Quiz.java.

b. Modify the Quiz application so that the user is presented with each question
continually until it is answered correctly. Remove the calculation for percentage
of correct answers—all users will have 100% correct by the time they complete
the application. Save the file as Quiz2.java.

2. In Chapter 1, you created a class called RandomGuess. In this game, players guess a
number, the application generates a random number, and players determine
whether they were correct. In Chapter 5, you improved the application to display a
message indicating whether the player’s guess was correct, too high, or too low.

C H A P T E R 6 Looping

350

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Now, add a loop that continuously prompts the user for the number, indicating
whether the guess is high or low, until the user enters the correct value. After the
user correctly guesses the number, display a count of the number of attempts it
took. Save the file as RandomGuess3.java.

3. In Chapter 4, you created a Die class from which you could instantiate an object
containing a random value from 1 through 6. Now use the class to create a simple
dice game in which the user chooses a number between 2 (the lowest total possible
from two dice) and 12 (the highest total possible). The user “rolls” two dice up to
three times. If the number chosen by the user comes up, the user wins and the game
ends. If the number does not come up within three rolls, the computer wins. Save
the application as TwoDice3.java.

4. a. Using the Die class you created in Chapter 4, create a version of the dice game
Pig that a user can play against the computer. The object of the game is to be the
first to score 100 points. The user and computer take turns rolling a pair of dice
following these rules:

On a turn, each player “rolls” two dice. If no 1 appears, the dice values are added
to a running total, and the player can choose whether to roll again or pass the
turn to the other player.

If a 1 appears on one of the dice, nothing more is added to the player’s total and
it becomes the other player’s turn.

If a 1 appears on both of the dice, not only is the player’s turn over, but the
player’s entire accumulated score is reset to 0.

In this version of the game, when the computer does not roll a 1 and can choose
whether to roll again, generate a random value between 0 and 1. Have the
computer continue to roll the dice when the value is 0.5 or more, and have the
computer quit and pass the turn to the player when the value is not 0.5 or more.

Save the game as PigDiceGame.java.

b. Modify the PigDiceGame application so that if a player rolls a 1, not only does
the player’s turn end, but all the player’s earned points during that round are
eliminated. (Points from earlier rounds are not affected. That is, when either
the player or computer rolls a 1, all the points accumulated since the other’s turn
are subtracted.) Save the game as PigDiceGame2.java.

5. Two people play the game of Count 21 by taking turns entering a 1, 2, or 3, which
is added to a running total. The player who adds the value that makes the total
exceed 21 loses the game. Create a game of Count 21 in which a player competes
against the computer, and program a strategy that always allows the computer to
win. On any turn, if the player enters a value other than 1, 2, or 3, force the player to
reenter the value. Save the game as Count21.java.

Exercises

351

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Problems
1. Carly’s Catering provides meals for parties and special events. In previous chapters,

you developed a class that holds catering event information and an application that
tests the methods using four objects of the class. Now modify the EventDemo class to
do the following:

Continuously prompt for the number of guests for each Event until the value
falls between 5 and 100 inclusive.

For one of the Event objects, create a loop that displays “Please come to my
event!” as many times as there are guests for the Event.

Save the modified file as EventDemo.java.
2. Sammy’s Seashore Supplies rents beach equipment to tourists. In previous chapters,

you developed a class that holds equipment rental information and an application
that tests the methods using four objects of the class. Now modify the RentalDemo

class to do the following:

Continuously prompt for the number of minutes of each Rental until the value
falls between 60 and 7,200 inclusive.

For one of the Rental objects, create a loop that displays “Coupon good for
10 percent off next rental” as many times as there are full hours in the Rental.

Save the modified file as RentalDemo.java.

352

C H A P T E R 6 Looping

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7
Characters, Strings,
and the
StringBuilder

In this chapter, you will:

Identify string data problems

Use Character class methods

Declare and compare String objects

Use other String methods

Use the StringBuilder and StringBuffer classes

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding String Data Problems
Manipulating characters and strings provides some challenges for the beginning Java
programmer. For example, consider the TryToCompareStrings application shown in
Figure 7-1. The main() method declares a String named aName and assigns “Carmen”
to it. The user is then prompted to enter a name. The application compares the two
names using the equivalency operator (==) and displays one of two messages indicating
whether the strings are equivalent.

Figure 7-2 shows a typical execution of the application. When the user types “Carmen” as the
value for anotherName, the application concludes that the two names are not equal.

The application in Figure 7-1 seems to produce incorrect results. The problem stems from
the fact that in Java, String is a class, and each created String is an object. As an object, a
String variable name is not a simple data type—it is a reference; that is, a variable that holds
a memory address. Therefore, when you compare two String objects using the == operator,
you are not comparing their values, but their computer memory locations.

Figure 7-2 Typical execution of the TryToCompareStrings application

import java.util.Scanner;
public class TryToCompareStrings
{
 public static void main(String[] args)
 {
 String aName = "Carmen";
 String anotherName;
 Scanner input = new Scanner(System.in);
 System.out.print("Enter your name > ");
 anotherName = input.nextLine();
 if(aName == anotherName)
 System.out.println(aName + " equals " + anotherName);
 else
 System.out.println(aName + " does not equal " + anotherName);
 }
}

Don’t Do It
Do not use == to
compare Strings’
contents.

Figure 7-1 The TryToCompareStrings application

C H A P T E R 7 Characters, Strings, and the StringBuilder

354

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Programmers want to compare the contents of memory locations (the values stored there)
more frequently than they want to compare the addresses of the locations. Fortunately, the
creators of Java have provided three classes that you can use when working with text data; these
classes provide you with many methods that make working with characters and strings easier:

Character—A class whose instances can hold a single character value and whose
methods manipulate and inspect single-character data

String—A class for working with fixed-string data—that is, unchanging data composed
of multiple characters

StringBuilder and StringBuffer—Classes for storing and manipulating changeable data
composed of multiple characters

TWO TRUTHS & A LIE

Understanding String Data Problems

1. A String is a simple data type that can hold text data.

2. Programmers want to compare the values of Strings more frequently than they
want to compare their memory addresses.

3. Character, String, and StringBuilder are useful built-in classes for working
with text data.

. sser dda yr o me ma
sdl ohti , si t aht ; ecner ef er a si e man el bai r av gnirtS A. 1# si t ne met at s esl af ehT

Using Character Class Methods
You learned in Chapter 2 that the char data type is used to hold any single character—for
example, a letter, digit, or punctuation mark. Recall that char literals are surrounded by single
quotation marks. Because char is a primitive data type, variables of type char are not
references, so you can compare their values using relational operators such as == and >.
Comparisons are made using each character’s Unicode value. You first learned about Unicode
values in Chapter 2. Character comparisons are evaluated how you generally would expect
them to be—alphabetically. For example, if yourInitial is 'A' and myInitial is 'B', then
yourInitial < myInitial is true.

In addition to the primitive data type char, Java offers a Character class. The Character class
contains standard methods for testing the values of characters. Table 7-1 describes many of the
Character class methods. The methods that begin with “is”, such as isUpperCase(), return
a Boolean value that can be used in comparison statements; the methods that begin with “to”,
such as toUpperCase(), return a character that has been converted to the stated format.

Using Character Class Methods

355

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Character class is defined in java.lang and is automatically imported into every program you
write. The Character class inherits from java.lang.Object. You will learn more about the Object
class when you study inheritance concepts in the chapter “Introduction to Inheritance.”

Figure 7-3 contains an application that uses many of the methods shown in Table 7-1.
The application defines the variable aChar as 'C' and displays information about it.

import java.util.Scanner;
public class CharacterInfo
{

public static void main(String[] args)
{

char aChar = 'C';
System.out.println("The character is " + aChar);
if(Character.isUpperCase(aChar))

System.out.println(aChar + " is uppercase");
else

System.out.println(aChar + " is not uppercase");
if(Character.isLowerCase(aChar))

System.out.println(aChar + " is lowercase");
else

System.out.println(aChar + " is not lowercase");
aChar = Character.toLowerCase(aChar);
System.out.println("After toLowerCase(), aChar is " + aChar);
aChar = Character.toUpperCase(aChar);
System.out.println("After toUpperCase(), aChar is " + aChar);

Method Description

isUpperCase() Tests if character is uppercase

toUpperCase() Returns the uppercase equivalent of the argument; no change is made if
the argument is not a lowercase letter

isLowerCase() Tests if character is lowercase

toLowerCase() Returns the lowercase equivalent of the argument; no change is made if
the argument is not an uppercase letter

isDigit() Returns true if the argument is a digit (0−9) and false otherwise

isLetter() Returns true if the argument is a letter and false otherwise

isLetterOrDigit() Returns true if the argument is a letter or digit and false otherwise

isWhitespace() Returns true if the argument is whitespace and false otherwise; this
includes the space, tab, newline, carriage return, and form feed

Table 7-1 Commonly used methods of the Character class

Figure 7-3 The CharacterInfo application (continues)

C H A P T E R 7 Characters, Strings, and the StringBuilder

356

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

if(Character.isLetterOrDigit(aChar))
System.out.println(aChar + " is a letter or digit");

else
System.out.println(aChar +

" is neither a letter nor a digit");
if(Character.isWhitespace(aChar))

System.out.println(aChar + " is whitespace");
else

System.out.println(aChar + " is not whitespace");
}

}

Figure 7-3 The CharacterInfo application

You can tell that each of the Character class methods used in the CharacterInfo application in
Figure 7-3 is a static method because the method name is used without an object reference—you use only
the class name, a dot, and the method name. You learned about the difference between static and instance
methods in Chapter 3.

The output of the CharacterInfo application is shown in Figure 7-4, where you can see the
following:

The value returned by the isUpperCase() method is true.

The value returned by the isLowerCase() method is false.

The value returned by the toLowerCase() method is ‘c’.

The value returned by the toUpperCase() method is ‘C’.

The value returned by the isLetterOrDigit() method is true.

The value returned by the isWhitespace() method is false.

(continued)

Figure 7-4 Output of the CharacterInfo application

Using Character Class Methods

357

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using Character Class Methods

1. Character is a class, but char is a simple data type.

2. The Character class method isLowerCase() returns the lowercase version of
any uppercase character.

3. If a char variable holds the Unicode value for the Tab key, isWhitespace()
would be true and isLetterOrDigit() would be false.

. xif er p si eht esu se man esoh wsdoht e mssal c retcarahC eht ll a od sa, eslaf r o
eurt snr ut er)(esaCrewoLsi doht e mssal c retcarahC ehT. 2#si t ne met at s esl af ehT

You Do It

Testing Characters

In this section, you experiment with the CharacterInfo application in order to become
comfortable with different character properties.

1. Locate the CharacterInfo.java file that is stored in the Chapter07 folder
of your Student Files. (If you cannot locate your Student Files, you can type
the program shown in Figure 7-3.) Change the value of the aChar variable,
compile and execute the program, and examine the results. Repeat this task
multiple times using a variety of character values, including uppercase and
lowercase letters, numbers, punctuation, special characters such as ‘@’ and
‘[‘, and whitespace characters, such as a space or Tab. Verify that the output
is what you expect in each case.

Examining the Character Class at the Java Web Site

1. Using a Web browser, go to the Java Web site at
www.oracle.com/technetwork/java/index.html, and select
Java APIs and Java SE 8. Using the alphabetical list of classes, find the
Character class and select it.

2. Examine the extensive list of methods for the Characterclass. Find one with which
you are familiar, such as toLowerCase(). Notice that there are two overloaded
versions of the method. The one you used in the CharacterInfo application
accepts a char and returns a char. The other version that accepts and returns an
int uses Unicode values. Appendix B provides more information on Unicode.

C H A P T E R 7 Characters, Strings, and the StringBuilder

358

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Declaring and Comparing String Objects
You learned in Chapter 1 that a sequence of characters enclosed within double quotation
marks is a literal string. (Programmers might also call it a “string literal.”) You have used many
literal strings, such as “First Java application”, and you have assigned values to String objects
and used them within methods, such as println() and showMessageDialog(). A literal
string is an unnamed object, or anonymous object, of the String class, and a String variable
is simply a named object of the same class. The class String is defined in java.lang.String,
which is automatically imported into every program you write.

You have declared a String array named args in every main() method header that you have written.
You will learn about arrays in the next chapter.

When you declare a String object, the String itself—that is, the series of characters contained
in the String—is distinct from the identifier you use to refer to it. You can create a String

object by using the keyword new and the String constructor, just as you would create an object
of any other type. For example, the following statement defines an object named aGreeting,
declares it to be of type String, and assigns an initial value of “Hello” to the String:
String aGreeting = new String("Hello");

The variable aGreeting stores a reference to a String object—it keeps track of where the
String object is stored in memory. When you declare and initialize aGreeting, it links to the
initializing String value. Because Strings are declared so routinely in programs, Java
provides a shortcut, so you can declare a String containing “Hello” with the following
statement that omits the keyword new and does not explicitly call the class constructor:
String aGreeting = "Hello";

Comparing String Values
In Java, String is a class, and each created String is an object. A String variable name is
a reference; that is, a String variable name refers to a location in memory, rather than to
a particular value.

The distinction is subtle, but when you declare a variable of a basic, primitive type, such as
int x = 10;, the memory address where x is located holds the value 10. If you later assign a
new value to x, the new value replaces the old one at the assigned memory address. For
example, if you code x = 45;, then 45 replaces 10 at the address of x.

By contrast, when you declare a String, such as String aGreeting = "Hello";, aGreeting
does not hold the characters “Hello”; instead it holds a memory address where the characters
are stored.

The left side of Figure 7-5 shows a diagram of computer memory if aGreeting happens to be
stored at memory address 10876 and the String “Hello” happens to be stored at memory
address 26040. You cannot choose the memory address where a value is stored. Addresses
such as 10876 and 26040 are chosen by the operating system.

Declaring and Comparing String Objects

359

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you refer to aGreeting, you are actually accessing the address of the characters you
want to use. (In the example on the left side of Figure 7-5, the memory location beginning at
address 32564 has not yet been used and holds garbage values.)

If you subsequently assign a new value to aGreeting, such as aGreeting = "Bonjour";,
the address held by aGreeting is altered; now, aGreeting holds a new address where the
characters “Bonjour” are stored. As shown on the right side of Figure 7-5, “Bonjour” is an
entirely new object created with its own location. The “Hello” String is still in memory, but
aGreeting no longer holds its address. Eventually, a part of the Java system called the garbage
collector discards the “Hello” characters so the memory address can be used for something
else. Strings, therefore, are never actually changed; instead, new Strings are created and
String references hold the new addresses. Strings and other objects that can’t be changed
are immutable.

The creators of Java made Strings immutable for several reasons. For example, in environments where
multiple programs (or parts of programs, called threads of execution) run concurrently, one logical path
cannot change a String being used by another path. The compiler can also be made to execute more
efficiently with immutable String objects. In simple programs, you don’t care much about these features.
However, immutability leads to performance problems. Later in this chapter, you will learn that if you want to
use a mutable object to hold strings of characters, you can use the StringBuilder class.

String aGreeting = "Hello";

Address 10876, named aGreeting

26040

Address 26040

Hello

XXYYZZ223

Address 32564

String aGreeting = "Hello";
aGreeting = "Bonjour";

Address 10876, named aGreeting

32564

Hello

Address 26040

Address 32564

Bonjour

aGreeting
holds the address
where “Hello” is
stored.

aGreeting
holds the address
where “Bonjour”
is stored.

Figure 7-5 Contents of aGreeting at declaration and after an assignment

C H A P T E R 7 Characters, Strings, and the StringBuilder

360

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Because String references hold memory addresses, making simple comparisons between them
often produces misleading results. For example, recall the TryToCompareStrings application
in Figure 7-1. In this example, Java evaluates the String variables aName and anotherName as
not equal because even though the variables contain the same series of characters, one set is
assigned directly and the other is entered from the keyboard and stored in a different area of
memory. When you compare Strings with the == operator, you are comparing their memory
addresses, not their values. Furthermore, when you try to compare Strings using the less-than
(<) or greater-than (>) operator, the program will not even compile.

If you declare two String objects and initialize both to the same value, the value is stored only
once in memory and the two object references hold the same memory address. Because
the String is stored just once, memory is saved. Consider the following example in which
the same value is assigned to two Strings (as opposed to getting one from user input).
The reason for the output in the following example is misleading. When you write the
following code, the output is Strings are the same.
String firstString = "abc";
String secondString = "abc";
if(firstString == secondString)

System.out.println("Strings are the same");

The output is Strings are the same because the memory addresses held by firstString and
secondString are the same, not because their contents are the same.

Fortunately, the String class provides you with a number of useful methods that compare
Strings in the way you usually intend. The String class equals() method evaluates the
contents of two String objects to determine if they are equivalent. The method returns true
if the objects have identical contents, no matter how the contents were assigned. For example,
Figure 7-6 shows a CompareStrings application, which is identical to the TryToCompareStrings
application in Figure 7-1 except for the shaded comparison.

import java.util.Scanner;
public class CompareStrings
{

public static void main(String[] args)
{

String aName = "Carmen";
String anotherName;
Scanner input = new Scanner(System.in);
System.out.print("Enter your name > ");
anotherName = input.nextLine();
if(aName.equals(anotherName))

System.out.println(aName + " equals " + anotherName);
else

System.out.println(aName + " does not equal " + anotherName);
}

}

Figure 7-6 The CompareStrings application

Declaring and Comparing String Objects

361

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When a user runs the CompareStrings application and enters “Carmen” for the name, the
output appears as shown in Figure 7-7; the contents of the Strings are equal. The String
class equals() method returns true only if two Strings are identical in content. Thus, a
String that refers to “Carmen” is not equivalent to one that refers to “CARMEN”, and a
String that refers to “Carmen ” (with a space after the n) is not equivalent to one that refers
to “Carmen” (with no space after the n).

Technically, the equals() method does not perform an alphabetical comparison with Strings; it
performs a lexicographical comparison—a comparison based on the integer Unicode values of the
characters.

Each of the two String objects declared in Figure 7-6 (aName and anotherName) has access to
the String class equals() method. If you analyze how the equals() method is used in the
application in Figure 7-6, you can tell quite a bit about how the method was written by Java’s
creators:

Because you use the equals() method with a String object and the method uses the
unique contents of that object to make a comparison, you can tell that it is not a static
method.

Because the call to the equals() method can be used in an if statement, you can tell that
it returns a Boolean value.

Because you see a String used between the parentheses in the method call, you can tell
that the equals() method takes a String argument.

So, the method header of the equals() method within the String class must be similar to the
following:
public boolean equals(String s)

The only thing you do not know about the method header is the local name used for the
String argument—it might be s, or it might be any other legal Java identifier. When you use a
prewritten method such as equals(), you do not know how the code looks inside it. For
example, you do not know whether the equals() method compares the characters in the
Strings from left to right or from right to left. All you know is that the method returns true if
the two Strings are completely equivalent and false if they are not.

Figure 7-7 Typical execution of the CompareStrings application

C H A P T E R 7 Characters, Strings, and the StringBuilder

362

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Because both aName and anotherName are Strings in the application in Figure 7-6, the aName

object can call equals() with aName.equals(anotherName) as shown, or the anotherName
object could call equals() with anotherName.equals(aName). The equals() method can
take either a variable String object or a literal string as its argument.

The String class equalsIgnoreCase() method is similar to the equals() method. As its
name implies, this method ignores case when determining if two Strings are equivalent.
Thus, if you declare a String as String aName = "Carmen";, then aName.equals("caRMen") is
false, but aName.equalsIgnoreCase("caRMen") is true. This method is useful when users
type responses to prompts in your programs. You cannot predict when a user might use the
Shift key or the Caps Lock key during data entry.

When the String class compareTo() method is used to compare two Strings, it provides
additional information to the user in the form of an integer value. When you use compareTo()
to compare two String objects, the method:

returns zero if the values of two Strings are exactly the same

returns a negative number if the calling object is “less than” the argument

returns a positive number if the calling object is “more than” the argument

Strings are considered “less than” or “more than” each other based on their Unicode values;
thus, “a” is less than “b”, and “b” is less than “c”. For example, if aName refers to “Roger”, then
aName.compareTo("Robert"); returns a 5. The number is positive, indicating that “Roger” is
more than “Robert”. This does not mean that “Roger” has more characters than “Robert”; it
means that “Roger” is alphabetically “more” than “Robert”. The comparison proceeds as follows:

The R in “Roger” and the R in “Robert” are compared, and found to be equal.

The o in “Roger” and the o in “Robert” are compared, and found to be equal.

The g in “Roger” and the b in “Robert” are compared; they are different. The numeric
value of g minus the numeric value of b is 5 (because g is five letters after b in the
alphabet), so the compareTo() method returns the value 5.

Often, you won’t care what the specific return value of compareTo() is; you
simply want to determine if it is positive or negative. For example, you can use a
test such as if(aWord.compareTo(anotherWord) < 0)… to determine whether aWord is
alphabetically less than anotherWord. If aWord is a String variable that refers to the
value “hamster”, and anotherWord is a String variable that refers to the value “iguana”,
the comparison if(aWord.compareTo(anotherWord) < 0) yields true.

Empty and null Strings
Programmers are often confused by the difference between empty Strings and null Strings.
You can create an empty String named word1 and two null Strings named word2 and
word3 with the following statements:
String word1 = "";
String word2 = null;
String word3;

Declaring and Comparing String Objects

363

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The empty String word1 references a memory address where no characters are stored. The
nullString word2 uses the Java keyword null so that word2 does not yet hold a memory address.
The unassigned String word3 is also a null String by default. A significant difference between
these declarations is that word1 can be used with the String methods described in this chapter,
but word2 and word3 cannot be. For example, assuming a String named someOtherString
has been assigned a value, then the comparison word1.equals(someOtherString) is valid,
but word2.equals(someOtherString) causes an error.

Because Strings are set to null by default, some programmers think explicitly setting a
String to null is redundant. Other programmers feel that explicitly using the keyword null

makes your intentions clearer to those reading your program. You should use the style your
organization recommends.

Watch the video Comparing Strings.

TWO TRUTHS & A LIE

Declaring and Comparing String Objects

1. To create a String object, you must use the keyword new and explicitly call
the class constructor.

2. When you compare Strings with the == operator, you are comparing their
memory addresses, not their values.

3. When you compare Strings with the equals() method, you are comparing their
values, not their memory addresses.

.r ot curt snoc gnirtS eht gnill ac yl ti cil pxet uohti w dna wen dr owyek
eht t uohti wr o hti wt cej bo gnirtS a et aer c nac uoY. 1# si t ne met at s esl af ehT

You Do It

Examining the String Class at the Java Web Site

In this section, you learn more about the String class.

1. Using a Web browser, go to the Java Web site, and select Java APIs and
Java SE 8. Using the alphabetical list of classes, find the String class
and select it.

(continues)

C H A P T E R 7 Characters, Strings, and the StringBuilder

364

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Examine the equals() method. In the last section you saw this method used
in expressions such as aName.equals(anotherName). Because equals() is
used with the object aName, you could predict that the equals() method is not
static. When you look at the documentation for the equals() method, you
can see this is true. You also can see that it returns a boolean value. What you
might have predicted is that the equals() method takes a String argument,
because anotherName is a String. However, the documentation shows that
the equals() method accepts an Object argument. You will learn more about
the Object class in the chapter “Advanced Inheritance Concepts,” but for now
understand that a String is a type of Object. Object is a class from which all
other classes stem. In Java, every class is a type of Object.

Using Other String Methods
A wide variety of additional methods are available with the String class. The methods
toUpperCase() and toLowerCase() convert any String to its uppercase or lowercase
equivalent. For example, if you declare a String as String aWord = "something";, then the
string “something” is created in memory and its address is assigned to aWord. The statement
aWord = aWord.toUpperCase(); creates “SOMETHING” in memory and assigns its address
to aWord. Because aWord now refers to “SOMETHING,” aWord = aWord.toLowerCase();
alters aWord to refer to “something”.

The length() method is an accessor method that returns the length of a String. For
example, the following statements result in the variable len that holds the value 5.
String greeting = "Hello";
int len = greeting.length();

In Chapter 2, you learned that your own accessor methods often start with the prefix get. The creators of
Java did not follow this convention when naming the length() method.

When you must determine whether a String is empty, it is more efficient to compare its
length to 0 than it is to use the equals() method.

The indexOf() method determines whether a specific character occurs within a String.
If it does, the method returns the position of the character; the first position of a String

is zero. The return value is –1 if the character does not exist in the String. For example,
in String myName = "Stacy";, the value of myName.indexOf('S') is 0, the value of
myName.indexOf('a') is 2, and the value of myName.indexOf('q') is –1.

The charAt() method requires an integer argument that indicates the position of the
character that the method returns, starting with 0. For example, if myName is a String that

(continued)

Using Other String Methods

365

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

refers to “Stacy”, the value of myName.charAt(0) is ‘S’ and the value of myName.charAt(4) is
‘y’. An error occurs if you use an argument that is negative, or greater than or equal to the
length of the calling String. Instead of using a constant argument with charAt(), frequently
you will want to use a variable argument to examine every character in a loop. For example, to
count the number of spaces in the String mySentence, you might write a loop like the
following:
for(int x = 0; x < myName.length(); ++x)

if(mySentence.charAt(x) == ' ')
++countOfSpaces;

The charAt() method is also useful when you want a user to enter a single character from
the keyboard. The nextLine() method with a Scanner object for console input and the
JOptionPane.showInputDialog() method for GUI input both return Strings. For example,
if input has been declared as a Scanner object, you can extract a character from the user’s
keyboard input with a statement such as the following:
char userLetter = input.NextLine().charAt(0);

The endsWith() method and the startsWith() method each take a String argument and
return true or false if a String object does or does not end or start with the specified
argument. For example, if String myName = "Stacy";, then myName.startsWith("Sta") is
true, and myName.endsWith("z") is false. These methods are case sensitive, so if String
myName = "Stacy";, then myName.startsWith("sta") is false.

The replace() method allows you to replace all occurrences of some character
within a String. For example, if String yourName = "Annette";, then String

goofyName = yourName.replace('n', 'X'); assigns "AXXette" to goofyName.
The statement goofyName = yourName.replace('p', 'X'); would assign "Annette"
to goofyName without any changes because 'p' is not found in yourName.
The replace() method is case sensitive, so if String yourName = "Annette";,
then String goofyName = yourName.replace('N', 'X'); results in no change.

Although not part of the String class, the toString() method is defined for other classes to
convert their objects to strings. For example, the Integer class toString() method converts
an integer to a String. After the following three statements, theString refers to “4”:
String theString;
int someInt = 4;
theString = Integer.toString(someInt);

If you declare another String and a double as follows, then after the following statements,
anotherString refers to “8.25”—a String of length 4:
String anotherString;
double someDouble = 8.25;
anotherString = Double.toString(someDouble);

You also can use concatenation to convert any primitive type (variable or constant) to a
String using the + operator. For example, if you declare a variable as int myAge = 25;,
the following statement results in aString that refers to “My age is 25”:
String aString = "My age is " + myAge;

C H A P T E R 7 Characters, Strings, and the StringBuilder

366

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Similarly, if you write the following, then anotherString refers to “12.34”.
String anotherString;
float someFloat = 12.34f;
anotherString = "" + someFloat;

The Java interpreter first converts the float 12.34f to a String “12.34” and adds it to the
empty String “”.

The toString() method originates in the Object class; it is a method included in Java that you can use
with any type of object. In the chapter “Advanced Inheritance Concepts,” you will learn how to construct
versions of the method for your own classes. You have been using toString() throughout this book
without knowing it. When you use print() and println(), their arguments are automatically converted
to Strings if necessary. You don’t need import statements to use toString() because it is part of
java.lang, which is imported automatically. Because the toString()method you use with println()
takes arguments of any primitive type, including int, char, double, and so on, it is a working example of
polymorphism.

You already know that you can concatenate Strings with other Strings or values by
using a plus sign (+); you have used this approach in methods such as println() and
showMessageDialog() since Chapter 1. For example, you can display a firstName, a space,
and a lastName with the following statement:
System.out.println(firstName + " " + lastName);

In addition, you can extract part of a String with the substring() method, and use it
alone or concatenate it with another String. The substring() method takes two integer
arguments—a start position and an end position—that are both based on the fact that a
String’s first position is position zero. The length of the extracted substring is the
difference between the second integer and the first integer; if you call the method
without a second integer argument, the substring extends to the end of the original
string.

For example, the application in Figure 7-8 prompts the user for a customer’s first and last
names. The application then extracts these names so that a friendly business letter can be
constructed. After the application prompts the user to enter a name, a loop control variable is
initialized to 0. While the variable remains less than the length of the entered name, each
character is compared to the space character. When a space is found, two new strings are
created. The first, firstName, is the substring of the original entry from position 0 to the
location where the space was found. The second, familyName, is the substring of the original
entry from the position after the space to the end of the string. Once the first and last names
have been created, the loop control variable is set to the length of the original string so the
loop will exit and proceed to the display of the friendly business letter. Figure 7-9 shows the
data entry screen as well as the output letter created.

Using Other String Methods

367

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
public class BusinessLetter
{

public static void main(String[] args)
{

String name;
String firstName = "";
String familyName = "";
int x;
char c;
name = JOptionPane.showInputDialog(null,

"Please enter customer's first and last name");
x = 0;
while(x < name.length())
{

if(name.charAt(x) == ' ')
{

firstName = name.substring(0, x);
familyName = name.substring(x + 1, name.length());
x = name.length();

}
++x;

}
JOptionPane.showMessageDialog(null,

"Dear " + firstName +
",\nI am so glad we are on a first name basis" +
"\nbecause I would like the opportunity to" +
"\ntalk to you about an affordable insurance" +
"\nprotection plan for the entire " + familyName +
"\nfamily. Call A-One Family Insurance today" +
"\nat 1-800-555-9287.");

}
}

Figure 7-8 The BusinessLetter application

To keep the example simple, the BusinessLetter application in Figure 7-8 displays a letter for just one
customer. An actual business application would most likely allow a clerk to enter dozens or even hundreds of
customer names and store them in a data file for future use. You will learn to store data permanently in files in
the chapter “File Input and Output.” For now, just concentrate on the string-handling capabilities of the
application.

C H A P T E R 7 Characters, Strings, and the StringBuilder

368

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The regionMatches() method can be used to test whether two String regions are the same.
One version of the regionMatches() method takes four arguments—the position at which
to start in the calling String, the other String being compared, the position to start in the
other String, and the length of the comparison. For example, suppose that you have declared
two String objects as follows:
String firstString = "abcde";
String secondString = "xxbcdef";

Then, the expression firstString.regionMatches(1, secondString, 2, 4) is true

because the four-character substring starting at position 1 in firstString is "bcde" and the
four-character substring starting at position 2 in secondString is also "bcde". The expression
firstString.regionMatches(0, secondString, 3, 2) is false because the two-character
substring starting at position 0 in firstString is "ab" and the two-character substring
starting at position 3 in secondString is "cd".

A second version of the regionMatches() method takes an additional boolean argument as
the first argument. This argument represents whether case should be ignored in deciding
whether regions match. For example, suppose that you have declared two Strings as follows:
String thirdString = "123 Maple Drive";
String fourthString = "a maple tree";

Then the following expression is true because the substring of thirdString that starts at
position 4 and continues for five characters is "Maple", the substring of fourthString that
starts at position 2 and continues for five characters is "maple", and the argument that
ignores case has been set to true:
thirdString.regionMatches(true, 4, fourthString, 2, 5)

Converting String Objects to Numbers
If a String contains all numbers, as in “649,” you can convert it from a String to a number
so you can use it for arithmetic, or use it like any other number. For example, suppose
you ask a user to enter a salary in an input dialog box. When you accept input using
showInputDialog(), the accepted value is always a String. To be able to use the value in
arithmetic statements, you must convert the String to a number.

Figure 7-9 Typical execution of the BusinessLetter application

Using Other String Methods

369

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you use any of the methods described in this section to attempt to convert a String to a number, the
Stringmight not represent a valid number. For example, it might contain a letter, comma, or dollar sign, or it
might represent a valid number that is the wrong data type for the conversion. In such cases, an error called a
NumberFormatException occurs. You will learn about exceptions in the chapter “Exception Handling.”

To convert a String to an integer, you use the Integer class, which is part of java.lang
and is automatically imported into programs you write. The Integer class is an example of
a wrapper. A wrapper is a class or object that is “wrapped around” a simpler element; the
Integer wrapper class contains a simple integer and useful methods to manipulate it. In
Chapter 2, you were introduced to the parseInt() method, which is part of the Integer
class; the method takes a String argument and returns its integer value. For example, the
following statement stores the numeric value 649 in the variable anInt:
int anInt = Integer.parseInt("649");

You can then use the integer value just as you would any other integer. You can tell that
parseInt() is a static method because you use it with the class name and not with an object.

It is also easy to convert a String object to a double value. You must use the Double class,
which, like the Integer class, is a wrapper class and is imported into your programs
automatically. The Double class parseDouble() method takes a String argument and returns
its double value. For example, the following statement stores the numeric value 147.82 in the
variable doubleValue.
double doubleValue = Double.parseDouble("147.82");

Besides Double and Integer, other wrapper classes such as Float and Long also provide methods
such as parseFloat() and parseLong().

Watch the video String Methods.

TWO TRUTHS & A LIE

Using Other String Methods

1. Assume that myName is a String defined as “molly”. The value of
myName.toUpperCase() is “Molly”.

2. Assume that myName is a String defined as “molly”. The value of
myName.length() is 5.

3. Assume that myName is a String defined as “molly”. The value
of myName.indexOf('M') is –1.

.” YLLOM“ si
)(esaCreppUot.emaNym neht ,”yll o m“ si emaNymfI . 1# si t ne met at s esl af ehT

C H A P T E R 7 Characters, Strings, and the StringBuilder

370

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Using String Methods

To demonstrate the use of the String methods, in this section you create an
application that asks a user for a name and then “fixes” the name so that the first letter
of each new word is uppercase, whether the user entered the name that way or not.

1. Open a new text file in your text editor. Enter the following first few lines of
a RepairName program. The program declares several variables, including
two strings that will refer to a name: one will be “repaired” with correct
capitalization; the other will be saved as the user entered it so it can be
displayed in its original form at the end of the program. After declaring
the variables, prompt the user for a name:
import javax.swing.*;
public class RepairName
{

public static void main(String[] args)
{

String name, saveOriginalName;
int stringLength;
int i;
char c;
name = JOptionPane.showInputDialog(null,

"Please enter your first and last name");

2. Store the name entered in the saveOriginalName variable. Next, calculate the
length of the name the user entered, then begin a loop that will examine every
character in the name. The first character of a name is always capitalized, so
when the loop control variable i is 0, the character in that position in the name
string is extracted and converted to its uppercase equivalent. Then the name
is replaced with the uppercase character appended to the remainder of the
existing name.
saveOriginalName = name;
stringLength = name.length();
for(i = 0; i < stringLength; i++)
{

c = name.charAt(i);
if(i == 0)
{

c = Character.toUpperCase(c);
name = c + name.substring(1, stringLength);

}

(continues)

Using Other String Methods

371

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. After the first character in the name is converted, the program looks through
the rest of the name, testing for spaces and capitalizing every character that
follows a space. When a space is found at position i, i is increased, the next
character is extracted from the name, the character is converted to its
uppercase version, and a new name string is created using the old string up
to the current position, the newly capitalized letter, and the remainder of the
name string. The if…else ends and the for loop ends.

else
if(name.charAt(i) == ' ')
{

++i;
c = name.charAt(i);
c = Character.toUpperCase(c);
name = name.substring(0, i) + c +

name.substring(i + 1, stringLength);
}

}

4. After every character has been examined, display the original and repaired
names, and add closing braces for the main() method and the class.

JOptionPane.showMessageDialog(null, "Original name was " +
saveOriginalName + "\nRepaired name is " + name);

}
}

5. Save the application as RepairName.java, and then compile and run the
program. Figure 7-10 shows a typical program execution. Make certain you
understand how all the String methods contribute to the success of this
program.

(continued)

Figure 7-10 Typical execution of the RepairName application

C H A P T E R 7 Characters, Strings, and the StringBuilder

372

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Converting a String to an Integer

In the next steps, you write a program that prompts the user for a number, reads
characters from the keyboard, stores the characters in a String, and then converts
the String to an integer that can be used in arithmetic statements.

1. Open a new text file in your text editor. Type the first few lines of a
NumberInput class that will accept string input:
import javax.swing.*;
public class NumberInput
{

public static void main(String[] args)
{

2. Declare the following variables for the input String, the integer to which it
is converted, and the result:
String inputString;
int inputNumber;
int result;

3. Declare a constant that holds a multiplier factor. This program will multiply the
user’s input by 10:
final int FACTOR = 10;

4. Enter the following input dialog box statement that stores the user keyboard
input in the String variable inputString:
inputString = JOptionPane.showInputDialog(null,

"Enter a number");

5. Use the following Integer.parseInt() method to convert the input String to
an integer. Then multiply the integer by 10 and display the result:
inputNumber = Integer.parseInt(inputString);
result = inputNumber * FACTOR;
JOptionPane.showMessageDialog(null,

inputNumber + " * " + FACTOR + " = " + result);

6. Add the final two closing curly braces for the program, then save the program
as NumberInput.java and compile and test the program. Figure 7-11 shows
a typical execution. Even though the user enters a String, it can be used
successfully in an arithmetic statement because it was converted using the
parseInt() method.

(continues)

Using Other String Methods

373

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Examining the parseInt() Method at the Java Web Site

1. Using a Web browser, go to the Java Web site, and select Java APIs and
Java SE 8. Using the alphabetical list of classes, find the Integer class
and select it.

2. Find the parseInt() method that accepts a String parameter and examine it.
You can see that the method is static, which is why you use it with the class
name Integer and not with an object. You also see that it returns an int. You
have used this method since the earliest chapters of this book, but now that
you understand classes, objects, and methods, you can more easily interpret
the Java documentation.

Learning About the StringBuilder
and StringBuffer Classes
In Java, the value of a String is fixed after the String is created; Strings are
immutable, or unchangeable. When you write someString = "Hello"; and follow it
with someString = "Goodbye";, you have neither changed the contents of computer
memory at the address represented by someString nor eliminated the characters “Hello”.
Instead, you have stored “Goodbye” at a new computer memory location and stored
the new address in the someString variable. If you want to modify someString from
“Goodbye” to “Goodbye Everybody”, you cannot add a space and “Everybody” to the
someString that contains “Goodbye”. Instead, you must create an entirely new String,
“Goodbye Everybody”, and assign it to the someString address. If you perform many
such operations with Strings, you end up creating many different String objects in
memory, which takes time and resources.

To circumvent these limitations, you can use either the StringBuilder or StringBuffer
class. You use one of these classes, which are alternatives to the String class, when you know
a String will be modified repeatedly. Usually, you can use a StringBuilder or StringBuffer

(continued)

Figure 7-11 Typical execution of the NumberInput program

C H A P T E R 7 Characters, Strings, and the StringBuilder

374

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

object anywhere you would use a String. Like the String class, these two classes are part of
the java.lang package and are automatically imported into every program. The classes are
identical except for the following:

StringBuilder is more efficient.

StringBuffer is thread safe. This means you should use it in applications that run
multiple threads of execution, which are units of processing that are scheduled by an
operating system and that can be used to create multiple paths of control during program
execution. Because most programs you write (and all the programs you will write using
this book) contain a single thread, usually you should use StringBuilder.

The rest of this section discusses StringBuilder, but every statement is also true of
StringBuffer.

You can create a StringBuilder object that contains a String with a statement such as the
following:
StringBuilder message = new StringBuilder("Hello there");

When you use the nextLine() method with a Scanner object for console input or a
JOptionPane.showInputDialog() method for GUI input, user input comes into your
program as a String. If you want to work with the input as a StringBuilder object, you can
convert the String using the StringBuilder constructor. For example, the following two
statements get a user’s input using a Scanner object named keyboard and then store it in the
StringBuilder name:
String stringName = keyboard.nextLine();
StringBuilder name = new StringBuilder(stringName);

Alternately, you can combine the two statements into one and avoid declaring the variable
stringName, as in the following:
StringBuilder name = new StringBuilder(keyboard.nextLine());

When you create a String, you have the option of omitting the keyword new, but when
you initialize a StringBuilder object you must use the keyword new, the constructor name,
and an initializing value between the constructor’s parentheses. You can create a null
StringBuilder variable using a statement such as the following:
StringBuilder uninitializedString = null;

The variable does not refer to anything until you initialize it with a defined StringBuilder

object. Generally, when you create a String object, sufficient memory is allocated to
accommodate the number of Unicode characters in the string. A StringBuilder object,
however, contains a memory block called a buffer, which might or might not contain a string.
Even if it does contain a string, the string might not occupy the entire buffer. In other words,
the length of a string can be different from the length of the buffer. The actual length of the
buffer is the capacity of the StringBuilder object.

Learning About the StringBuilder and StringBufferClasses

375

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can change the length of a string in a StringBuilder object with the setLength()

method. The length of a StringBuilder object equals the number of characters in the
String contained in the StringBuilder. When you increase a StringBuilder object’s length
to be longer than the String it holds, the extra characters contain ‘\u0000’. If you use the
setLength() method to specify a length shorter than its String, the string is truncated.

To find the capacity of a StringBuilder object, you use the capacity() method. The
StringBuilderDemo application in Figure 7-12 demonstrates this method. The application
creates a nameString object containing the seven characters “Barbara”. The capacity of the
StringBuilder object is obtained and stored in an integer variable named
nameStringCapacity and displayed.

import javax.swing.JOptionPane;
public class StringBuilderDemo
{

public static void main(String[] args)
{

StringBuilder nameString = new StringBuilder("Barbara");
int nameStringCapacity = nameString.capacity();
System.out.println("Capacity of nameString is " +

nameStringCapacity);
StringBuilder addressString = null;
addressString = new

StringBuilder("6311 Hickory Nut Grove Road");
int addStringCapacity = addressString.capacity();
System.out.println("Capacity of addressString is " +

addStringCapacity);
nameString.setLength(20);
System.out.println("The name is " + nameString + "end");
addressString.setLength(20);
System.out.println("The address is " + addressString);

}
}

Figure 7-12 The StringBuilderDemo application

Figure 7-13 shows the StringBuilder capacity is 23, which is 16 characters more than the
length of the string “Barbara”. Whenever you create a StringBuilder object using a String

as an argument to the constructor, the StringBuilder’s capacity is the length of the String
contained as the argument to the StringBuilder, plus 16. The “extra” 16 positions allow for
reasonable modification of the StringBuilder object after creation without allocating any
new memory locations.

C H A P T E R 7 Characters, Strings, and the StringBuilder

376

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The creators of Java chose 16 characters as the “extra” length for a StringBuilder object
because 16 characters fully occupy four bytes of memory. As you work more with computers in general
and programming in particular, you will notice that storage capacities are almost always created in
exponential values of 2—4, 8, 16, 32, 64, and so on.

In the application in Figure 7-12, the addressString variable is created as StringBuilder

addressString = null;. The variable does not refer to anything until it is initialized with the
defined StringBuilder object in the following statement:
addressString = new StringBuilder("6311 Hickory Nut Grove Road");

The capacity of this new StringBuilder object is shown in Figure 7-13 as the length of the
string plus 16, or 43.

In the application in Figure 7-12, the length of each of the Strings is changed to 20
using the setLength() method. The application displays the expanded nameString and
“end”, so you can see in the output that there are 13 extra spaces at the end of the String.
The application also displays the truncated addressString so that you can see the effect
of reducing its length to 20.

The ability of StringBuilder objects to be modified can make using them more efficient than
using Strings when you know string contents will change repeatedly. However, if your
program makes relatively few changes to strings, or requires String comparisons, you should
not use StringBuilder. For example, although the equals() method compares String
object contents, when you use it with StringBuilder objects, it compares references. To
compare the contents of two StringBuilder objects named obj1 and obj2, you must first
convert them to Strings with an expression such as the following:
obj1.toString().equals(obj2.toString())

The two most useful methods with StringBuilder objects are append() and insert(). The
append() method lets you add characters to the end of a StringBuilder object. For example,
the following two statements together declare phrase to hold “Happy” and alter the phrase to
hold “Happy birthday”:
StringBuilder phrase = new StringBuilder("Happy");
phrase.append(" birthday");

Figure 7-13 Output of the StringBuilderDemo application

Learning About the StringBuilder and StringBufferClasses

377

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The insert() method lets you add characters at a specific location within a StringBuilder

object. For example, if phrase refers to “Happy birthday”, then phrase.insert(6, "30th ");
alters the StringBuilder to contain “Happy 30th birthday”. The first character in the
StringBuilder object occupies position zero.

To alter just one character in a StringBuilder object, you can use the setCharAt() method,
which allows you to change a character at a specified position. This method requires two
arguments: an integer position and a character. If phrase refers to “Happy 30th birthday”,
then phrase.setCharAt(6,'4'); changes the value into a 40th birthday greeting.

One way you can extract a character from a StringBuilder object is to use the charAt()

method. The charAt() method accepts an argument that is the offset of the character
position from the beginning of a String and returns the character at that position. The
following statements assign the character ‘P’ to the variable letter:
StringBuilder text = new StringBuilder("Java Programming");
char letter = text.charAt(5);

If you try to use an index that is less than 0 or greater than the index of the last position in the
StringBuilder object, you cause an error known as an exception and your program terminates.

One version of the StringBuilder constructor allows you to assign a capacity to a
StringBuilder object when you create it. For example:
StringBuilder prettyBigString = new StringBuilder(300);

When you can approximate the eventual size needed for a StringBuilder object, assigning
sufficient capacity can improve program performance. For example, the program in Figure 7-14
compares the time needed to append “Java” 200,000 times to two StringBuilder objects—one
that has an initial capacity of 16 characters and another that has an initial capacity of 800,000
characters. Figure 7-15 shows a typical execution; the actual times will vary from execution
to execution and will be different on different computers. However, extra time is always needed
for the loop that appends to the initially shorter StringBuilder because new memory must
be allocated for it repeatedly as the object grows in size.

import java.time.*;
public class ConcatenationTimeComparison
{

public static void main(String[] args)
{

long startTime, endTime;
final int TIMES = 200_000;
final int FACTOR = 1_000_000;
int x;
StringBuilder string1 = new StringBuilder("");
StringBuilder string2 = new StringBuilder(TIMES * 4);
LocalDateTime now;
now = LocalDateTime.now();
startTime = now.getNano();

Figure 7-14 The ConcatenationTimeComparison application (continues)

C H A P T E R 7 Characters, Strings, and the StringBuilder

378

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

for(x = 0; x < TIMES; ++x)
string1.append("Java");

now = LocalDateTime.now();
endTime = now.getNano();
System.out.println("Time with empty StringBuilder: " +

((endTime - startTime) / FACTOR + " milliseconds"));
now = LocalDateTime.now();
startTime = now.getNano();
for(x = 0; x < TIMES; ++x)

string2.append("Java");
now = LocalDateTime.now();
endTime = now.getNano();
System.out.println("Time with empty StringBuilder: " +

((endTime - startTime) / FACTOR + " milliseconds"));
}

}

Figure 7-14 The ConcatenationTimeComparison application

Watch the video StringBuilder.

(continued)

Figure 7-15 Typical execution of the ConcatenationTimeComparison program

Learning About the StringBuilder and StringBufferClasses

379

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Learning About the StringBuilder and StringBuffer Classes

1. When you create a String, you have the option of omitting the keyword new,
but when you initialize a StringBuilder object, you must use the keyword
new, the constructor name, and an initializing value between the constructor’s
parentheses.

2. When you create a StringBuilder object with an initial value of “Juan”, its
capacity is 16.

3. If a StringBuilder named myAddress contains “817”, then
myAddress.append(" Maple Lane"); alters myAddress to contain
“817 Maple Lane”.

. 02f ol at ot a r of , er o m61 sul p, 4, redliuBgnirtS ni
deni at noc gnirtS eht f o ht gnel eht si yti capac sti ,” nauJ“ f o eul avl ai ti ni

na hti wt cej bo redliuBgnirtS a et aer c uoy neh W. 2# si t ne met at s esl af ehT
You Do It

Using StringBuilder Methods

In these steps, you write a program that demonstrates some methods in the
StringBuilder class.

1. Open a new text file, and type the following first lines of a StringBuilderMethods

class:
public class StringBuilderMethods
{

public static void main(String[] args)
{

2. Use the following code to create a StringBuilder object, and then display it:
StringBuilder str = new StringBuilder("singing");
System.out.println(str);

3. Enter the following append() method to add characters to the existing
StringBuilder and display it again:
str.append(" in the dead of ");
System.out.println(str);

(continues)

C H A P T E R 7 Characters, Strings, and the StringBuilder

380

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Enter the following insert() method to insert characters. Then display the
StringBuilder, insert additional characters, and display it again:
str.insert(0, "Black");
System.out.println(str);
str.insert(5, "bird ");
System.out.println(str);

5. Add one more append and display sequence:
str.append("night");
System.out.println(str);

6. Add a closing curly brace for the main() method.

7. Type the closing curly brace for the class, and then save the file as
StringBuilderMethods.java. Compile and execute, and then compare
your output to Figure 7-16.

Don’t Do It
Don’t attempt to compare String objects using the standard comparison operators.
The == operator will only compare the addresses of Strings, and the < and > operators
will not work.

Don’t forget that startsWith(), endsWith(), and replace() are case sensitive, so you
might want to convert participating Strings to the same case before using them.

Don’t forget to use the new operator and the constructor when declaring initialized
StringBuilder or StringBuffer objects.

Don’t use StringBuilder or StringBuffer unless you have a good reason; otherwise, use
the String class.

(continued)

Figure 7-16 Output of the StringBuilderMethods application

Don’t Do It

381

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms
A reference is a variable that holds a memory address.

The Character class is one whose instances can hold a single character value. This class also
defines methods that can manipulate or inspect single-character data.

The String class is for working with fixed-string data—that is, unchanging data composed of
multiple characters.

An anonymous object is an unnamed object.

A String variable is a named object of the String class.

Immutable objects cannot be changed.

A lexicographical comparison is based on the integer Unicode values of characters.

A null String does not hold a memory address.

Concatenation is the process of joining a value to a string to create a longer string.

A wrapper is a class or object that is “wrapped around” a simpler element.

Threads of execution are units of processing that are scheduled by an operating system and
that can be used to create multiple paths of control during program execution.

A buffer is a block of memory.

The capacity of a StringBuilder object is the actual length of the buffer, as opposed to that
of the string contained in the buffer.

Chapter Summary
String variables are references, so they require special techniques for making comparisons.

The Character class is one whose instances can hold a single character value. This class
also defines methods that can manipulate or inspect single-character data.

A sequence of characters enclosed within double quotation marks is a literal string. Unlike
other classes, you are not required to use the keyword new or explicitly call a constructor
when you declare a String, although you can do so. Strings are immutable. Useful
String class methods include equals(), equalsIgnoreCase(), and compareTo().

Additional useful String methods include toUpperCase(), toLowerCase(), length(),
indexOf(), charAt(), endsWith(), startsWith(), and replace(). The toString()

method converts any object to a String. You can concatenate Strings using a plus sign
(+). You can extract part of a String with the substring() method. If a String contains
appropriate characters, you can convert it to a number with the help of methods such as
Integer.parseInt() and Double.parseDouble().

You can use the StringBuilder or StringBuffer class to improve performance when
a string’s contents must change.

C H A P T E R 7 Characters, Strings, and the StringBuilder

382

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions
1. A sequence of characters enclosed within double quotation marks

is a .

a. symbolic string
b. literal string

c. prompt
d. command

2. To create a String object, you can use the keyword before the
constructor call, but you are not required to use this format.

a. object

b. create

c. char

d. new

3. A String variable name is a .

a. reference
b. value

c. constant
d. literal

4. The term that programmers use to describe objects that cannot be changed
is .

a. irrevocable
b. nonvolatile

c. immutable
d. stable

5. Suppose that you declare two String objects as:
String word1 = new String("happy");
String word2;

When you ask a user to enter a value for word2, if the user types “happy”, the value of
word1 == word2 is .

a. true

b. false

c. illegal
d. unknown

6. If you declare two String objects as:
String word1 = new String("happy");
String word2 = new String("happy");

the value of word1.equals(word2) is .

a. true

b. false

c. illegal
d. unknown

7. The method that determines whether two String objects are equivalent, regardless
of case, is .

a. equalsNoCase()

b. toUpperCase()

c. equalsIgnoreCase()

d. equals()

Review Questions

383

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. If a String is declared as:
String aStr = new String("lima bean");

then aStr.equals("Lima Bean") is .

a. true

b. false

c. illegal
d. unknown

9. If you create two String objects:
String name1 = new String("Jordan");
String name2 = new String("Jore");

then name1.compareTo(name2) has a value of .

a. true

b. false

c. –1
d. 1

10. If String myFriend = new String("Ginny");, which of the following has the value 1?

a. myFriend.compareTo("Gabby");

b. myFriend.compareTo("Gabriella");

c. myFriend.compareTo("Ghazala");

d. myFriend.compareTo("Hammie");

11. If String movie = new String("West Side Story");, the value of
movie.indexOf('s') is .

a. true

b. false

c. 2
d. 3

12. The String class replace() method replaces .

a. a String with a character
b. one String with another String

c. one character in a String with another character
d. every occurrence of a character in a String with another character

13. The toString() method converts a(n) to a String.

a. char

b. int

c. float

d. all of the above

14. Joining Strings with a plus sign is called .

a. chaining
b. concatenation

c. parsing
d. linking

C H A P T E R 7 Characters, Strings, and the StringBuilder

384

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

15. The first position in a String .

a. must be alphabetic
b. must be uppercase
c. is position zero
d. is ignored by the compareTo() method

16. The method that extracts a string from within another string is .

a. extract()

b. parseString()

c. substring()

d. append()

17. The method parseInt() converts a(n) .

a. integer to a String

b. integer to a Double

c. Double to a String

d. String to an integer

18. The difference between int and Integer is .

a. int is a primitive type; Integer is a class
b. int is a class; Integer is a primitive type
c. nonexistent; both are primitive types
d. nonexistent; both are classes

19. For an alternative to the String class, and so that you can change a String’s
contents, you can use .

a. char

b. StringHolder

c. StringBuilder

d. StringMerger

20. Unlike when you create a String, when you create a StringBuilder, you must use
the keyword .

a. buffer

b. new

c. null

d. class

Exercises

Programming Exercises

1. Modify the CharacterInfo class shown in Figure 7-3 so that the tested character is
retrieved from user input. Save the file as InputCharacterInfo.java.

2. Write an application that prompts the user for three first names and concatenates
them in every possible two-name combination so that new parents can easily
compare them to find the most pleasing baby name. Save the file as
BabyNameComparison.java.

Exercises

385

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. a. Create a program that contains a String that holds your favorite movie quote and
display the total number of spaces contained in the String. Save the file as
CountMovieSpaces.java.

b. Write an application that counts the total number of spaces contained in a movie
quote entered by the user. Save the file as CountMovieSpaces2.java.

4. Write an application that prompts the user for a password that contains at least two
uppercase letters, at least two lowercase letters, and at least two digits. Continuously
reprompt the user until a valid password is entered. After each entry, display a
message indicating whether the user was successful or the reason the user was not
successful. Save the file as ValidatePassword.java.

5. Write an application that counts the words in a String entered by a user. Words are
separated by any combination of spaces, periods, commas, semicolons, question
marks, exclamation points, or dashes. Figure 7-17 shows two typical executions. Save
the file as CountWords.java.

6. a. Write an application that accepts three Strings from the user and displays one of
two messages depending on whether the user entered the Strings in alphabetical
order without regard to case. Save the file as Alphabetize.java.

b. Write an application that accepts three Strings from the user and displays them
in alphabetical order without regard to case. Save the file as Alphabetize2.java.

7. Three-letter acronyms are common in the business world. For example, in Java you
use the IDE (Integrated Development Environment) in the JDK (Java Development
Kit) to write programs used by the JVM (Java Virtual Machine) that you might
send over a LAN (local area network). Programmers even use the acronym TLA to
stand for three-letter acronym. Write a program that allows a user to enter three
words, and display the appropriate three-letter acronym in all uppercase letters. If
the user enters more than three words, ignore the extra words. Save the file as
ThreeLetterAcronym.java.

Figure 7-17 Two typical executions of the CountWords application

C H A P T E R 7 Characters, Strings, and the StringBuilder

386

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Write an application that accepts a word from a user and converts it to Pig Latin. If a
word starts with a consonant, the Pig Latin version removes all consonants from the
beginning of the word and places them at the end, followed by ay. For example,
cricket becomes icketcray. If a word starts with a vowel, the Pig Latin version is the
original word with ay added to the end. For example, apple becomes appleay. If y
is the first letter in a word, it is treated as a consonant; otherwise, it is treated as a
vowel. For example, young becomes oungyay, but system becomes ystemsay. For this
program, assume that the user will enter only a single word consisting of all
lowercase letters. Save the file as PigLatin.java.

9. Write a program that inserts parentheses, a space, and a dash into a string of 10
user-entered numbers to format it as a phone number. For example, 5153458912
becomes (515) 345-8912. If the user does not enter exactly 10 digits, display an error
message. Continue to accept user input until the user enters 999. Save the file as
PhoneNumberFormat.java.

10. Write an application that determines whether a phrase entered by the user is a
palindrome. A palindrome is a phrase that reads the same backward and forward
without regarding capitalization or punctuation. For example, “Dot saw I was Tod”,
“Was it a car or a cat I saw?”, and “Madam, I’m Adam” are palindromes. Save the file
as Palindrome.java.

11. Write an application that prompts a user for a full name and street address and
constructs an ID from the user’s initials and numeric part of the address. For
example, the user William Henry Harrison who lives at 34 Elm would have an ID
of WHH34, whereas user Addison Mitchell who lives at 1778 Monroe would have
an ID of AM1778. Save the file as ConstructID.java.

12. Create a TaxReturn class with fields that hold a taxpayer’s Social Security
number, last name, first name, street address, city, state, zip code, annual
income, marital status, and tax liability. Include a constructor that requires
arguments that provide values for all the fields other than the tax liability.
The constructor calculates the tax liability based on annual income and the
percentages in the following table.

In the TaxReturn class, also include a display method that displays all the TaxReturn

data. Save the file as TaxReturn.java.

Marital status

Income ($) Single Married

0–20,000 15% 14%

20,001–50,000 22% 20%

50,001 and over 30% 28%

Exercises

387

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Create an application that prompts a user for the data needed to create a TaxReturn.
Continue to prompt the user for data as long as any of the following are true:

The Social Security number is not in the correct format, with digits and dashes
in the appropriate positions—for example, 999-99-9999.

The zip code is not five digits.

The marital status does not begin with one of the following: “S”, “s”, “M”, or “m”.

The annual income is negative.

After all the input data is correct, create a TaxReturn object and then display its
values. Save the file as PrepareTax.java.

Debugging Exercises
1. Each of the following files in the Chapter07 folder of your downloadable student

files has syntax and/or logic errors. In each case, determine the problem and fix the
program. After you correct the errors, save each file using the same filename preceded
with Fix. For example, DebugSeven1.java will become FixDebugSeven1.java.

a. DebugSeven1.java

b. DebugSeven2.java

c. DebugSeven3.java

d. DebugSeven4.java

Game Zone
1. a. In Chapter 3, you designed a Card class. The class holds fields that contain

a Card’s value and suit. Currently, the suit is represented by a single character
(s, h, d, or c). Modify the class so that the suit is a string (“Spades”, “Hearts”,
“Diamonds”, or “Clubs”). Also, add a new field to the class to hold the string
representation of a Card’s rank based on its value. Within the Card class
setValue() method, besides setting the numeric value, also set the string
rank value as follows.

Numeric value String value for rank

1 “Ace”

2 through 10 “2” through “10”

11 “Jack”

12 “Queen”

13 “King”

C H A P T E R 7 Characters, Strings, and the StringBuilder

388

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. In Chapter 5, you created a War Card game that randomly selects two cards (one
for the player and one for the computer) and declares a winner (or a tie). Modify
the game to set each Card’s suit as the appropriate string, then execute the game
using the newly modified Card class. Figure 7-18 shows four typical executions.
Recall that in this version of War, you assume that the Ace is the lowest-valued
card. Save the game as War2.java.

2. In Chapter 5, you created a Rock Paper Scissors game. In the game, a player entered a
number to represent one of the three choices. Make the following improvements to
the game:

Allow the user to enter a string (“rock”, “paper”, or “scissors”) instead of a digit.

Make sure the game works correctly, whether the player enters a choice in
uppercase or lowercase letters, or a combination of the two.

To allow for player misspellings, accept the player’s entry as long as the first two
letters are correct. (In other words, if a player types “scixxrs”, you will accept it as
“scissors” because at least the first two letters are correct.)

When the player does not type at least the first two letters of the choice correctly,
reprompt the player and continue to do so until the player’s entry contains at least
the first two letters of one of the options.

Allow 10 complete rounds of the game. At the end, display counts of the number
of times the player won, the number of times the computer won, and the number
of tie games.

Save the file as RockPaperScissors2.java.

Figure 7-18 Four typical executions of the War2 game

Exercises

389

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Create a simple guessing game, similar to Hangman, in which the user guesses
letters and then attempts to guess a partially hidden phrase. Display a phrase in
which some of the letters are replaced by asterisks: for example, “G* T***” (for
“Go Team”). Each time the user guesses a letter, either place the letter in the correct
spot (or spots) in the phrase and display it again or tell the user the guessed letter is
not in the phrase. Display a congratulatory message when the entire correct phrase
has been deduced. Save the game as SecretPhrase.java. In the next chapter, you
will modify this program so that instead of presenting the user with the same phrase
every time the game is played, the program randomly selects the phrase from a list
of phrases.

4. Eliza is a famous 1966 computer program written by Joseph Weizenbaum. It
imitates a psychologist (more specifically, a Rogerian therapist) by rephrasing
many of a patient’s statements as questions and posing them to the patient. This
type of therapy (sometimes called nondirectional) is often parodied in movies
and television shows, in which the therapist does not even have to listen to the
patient, but gives “canned” responses that lead the patient from statement to
statement. For example, when the patient says, “I am having trouble with my
brother,” the therapist might say, “Tell me more about your brother.” If the
patient says, “I dislike school,” the therapist might say, “Why do you say you
dislike school?” Eliza became a milestone in the history of computers because it
was the first time a computer programmer attempted to create the illusion of
human-to-human interaction.

Create a simple version of Eliza by allowing the user to enter statements continually
until the user quits by typing “Goodbye”. After each statement, have the computer
make one of the following responses:

If the user entered the word “my” (for example, “I am having trouble with my
brother”), respond with “Tell me more about your” and insert the noun in
question—for example, “Tell me more about your brother”. When you search for
a word in the user’s entry, make sure it is the entire word and not just letters
within another word. For example, when searching for my, make sure it is not part
of another word such as dummy or mystic.

If the user entered a strong word, such as “love” or “hate”, respond with, “You
seem to have strong feelings about that”.

Add a few other appropriate responses of your choosing.

In the absence of any of the preceding inputs, respond with a random phrase from
the following: “Please go on”, “Tell me more”, or “Continue”.

Save the file as Eliza.java.

C H A P T E R 7 Characters, Strings, and the StringBuilder

390

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Problems
1. Carly’s Catering provides meals for parties and special events. In previous chapters,

you have developed a class that holds catering event information and an application
that tests the methods using four objects of the class. Now modify the Event and
EventDemo classes as follows:

Modify the method that sets the event number in the Event class so that if the
argument passed to the method is not a four-character String that starts with a
letter followed by three digits, then the event number is forced to “A000”. If the
initial letter in the event number is not uppercase, force it to be so.

Add a contact phone number field to the Event class.

Add a set method for the contact phone number field in the Event class.
Whether the user enters all digits or any combination of digits, spaces, dashes,
dots, or parentheses for a phone number, store it as all digits. For example, if
the user enters (920) 872-9182, store the phone number as 9208729182. If the
user enters a number with fewer or more than 10 digits, store the number as
0000000000.

Add a get method for the phone number field. The get method returns the
phone number as a String constructed as follows: parentheses surround a
three-digit area code, followed by a space, followed by the three-digit phone
exchange, followed by a hyphen, followed by the last four digits of the phone
number.

Modify the EventDemo program so that besides the event number and guests, the
program also prompts the user for and retrieves a contact phone number for
each of the sample objects. Display the phone number along with the other
Event details. Test the EventDemo application to make sure it works correctly
with valid and invalid event and phone numbers.

Save the files as Event.java and EventDemo.java.
2. Sammy’s Seashore Supplies rents beach equipment to tourists. In previous

chapters, you have developed a class that holds equipment rental information
and an application that tests the methods using four objects of the class. Now
modify the Rental and RentalDemo classes as follows:

Modify the method that sets the contract number in the Rental class so that if the
argument passed to the method is not a four-character String that starts with a
letter followed by three digits, then the contract number is forced to “A000”. If the
initial letter in the contract number is not uppercase, force it to be so.

Add a contact phone number field to the Rental class.

Exercises

391

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Add a set method for the contact phone number field in the Rental class.
Whether the user enters all digits or any combination of digits, spaces, dashes,
dots, or parentheses for a phone number, store it as all digits. For example, if the
user enters (920) 872-9182, store the phone number as 9208729182. If the user
enters a number with fewer or more than 10 digits, store the number as
0000000000.

Add a get method for the phone number field. The get method returns the
phone number as a String constructed as follows: parentheses surround a
three-digit area code, followed by a space, followed by the three-digit phone
exchange, followed by a hyphen, followed by the last four digits of the phone
number.

Modify the RentalDemo program so that besides the contract number and
minutes, the program also prompts the user for and retrieves a contact phone
number for each of the sample objects. Display the phone number along with
the other Rental details. Test the RentalDemo application to make sure it works
correctly with valid and invalid contract and phone numbers.

Save the files as Rental.java and RentalDemo.java.

C H A P T E R 7 Characters, Strings, and the StringBuilder

392

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8
Arrays

In this chapter, you will:

Declare arrays

Initialize an array

Use variable subscripts with an array

Declare and use arrays of objects

Search an array and use parallel arrays

Pass arrays to and return arrays from methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Declaring Arrays
While completing the first five chapters in this book, you stored values in variables. In those
early chapters, you simply stored a value and used it, usually only once, but never more than a
few times. In Chapter 6, you created loops that allow you to “recycle” variables and use them
many times; that is, after creating a variable, you can assign a value, use the value, and then, in
successive cycles through the loop, reuse the variable as it holds different values.

At times, however, you might encounter situations in which storing just one value at a
time in memory does not meet your needs. For example, a sales manager who supervises
20 employees might want to determine whether each employee has produced sales above
or below the average amount. When you enter the first employee’s sales value into an
application, you can’t determine whether it is above or below average because you don’t know
the average until you have all 20 values. Unfortunately, if you attempt to assign 20 sales values
to the same variable, when you assign the value for the second employee, it replaces the value
for the first employee.

A possible solution is to create 20 separate employee sales variables, each with a unique name,
so you can store all the sales until you can determine an average. A drawback to this method
is that if you have 20 different variable names to be assigned values, you need 20 separate
assignment statements. For 20 different variable names, the statement that calculates total
sales will be unwieldy, such as:
total = firstAmt + secondAmt + thirdAmt + …

This method might work for 20 salespeople, but what if you have 10,000 salespeople?

The best solution is to create an array. An array is a named list of data items that all have the
same data type. Each data item is an element of the array. You declare an array variable in the
same way you declare any simple variable, but you insert a pair of square brackets after the
type. For example, to declare an array of double values to hold sales figures for salespeople,
you can write the following:
double[] salesFigures;

Similarly, to create an array of integers to hold student ID numbers, you can write the
following:
int[] idNums;

In Java, you can also declare an array variable by placing the square brackets after the array name, as in
double salesFigures[];. This format is familiar to C and C++ programmers, but the preferred
format among Java programmers is to place the brackets following the variable type and before the
variable name.

You can provide any legal identifier you want for an array, but Java programmers
conventionally name arrays by following the same rules they use for variables—array
names start with a lowercase letter and use uppercase letters to begin subsequent words.

C H A P T E R 8 Arrays

394

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Additionally, many programmers observe one of the following conventions to make it
more obvious that the name represents a group of items:

Arrays are often named using a plural noun such as salesFigures.

Arrays are often named by adding a final word that implies a group, such as salesList,
salesTable, or salesArray.

After you create an array variable, you still need to reserve memory space. You use the same
procedure to create an array that you use to create an object. Recall that when you create a
class named Employee, you can declare an Employee object with a declaration such as:
Employee oneWorker;

However, that declaration does not actually create the oneWorker object. You create the
oneWorker object when you use the keyword new and a call to the constructor, as in:
oneWorker = new Employee();

Similarly, declaring an array and reserving memory space for it are two distinct processes.
To reserve memory locations for 20 salesFigures values, you can declare the array variable
and create the array with two separate statements as follows:
double[] salesFigures;
salesFigures = new double[20];

Alternatively, just as with objects, you can declare and create an array in one statement with
the following:
double[] salesFigures = new double[20];

In Java, the size of an array follows the data type and is never declared immediately following the array name,
as it is in some other languages such as C++. Other languages, such as Visual Basic, BASIC, and COBOL,
use parentheses rather than brackets to refer to individual array elements. By using brackets, the creators of
Java made it easier for you to distinguish array names from methods.

The statement double[] salesFigures = new double[20]; reserves 20 memory locations
for 20 double values. You can distinguish each salesFigures item from the others with a
subscript. A subscript is an integer contained within square brackets that specifies one of
an array’s elements. In Java, any array’s elements are numbered beginning with 0, so you can
legally use any subscript from 0 through 19 when working with an array that has 20 elements.
In other words, the first salesFigures array element is salesFigures[0] and the last
salesFigures element is salesFigures[19]. Figure 8-1 shows how the first few and last
few elements of an array of 20 salesFigures values appear in computer memory.

salesFigures[1]

salesFigures[0] salesFigures[2]

salesFigures[18]

salesFigures[17] salesFigures[19]

Figure 8-1 The first few and last few elements of an array of 20 salesFigures items in memory

Declaring Arrays

395

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A subscript is also called an index. In particular, you will see the term index in some error messages issued
by the compiler.

It is a common mistake to forget that the first element in an array is element 0, especially if
you know another programming language in which the first array element is element 1.
Making this mistake means you will be “off by one” in your use of any array. It is also common
to forget that the last element’s subscript is one less than the array’s size and not the array’s
size. For example, the highest allowed subscript for a 100-element array is 99. To remember
that array elements begin with element 0, it might help if you think of the first array element
as being “zero elements away from” the beginning of the array, the second element as being
“one element away from” the beginning of the array, and so on. If you use a subscript that is
too small (that is, negative) or too large for an array, the subscript is out of bounds and an
error message is generated.

When you work with any individual array element, you treat it no differently than you
would treat a single variable of the same type. For example, to assign a value to the first
salesFigures element in an array, you use a simple assignment statement, such as the
following:
salesFigures[0] = 2100.00;

To display the last salesFigures element in an array of 20, you can write:
System.out.println(salesFigures[19]);

When programmers talk about these statements, they typically say things like, “salesFigures
sub zero is assigned 2100.00,” and “salesFigures sub 19 is output.” In other words, they use
sub as shorthand for “with the subscript.”

When you declare or access an array, you can use any expression to represent the size, as long
as the expression is an integer. Some other programming languages, such as C++, allow only
named or unnamed constants to be used for the size when an array is declared. Java allows
variables, arithmetic expressions, and method return values to be used as array sizes, which
makes array declaration more flexible.

For example, to declare a double array named moneyValues, you might use any of the
following:

A literal integer constant; for example:

double[] moneyValues = new double[10];

A named integer constant; for example:

double[] moneyValues = new double[NUMBER_ELS];

In this example, the constant NUMBER_ELS must have been previously declared and
assigned a value.

C H A P T E R 8 Arrays

396

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An integer variable; for example:

double[] moneyValues = new double[numberOfEls];

In this example, the variable numberOfEls must have been previously declared and
assigned a value.

A calculation; for example:

double[] moneyValues = new double[x + y * z];

In this example, the variables x, y, and z must have been previously declared and assigned
values, and the result of the expression x + y * z must be an integer.

A method’s return value; for example:

double[] moneyValues = new double[getElements()];

In this example, the method getElements() must return an integer.

TWO TRUTHS & A LIE

Declaring Arrays

1. The statement int[] idNums = new int[35]; reserves enough memory for exactly
34 integers.

2. The first element in any array has a subscript of 0, no matter what data type is
stored.

3. In Java, you can use a variable as well as a constant to declare an array’s size.

. 43 hguor ht 0 der eb mun sr eget ni 53 yl t caxe r of yr o me mhguone
sevr eser ;]53[tni wen = smuNdi][tni t ne met at s ehT. 1# si t ne met at s esl af ehT

You Do It

Declaring an Array

In this section, you create a small array to see how arrays are used. The array holds
salaries for four categories of employees.

1. Open a new text file, and begin the class that demonstrates how arrays
are used by typing the following class and main() headers and their
corresponding opening curly braces:

(continues)

Declaring Arrays

397

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class DemoArray
{

public static void main(String[] args)
{

2. On a new line, declare and create an array that can hold four double values
by typing the following:
double[] salaries = new double[4];

3. One by one, assign four values to the four array elements by typing the
following:
salaries[0] = 6.25;
salaries[1] = 6.55;
salaries[2] = 10.25;
salaries[3] = 16.85;

4. To confirm that the four values have been assigned, display the salaries one
by one using the following code:
System.out.println("Salaries one by one are:");
System.out.println(salaries[0]);
System.out.println(salaries[1]);
System.out.println(salaries[2]);
System.out.println(salaries[3]);

5. Add the two closing curly braces that end the main() method and the
DemoArray class.

6. Save the program as DemoArray.java. Compile and run the program.
The program’s output appears in Figure 8-2.

(continued)

Figure 8-2 Output of the DemoArray application

(continues)

C H A P T E R 8 Arrays

398

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using a Subscript that Is Out of Bounds

In this section, you purposely generate an out-of-bounds error so you can familiarize
yourself with the error message generated.

1. As the last executable line in the DemoArray.java file, add a new output
statement that attempts to display a salaries value using a subscript that
is beyond the range of the array:
System.out.println(salaries[4]);

2. Save the file, and then compile and execute it. The output looks like Figure 8-3.
The program runs successfully when the subscript used with the array is 0, 1,
2, or 3. However, when the subscript reaches 4, the error in Figure 8-3 is
generated. The message indicates that an ArrayIndexOutOfBoundsException

has occurred and that the offending index is 4.

In Chapter 12, you will learn more about the term exception and learn new ways to deal with
exceptions.

3. Remove the offending statement from the DemoArray class. Save the
program, and then compile and run it again to confirm that it again
executes correctly.

Initializing an Array
A variable that has a primitive type, such as int, holds a value. A variable with a reference
type, such as an array, holds a memory address where a value is stored. In other words, array
names contain references, as do all Java object names.

(continued)

Figure 8-3 Output of the DemoArray application when a subscript is out of bounds

Initializing an Array

399

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

No memory address is assigned when you declare an array using only a data type, brackets,
and a name. Instead, the array variable name has the value null, which means the identifier is
not associated with a memory address. You can explicitly assign null to an array reference,
but it is not required. For example, each of the following statements assigns null to someNums:
int[] someNums;
int[] someNums = null;

When you use the keyword new to define an array, the array reference acquires a memory
address value. For example, when you define someNums in the following statement, a memory
address is assigned:
int[] someNums = new int[10];

When you declare int[] someNums = new int[10];, someNums holds an address, but each
element of someNums has a value of 0 by default because someNums is an integer array. Each
element in a double or float array is assigned 0.0. By default, char array elements are
assigned ‘\u0000’, which is the Unicode value for a null character, and boolean array
elements automatically are assigned the value false. In arrays of objects, including Strings,
each element is assigned null by default.

You already know how to assign a different value to a single element of an array, as in:
someNums[0] = 46;

You can also assign nondefault values to array elements upon creation. To initialize an array,
you use an initialization list of values separated by commas and enclosed within curly braces.
Providing values for all the elements in an array also is called populating the array.

For example, if you want to create an array named multsOfTen and store the first six
multiples of 10 within the array, you can declare the array as follows:
int[] multsOfTen = {10, 20, 30, 40, 50, 60};

Notice the semicolon at the end of the statement. You don’t use a semicolon following a
method’s closing curly brace, but you do use one following the closing brace of an array
initialization list.

When you populate an array upon creation by providing an initialization list, you do not
give the array a size—the size is assigned based on the number of values you place in the
initializing list. For example, the multsOfTen array just defined has a size of 6. Also, when you
initialize an array, you do not need to use the keyword new; instead, new memory is assigned
based on the length of the list of provided values.

In Java, you cannot directly initialize part of an array. For example, you cannot create an
array of 10 elements and initialize only five; you either must initialize every element or
none of them.

Watch the video Arrays.

C H A P T E R 8 Arrays

400

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Initializing an Array

1. When you declare int[] idNums = new int[35];, each element of the array
has a value of 0.

2. When you declare double[] salaries = new double[10];, each element
of the array has a value of 0.0.

3. When you declare int[] scores = {100, 90, 80};, the first three elements
of the array are assigned the values listed, but all the remaining elements are
assigned 0.

.t sil eht ni st ne mel ef or eb mun eht yl t caxe sni at noc
yarr a eht , yarr a nar of t sil noi t azil ai ti ni na edi vor p uoy neh W. 3#si t ne met at s esl af ehT

You Do It

Initializing an Array

Next, you alter your DemoArray program to initialize the array of doubles, rather than
declaring the array and assigning values later.

1. Open the DemoArray.java file. Immediately save the file as DemoArray2.java.
Change the class name to DemoArray2. Delete the statement that declares the
array of four doubles named salaries, and then replace it with the following
initialization statement:
double[] salaries = {6.25, 6.55, 10.25, 16.85};

2. Delete the following four statements that individually assign the values to
the array:
salaries[0] = 6.25;
salaries[1] = 6.55;
salaries[2] = 10.25;
salaries[3] = 16.85;

3. Save the file (as DemoArray2.java), compile, and test the application.
The values that are output are the same as those shown for the DemoArray

application in Figure 8-2.

Initializing an Array

401

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using Variable Subscripts with an Array
If you treat each array element as an individual entity, there isn’t much of an advantage to
declaring an array over declaring individual primitive type variables, such as those with the
type int, double, or char. The power of arrays becomes apparent when you begin to use
subscripts that are variables, rather than subscripts that are constant values.

For example, suppose you declare an array of five integers that holds quiz scores, such as
the following:
int[] scoreArray = {2, 14, 35, 67, 85};

You might want to perform the same operation on each array element, such as increasing
each score by a constant amount. To increase each scoreArray element by three points,
for example, you can write the following:
final int INCREASE = 3;
scoreArray[0] += INCREASE;
scoreArray[1] += INCREASE;
scoreArray[2] += INCREASE;
scoreArray[3] += INCREASE;
scoreArray[4] += INCREASE;

With five scoreArray elements, this task is manageable, requiring only five statements. However,
you can reduce the amount of program code needed by using a variable as the subscript. Then,
you can use a loop to perform arithmetic on each array element, as in the following example:
final int INCREASE = 3;
for(sub = 0; sub < 5; ++sub)

scoreArray[sub] += INCREASE;

The loop control variable sub is set to 0, and then it is compared to 5. Because the value
of sub is less than 5, the loop executes and 3 is added to scoreArray[0]. Then, the variable
sub is incremented and it becomes 1, which is still less than 5, so when the loop executes again,
scoreArray[1] is increased by 3, and so on. A process that took five statements now takes only
one. In addition, if the array had 100 elements, the first method of increasing the array values by
3 in separate statements would result in 95 additional statements. The only changes required
using the second method would be to change the array size to 100 by inserting additional initial
values for the scores, and to change the middle portion of the for statement to compare sub to
100 instead of to 5. The loop to increase 100 separate scores by 3 each is:
for(sub = 0; sub < 100; ++sub)

scoreArray[sub] += INCREASE;

When an application contains an array and you want to use every element of the array in some
task, it is common to perform loops that vary the loop control variable from 0 to one less than
the size of the array. For example, if you get input values for the elements in the array, alter every
value in the array, sum all the values in the array, or display every element in the array, you need
to perform a loop that executes the same number of times as there are elements. (If you perform
the loop too many times, the subscript will be out of bounds; if you do not perform the loop
enough times, you will miss processing some elements in the list.) When there are 10 array
elements, the subscript varies from 0 through 9; when there are 800 elements, the subscript

C H A P T E R 8 Arrays

402

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

varies from 0 through 799. Therefore, in an application that includes an array, it is convenient to
declare a named constant equal to the size of the array and use it as a limiting value in every loop
that processes the array. That way, if the array size changes in the future, you need to modify
only the value stored in the named, symbolic constant, and you do not need to search for and
modify the limiting value in every loop that processes the array.

For example, suppose you declare an array and a named constant as follows:
int[] scoreArray = {2, 14, 35, 67, 85};
final int NUMBER_OF_SCORES = 5;

Then, the following two loops are identical:
for(sub = 0; sub < 5; ++sub)

scoreArray[sub] += INCREASE;
for(sub = 0; sub < NUMBER_OF_SCORES; ++sub)

scoreArray[sub] += INCREASE;

The second format has two advantages. First, by using the named constant, NUMBER_OF_SCORES,
the reader understands that you are processing every array element for the size of the entire
array. If you use the number 5, the reader must look back to the array declaration to confirm
that 5 represents the full size of the array. Second, if the array size changes because you remove
or add scores, you change the named constant value only once, and all loops that use the
constant are automatically altered to perform the correct number of repetitions.

As an even better option, you can use a field (instance variable) that is automatically assigned
a value for every array you create; the length field contains the number of elements in the
array. For example, when you declare an array using either of the following statements, the
field scoreArray.length is assigned the value 5:
int[] scoreArray = {2, 14, 35, 67, 85};
int[] scoreArray = new int[5];

Therefore, you can use the following loop to add 3 to every array element:
for(sub = 0; sub < scoreArray.length; ++sub)

scoreArray[sub] += INCREASE;

Later, if you modify the size of the array and recompile the program, the value in the length

field of the array changes appropriately. When you work with array elements, it is always better
to use a named constant or the length field when writing a loop that manipulates an array.

A frequent programmer error is to attempt to use length as an array method, referring to
scoreArray.length(). As you learned in the last chapter, length() is a String method.
However, length is not an array method; it is a field. An instance variable or object field such
as length is also called a property of the object.

Using the Enhanced for Loop
In Chapter 6, you learned to use the for loop. Java also supports an enhanced for loop. This
loop allows you to cycle through an array without specifying the starting and ending points
for the loop control variable. For example, you can use either of the following statements to
display every element in an array named scoreArray:

Using Variable Subscripts with an Array

403

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

for(int sub = 0; sub < scoreArray.length; ++sub)
System.out.println(scoreArray[sub]);

for(int val : scoreArray)
System.out.println(val);

In the second example, val is defined to be the same type as the array named following the
colon. Within the loop, val takes on, in turn, each value in the array. You can read the second
example as, “For each val in scoreArray, display val.” As a matter of fact, you will see the
enhanced for loop referred to as a foreach loop.

You also can use the enhanced for loop with more complicated Java objects, as you will see in
the next section.

Using Part of an Array
Sometimes, you do not want to use every value in an array. For example, suppose that you
write a program that allows a student to enter up to 10 quiz scores and then computes and
displays the average. To allow for 10 quiz scores, you create an array that can hold 10 values,
but because the student might enter fewer than 10 values, you might use only part of the
array. Figure 8-4 shows such a program.

import java.util.*;
public class AverageOfQuizzes
{

public static void main(String[] args)
{

int[] scores = new int[10];
int score = 0;
int count = 0;
int total = 0;
final int QUIT = 999;
final int MAX = 10;
Scanner input = new Scanner(System.in);
System.out.print("Enter quiz score or " +

QUIT + " to quit >> ");
score = input.nextInt();
while(score != QUIT)
{

scores[count] = score;
total += scores[count];
++count;
if(count == MAX)

score = QUIT;
else
{

System.out.print("Enter next quiz score or " +
QUIT + " to quit >> ");

score = input.nextInt();
}

}

Figure 8-4 The AverageOfQuizzes application (continues)

C H A P T E R 8 Arrays

404

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

System.out.print("\nThe scores entered were: ");
for(int x = 0; x < count; ++x)

System.out.print(scores[x] + " ");
if(count != 0)

System.out.println("\n The average is " + (total * 1.0 / count));
else

System.out.println("No scores were entered.");
}

}

Figure 8-4 The AverageOfQuizzes application

The AverageOfQuizzes program declares an array that can hold 10 quiz scores. The user is
prompted for a first quiz score; then, a while loop starts and continues as long as the user
does not enter 999, as shown in the first shaded line in Figure 8-4. Within the loop, the
entered score is placed in the scores array, the score is added to a running total, and the
count of scores entered is incremented. If the score just entered is the tenth score, the score is
forced to 999 and the loop ends; otherwise, the user is prompted for the next score. The
while loop continuously checks to ensure that the user has not entered 999 to quit. When the
loop eventually ends, count holds the number of scores entered. The variable count then
can be used to control the output loop (in the shaded for statement) and to calculate the
average score (the last shaded portion in Figure 8-4). Figure 8-5 shows two typical executions
of the program.

(continued)

Figure 8-5 Two typical executions of the AverageOfQuizzes application

Using Variable Subscripts with an Array

405

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using Variable Subscripts with an Array

1. When an application contains an array, it is common to perform loops that
vary the loop control variable from 0 to one less than the size of the array.

2. An array’s length field contains the highest value that can be used as the
array’s subscript.

3. The enhanced for loop allows you to cycle through an array without specifying
the starting and ending points for the loop control variable.

. yarr a eht ni
st ne mel ef or eb mun eht sni at noc dl eif htgnel s’ yarr a nA. 2# si t ne met at s esl af ehT

You Do It

Using a for Loop to Access Array Elements

Next, you modify the DemoArray2 program to use a for loop with the array.

1. Open the DemoArray2.java file, and immediately save the file as
DemoArray3.java. Change the class name to DemoArray3. Delete the
four println() statements that display the four array values, and then
replace them with the following for loop:
for(int x = 0; x < salaries.length; ++x)

System.out.println(salaries[x]);

2. Save the program (as DemoArray3.java), compile, and run the program.
Again, the output is the same as that shown in Figure 8-2.

Declaring and Using Arrays of Objects
Just as you can declare arrays of simple types such as int or double, you can declare arrays
that hold elements of objects. For example, assume you create the Employee class shown in
Figure 8-6. This class has two data fields (empNum and empSal), a constructor, and a get
method for each field.

C H A P T E R 8 Arrays

406

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class Employee
{

private int empNum;
private double empSal;
Employee(int e, double s)
{

empNum = e;
empSal = s;

}
public int getEmpNum()
{

return empNum;
}
public double getSalary()
{

return empSal;
}

}

Figure 8-6 The Employee class

You can create separate Employee objects with unique names, such as the following:
Employee painter, electrician, plumber;
Employee firstEmployee, secondEmployee, thirdEmployee;

However, in many programs it is far more convenient to create an array of Employee objects.
An array named emps that holds seven Employee objects can be defined as:
Employee[] emps = new Employee[7];

This statement reserves enough computer memory for seven Employee objects named emps[0]

through emps[6]. However, the statement does not actually construct those Employee

objects; instead, you must call the seven individual constructors. According to the class
definition shown in Figure 8-6, the Employee constructor requires two arguments: an
employee number and a salary. If you want to number your Employees 101, 102, 103, and so
on, and start each Employee at a salary of $15,000, the loop that constructs seven Employee
objects is as follows:
final int START_NUM = 101;
final double STARTING_SALARY = 15_000;
for(int x = 0; x < emps.length; ++x)

emps[x] = new Employee(START_NUM + x, STARTING_SALARY);

As x varies from 0 through 6, each of the seven emps objects is constructed with an
employee number that is 101 more than x, and each of the seven emps objects holds the
same salary.

Unlike the Employee class in Figure 8-6, which contains a constructor that requires
arguments, some classes contain only a default constructor, which might be supplied
automatically when no other constructors are created or might be written explicitly.

Declaring and Using Arrays of Objects

407

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To construct an array of objects using a default constructor, you must still call the
constructor using the keyword new for each declared array element. For example, suppose
you have created a class named InventoryItem but have not written a constructor. To create
an array of 1,000 InventoryItem objects, you would write the following:
final int NUM_ITEMS = 1000;
InventoryItem[] items = new InventoryItem[NUM_ITEMS];
for(int x = 0; x < NUM_ITEMS; ++x)

items[x] = new InventoryItem();

You could use an initialization list to create an array of objects, as in the following example:
InventoryItem[] items = {new InventoryItem(),

new InventoryItem(), new InventoryItem()};
However, even with only a few objects in the array, this approach is unwieldy.

To use a method that belongs to an object that is part of an array, you insert the appropriate
subscript notation after the array name and before the dot that precedes the method name.
For example, to display data for seven Employees stored in the emps array, you can write the
following:
for(int x = 0; x < emps.length; ++x)

System.out.println (emps[x].getEmpNum() + " " +
emps[x].getSalary());

Pay attention to the syntax of the Employee objects’ method calls, such as emps[x].getEmpNum().
Although you might be tempted to place the subscript at the end of the expression after the
method name—as in emps.getEmpNum[x] or emps.getEmpNum()[x]—you cannot; the values
in x (0 through 6) refer to a particular emps object, each of which has access to a single
getEmpNum() method. Placement of the bracketed subscript so it follows emps means the
method “belongs” to a particular element of emps.

Using the Enhanced for Loop with Objects
You can use the enhanced for loop to cycle through an array of objects. For example, to
display data for seven Employees stored in the emps array, you can write the following:
for(Employee worker : emps)

System.out.println(worker.getEmpNum() + " " + worker.getSalary());

In this loop, worker is a local variable that represents each element of emps in turn. Using the
enhanced for loop eliminates the need to use a limiting value for the loop and eliminates the
need for a subscript following each element.

Manipulating Arrays of Strings
As with any other object, you can create an array of String objects. For example, you can
store three company department names as follows:
String[] deptNames = {"Accounting", "Human Resources", "Sales"};

C H A P T E R 8 Arrays

408

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can access these department names with a subscript like any other array object. For example,
you can use the following code to display the list of Strings stored in the deptNames array:
for(int a = 0; a < deptNames.length; ++a)

System.out.println(deptNames[a]);

Notice that deptNames.length; refers to the length of the array deptNames (three elements)
and not to the length of any String objects stored in the deptNames array. Remember that
arrays use a length field (no parentheses follow), and String objects use a length() method.
For example, if deptNames[0] is “Accounting”, then deptNames[0].length() is 10 because
“Accounting” contains 10 characters.

TWO TRUTHS & A LIE

Declaring and Using Arrays of Objects

1. The following statement declares an array named students that holds 10
Student objects:

Student[] students = new Student[10];

2. When a class has a default constructor and you create an array of objects from
the class, you do not need to call the constructor explicitly.

3. To use a method that belongs to an object that is part of an array, you insert
the appropriate subscript notation after the array name and before the dot that
precedes the method name.

.t ne mel e yarr a der al ced hcae r of wen dr owyek
eht gni sur ot curt snoc eht ll act su muoy, ssal c eht morf st cej bof o yarr a na et aer c uoy

neh w,t on r or ot curt snoctl uaf ed a sah ssal c a r eht eh W. 2# si t ne met at s esl af ehT

You Do It

Creating a Class that Contains an Array of Strings

In this section, you create a class named BowlingTeam that contains the name of
a bowling team and an array that holds the names of the four team members.

1. Open a new file, and type the header and curly braces for the BowlingTeam class:
public class BowlingTeam
{
}

(continues)

Declaring and Using Arrays of Objects

409

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Create a field for the team name and an array that holds the team members’
names.
private String teamName;
private String[] members = new String[4];

3. Create get and set methods for the teamName field as follows:
public void setTeamName(String team)
{

teamName = team;
}
public String getTeamName()
{

return teamName;
}

4. Add a method that sets a team member’s name. The method requires
a position and a name, and it uses the position as a subscript to the
members array.
public void setMember(int number, String name)
{

members[number] = name;
}

5. Add a method that returns a team member’s name. The method requires
a value used as the subscript that determines which member’s name to
return.
public String getMember(int number)
{

return members[number];
}

6. Save the file as BowlingTeam.java. Compile it and correct any errors.

Creating a Program to Demonstrate an Instance of the BowlingTeam Class

In this section, you write a program in which you create an instance of the BowlingTeam

class and provide values for it.

1. Open a new file, and enter the following code to begin the class.
import java.util.*;
public class BowlingTeamDemo
{

public static void main(String[] args)
{

(continued)

(continues)

C H A P T E R 8 Arrays

410

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Add five declarations. These include a String that holds user input, a
BowlingTeam object, an integer to use as a subscript, a constant that
represents the number of members on a bowling team, and a Scanner

object for input.
String name;
BowlingTeam bowlTeam = new BowlingTeam();
int x;
final int NUM_TEAM_MEMBERS = 4;
Scanner input = new Scanner(System.in);

3. Prompt the user for a bowling team name. Accept it, and then assign it to
the BowlingTeam object:
System.out.print("Enter team name >> ");
name = input.nextLine();
bowlTeam.setTeamName(name);

4. In a loop that executes four times, prompt the user for a team member’s
name. Accept the name and assign it to the BowlingTeam object using
the subscript to indicate the team member’s position in the array in the
BowlingTeam class.
for(x = 0; x < NUM_TEAM_MEMBERS; ++x)
{

System.out.print("Enter team member's name >> ");
name = input.nextLine();
bowlTeam.setMember(x, name);

}

5. Display the details of the BowlingTeam object using the following code:
System.out.println("\nMembers of team " +

bowlTeam.getTeamName());
for(x = 0; x < NUM_TEAM_MEMBERS; ++x)

System.out.print(bowlTeam.getMember(x) + " ");
System.out.println();

6. Add a closing curly brace for the main() method and another for the class.

7. Save the file as BowlingTeamDemo.java, and then compile and execute it.
Figure 8-7 shows a typical execution.

(continued)

(continues)

Declaring and Using Arrays of Objects

411

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating a Program that Declares an Array of BowlingTeam Objects

Next, you create and use an array of BowlingTeam objects.

1. Open the BowlingTeamDemo.java file. Rename the class
BowlingTeamDemo2, and immediately save the file as
BowlingTeamDemo2.java.

2. Above the declaration of the BowlingTeam object, add a new named constant
that holds a number of BowlingTeams, and then replace the statement that
declares the single BowlingTeam object with an array declaration of four
BowlingTeam objects.
final int NUM_TEAMS = 4;
BowlingTeam[] teams = new BowlingTeam[NUM_TEAMS];

3. The current program declares x, which is used as a subscript to display team
member names. Now, following the declaration of x, add a variable that is
used as a subscript to display the teams:
int y;

4. Following the declaration of the Scanner object, and before the team
name prompt, insert a for loop that executes as many times as there are
BowlingTeams. Add the opening curly brace, and within the loop, allocate
memory for each array element:
for(y = 0; y < NUM_TEAMS; ++y)
{

teams[y] = new BowlingTeam();

Figure 8-7 Typical execution of the BowlingTeamDemo class

(continued)

(continues)

C H A P T E R 8 Arrays

412

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Delete the statement that uses the setTeamName() method with the single
bowlTeam object. In its place, insert a statement that uses the method with
one of the array elements:
teams[y].setTeamName(name);

6. Within the first for loop controlled by x, delete the statement that uses
the setMember() method with the single bowlTeam object. In its place, insert
a statement that uses the method with one of the array elements:
teams[y].setMember(x, name);

7. After the closing curly brace for the for loop controlled by the variable x,
add a closing curly brace for the for loop controlled by the variable y.

8. Adjust the indentation of the program statements so that the program logic is
easy to follow with the new nested loops. The nested loops that you just
modified should look like the following 13 lines of code:
for(y = 0; y < NUM_TEAMS; ++y)
{

teams[y] = new BowlingTeam();
System.out.print("Enter team name >> ");
name = input.nextLine();
teams[y].setTeamName(name);
for(x = 0; x < NUM_TEAM_MEMBERS; ++x)
{

System.out.print("Enter team member's name >> ");
name = input.nextLine();
teams[y].setMember(x, name);

}
}

9. The for loop at the end of the current program lists four team members’
names. Replace this loop with the following nested version that lists four
members’ names for each of four teams:
for(y = 0; y < NUM_TEAMS; ++y)
{

System.out.println("\nMembers of team " +
teams[y].getTeamName());

for(x = 0; x < NUM_TEAM_MEMBERS; ++x)
System.out.print(teams[y].getMember(x) + " ");

System.out.println();
}

(continued)

(continues)

Declaring and Using Arrays of Objects

413

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Save the file, and then compile and execute the program. Figure 8-8 shows a
typical execution. The user can enter data into the array of BowlingTeam
objects, including the array of Strings within each object, and then see all the
entered data successfully displayed.

Searching an Array and Using Parallel Arrays
Suppose that a company manufactures 10 items. When a customer places an order for an
item, you need to determine whether the item number on the order form is valid. When
you want to determine whether a variable holds one of many valid values, one option is to
use a series of if statements to compare the variable to a series of valid values. If valid item
numbers are sequential, such as 101 through 110, the following simple if statement that uses
a logical AND can verify the order number and set a Boolean field to true:
final int LOW = 101;
final int HIGH = 110;
boolean validItem = false;
if(itemOrdered >= LOW && itemOrdered <= HIGH)

validItem = true;

Figure 8-8 Typical execution of the BowlingTeamDemo2 application

(continued)

C H A P T E R 8 Arrays

414

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this example, the Boolean field validItem is used as a flag—a variable that holds a value as
an indicator of whether some condition has been met.

If the valid item numbers are nonsequential—for example, 101, 108, 201, and so on—you can
code the following deeply nested if statement or a lengthy OR comparison to determine the
validity of an item number:
if(itemOrdered == 101)

validItem = true;
else if(itemOrdered == 108)

validItem = true;
else if(itemOrdered == 201)

validItem = true;
// and so on

Instead of a long series of if statements, a more elegant solution is to compare the
itemOrdered variable to a list of values in an array, a process called searching an array.
You can initialize the array with the valid values using the following statement, which
creates exactly 10 array elements with subscripts 0 through 9:
int[] validValues = {101, 108, 201, 213, 266,

304, 311, 409, 411, 412};

After the list of valid values is initialized, you can use a for statement to loop through
the array, and set a Boolean variable to true when a match is found:
for(int x = 0; x < validValues.length; ++x)
{

if(itemOrdered == validValues[x])
validItem = true;

}

This simple for loop replaces the long series of if statements; it checks the itemOrdered

value against each of the 10 array values in turn. Also, if a company carries 1,000 items instead
of 10, nothing changes in the for statement—the value of validValues.length is updated
automatically.

Using Parallel Arrays
As an added bonus, if you set up another array with the same number of elements
and corresponding data, you can use the same subscript to access additional information.
A parallel array is one with the same number of elements as another, and for which
the values in corresponding elements are related. For example, if the 10 items your
company carries have 10 different prices, you can set up an array to hold those prices
as follows:
double[] prices = {0.29, 1.23, 3.50, 0.69…};

Searching an Array and Using Parallel Arrays

415

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The prices must appear in the same order as their corresponding item numbers in the
validValues array. Now, the same for loop that finds the valid item number also finds the
price, as shown in the application in Figure 8-9. In the shaded portion of the code, notice that
when the ordered item’s number is found in the validValues array, the itemPrice value is
“pulled” from the prices array. In other words, if the item number is found in the second
position in the validValues array, you can find the correct price in the second position in the
prices array. Figure 8-10 shows a typical execution of the program. A user requests item 409,
which is the eighth element in the validValues array, so the price displayed is the eighth
element in the prices array.

import javax.swing.*;
public class FindPrice
{

public static void main(String[] args)
{

final int NUMBER_OF_ITEMS = 10;
int[] validValues = {101, 108, 201, 213, 266,

304, 311, 409, 411, 412};
double[] prices = {0.29, 1.23, 3.50, 0.69, 6.79,

3.19, 0.99, 0.89, 1.26, 8.00};
String strItem;
int itemOrdered;
double itemPrice = 0.0;
boolean validItem = false;
strItem = JOptionPane.showInputDialog(null,

"Enter the item number you want to order");
itemOrdered = Integer.parseInt(strItem);
for(int x = 0; x < NUMBER_OF_ITEMS; ++x)
{

if(itemOrdered == validValues[x])
{

validItem = true;
itemPrice = prices[x];

}
}
if(validItem)

JOptionPane.showMessageDialog(null, "The price for item " +
itemOrdered + " is $" + itemPrice);

else
JOptionPane.showMessageDialog(null,

"Sorry - invalid item entered");
}

}

Figure 8-9 The FindPrice application that accesses information in parallel arrays

C H A P T E R 8 Arrays

416

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you initialize parallel arrays, it is convenient to use spacing so that the values that correspond to each
other visually align on the screen or printed page.

Instead of parallel arrays containing item numbers and prices, you might prefer to create a class named
Item in which each instance contains two fields—itemOrdered and itemPrice. Then you could
create a single array of objects that encapsulate item numbers and prices. There are almost always multiple
ways to approach programming problems.

Within the code shown in Figure 8-9, you compare every itemOrdered with each of the 10
validValues. Even when an itemOrdered is equivalent to the first value in the validValues

array (101), you always make nine additional cycles through the array. On each of these nine
additional cycles, the comparison between itemOrdered and validValues[x] is always
false. As soon as a match for an itemOrdered is found, it is most efficient to break out of
the for loop early. An easy way to accomplish this is to set x to a high value within the
block of statements executed when there is a match. Then, after a match, the for loop
does not execute again because the limiting comparison (x < NUMBER_OF_ITEMS) is surpassed.
Figure 8-11 shows this loop. In an array with many possible matches, it is most efficient to
place the more common items first, so they are matched right away. For example, if item 311
is ordered most often, place 311 first in the validValues array, and place its price ($0.99) first
in the prices array.

for(int x = 0; x < NUMBER_OF_ITEMS; ++x)
{

if(itemOrdered == validValues[x])
{

validItem = true;
itemPrice = prices[x];
x = NUMBER_OF_ITEMS;

}
}

Figure 8-11 A for loop with an early exit

Figure 8-10 Typical execution of the FindPrice application

Searching an Array and Using Parallel Arrays

417

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the code in Figure 8-11, the loop control variable is altered within the loop body. Some
programmers object to altering a loop control variable within the body of a for loop; they
feel that the loop control variable should only be altered in the third section of the for

clause (where x is incremented). These programmers would prefer the loop in Figure 8-12,
in which two Boolean expressions appear in the shaded section in the middle portion of the
for clause. In this example, the loop control variable is not altered within the loop body.
Instead, x must be within range before each iteration and validItem must not yet have been
set to true.

for(int x = 0; x < NUMBER_OF_ITEMS && !validItem; ++x)
{

if(itemOrdered == validValues[x])
{

validItem = true;
itemPrice = prices[x];

}
}

Figure 8-12 A for loop that uses a compound test for termination

Searching an Array for a Range Match
Searching an array for an exact match is not always practical. Suppose your company gives
customer discounts based on the quantity of items ordered. Perhaps no discount is given
for any order of fewer than a dozen items, but there are increasing discounts available for
orders of increasing quantities, as shown in Table 8-1.

One awkward option is to create a single array to store the discount rates. You could use a
variable named numOfItems as a subscript to the array, but the array would need hundreds of
entries, as in the following example:
double[] discounts = {0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0.10, 0.10, 0.10 …};

Total Quantity Ordered Discount

1 to 12 None

13 to 49 10%

50 to 99 14%

100 to 199 18%

200 or more 20%

Table 8-1 Discount table

C H A P T E R 8 Arrays

418

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Thirteen zeroes are listed in the discounts array. The first array element has a 0 subscript
and represents a zero discount for zero items. The next 12 discounts (for items 1 through 12)
are also zero. When numOfItems is 13, discounts[numOfItems], or discounts[13], is
0.10. The array would store 37 copies of 0.10 for elements 13 through 49. The discounts

array would need to be ridiculously large to hold an exact value for each possible quantity
ordered.

A better option is to create two corresponding arrays and perform a range match, in
which you compare a value to the endpoints of numerical ranges to find the category in
which a value belongs. For example, one array can hold the five discount rates, and the
other array can hold five discount range limits. The Total Quantity Ordered column in
Table 8-1 shows five ranges. If you use only the first figure in each range, you can create
an array that holds five low limits:
int[] discountRangeLimits = {1, 13, 50, 100, 200};

A parallel array can hold the five discount rates:
double[] discountRates = {0, 0.10, 0.14, 0.18, 0.20};

Then, starting at the last discountRangeLimits array element, for any numOfItems greater
than or equal to discountRangeLimits[4], the appropriate discount is discounts[4]. In
other words, for any numOrdered less than discountRangeLimits[4], you should decrement
the subscript and look in a lower range. Figure 8-13 shows an application that uses the parallel
arrays, and Figure 8-14 shows a typical execution of the program.

import javax.swing.*;
public class FindDiscount
{

public static void main(String[] args)
{

final int NUM_RANGES = 5;
int[] discountRangeLimits = { 1, 13, 50, 100, 200};
double[] discountRates = {0.00, 0.10, 0.14, 0.18, 0.20};
double customerDiscount;
String strNumOrdered;
int numOrdered;
int sub = NUM_RANGES - 1;
strNumOrdered = JOptionPane.showInputDialog(null,

"How many items are ordered?");
numOrdered = Integer.parseInt(strNumOrdered);
while(sub >= 0 && numOrdered < discountRangeLimits[sub])

−−sub;
customerDiscount = discountRates[sub];
JOptionPane.showMessageDialog(null, "Discount rate for " +

numOrdered + " items is " + customerDiscount);
}

}

Figure 8-13 The FindDiscount class

Searching an Array and Using Parallel Arrays

419

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the while loop in the application in Figure 8-13, sub is required to be greater than or equal to 0 before
the second half of the statement that compares numOrdered to discountRangeLimits[sub]
executes. It is a good programming practice to ensure that a subscript to an array does not fall below zero,
causing a runtime error.

Watch the video Searching an Array.

TWO TRUTHS & A LIE

Searching an Array and Using Parallel Arrays

1. A parallel array is one with the same number of elements as another, and for
which the values in corresponding elements are related.

2. When searching an array, it is usually most efficient to abandon the search as
soon as the sought-after element is found.

3. In a range match, you commonly compare a value to the midpoint of each of
a series of numerical ranges.

.t ni opdi m
eht ot t ont ub, segnar l aci r e munf o sei r es af o hcaef ot ni opdne hgi h r o wol eht
ot eul av a er ap moc yl no mmoc uoy , hct a megnar a nI . 3# si t ne met at s esl af ehT

Figure 8-14 Typical execution of the FindDiscount class

C H A P T E R 8 Arrays

420

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Searching an Array

In this section, you modify the BowlingTeamDemo2 program so that after the
bowling team data has been entered, a user can request the roster for a
specific team.

1. Open the BowlingTeamDemo2.java file, and change the class name to
BowlingTeamDemo3. Immediately save the file as BowlingTeamDemo3.java.

2. At the end of the existing application, just before the two final closing curly
braces, insert a prompt asking the user to enter a team name. Then accept
the entered value.
System.out.print("\n\nEnter a team name to see its roster >> ");
name = input.nextLine();

3. Next, insert a nested for loop. The outer loop varies y from 0 through the
highest subscript allowed in the teams array. Within this loop, the team name
requested by the user is compared to each stored team name; when they are
equal, another for loop displays the four team member names.
for(y = 0; y < teams.length; ++y)

if(name.equals(teams[y].getTeamName()))
for(x = 0; x < NUM_TEAM_MEMBERS; ++x)

System.out.print(teams[y].getMember(x) + " ");

4. Insert an additional empty println() method call.
System.out.println();

5. Save the file, and then compile and execute the program. Figure 8-15 shows
the last part of a typical execution, which contains the output after input is
complete.

(continues)

Searching an Array and Using Parallel Arrays

421

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Passing Arrays to and Returning Arrays from Methods
You have already seen that you can use any individual array element in the same manner
as you use any single variable of the same type. That is, if you declare an integer array as
int[] someNums = new int[12];, you can subsequently display someNums[0], or increment
someNums[1], or work with any element just as you do for any integer. Similarly, you
can pass a single array element to a method in exactly the same manner as you pass any
variable.

Examine the PassArrayElement application shown in Figure 8-16 and the output shown
in Figure 8-17. The application creates an array of four integers and displays them.
Then, the application calls the methodGetsOneInt() method four times, passing each
element in turn. The method displays the number, changes the number to 999, and then
displays the number again. Finally, back in the main() method, the four numbers are
displayed again.

Figure 8-15 Typical output of the BowlingTeamDemo3 application

(continued)

C H A P T E R 8 Arrays

422

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class PassArrayElement
{

public static void main(String[] args)
{

final int NUM_ELEMENTS = 4;
int[] someNums = {5, 10, 15, 20};
int x;
System.out.print("At start of main: ");
for(x = 0; x < NUM_ELEMENTS; ++x)

System.out.print(" " + someNums[x]);
System.out.println();
for(x = 0; x < NUM_ELEMENTS; ++x)

methodGetsOneInt(someNums[x]);
System.out.print("At end of main: ");
for(x = 0; x < NUM_ELEMENTS; ++x)

System.out.print(" " + someNums[x]);
System.out.println();

}
public static void methodGetsOneInt(int one)
{

System.out.print("At start of method one is: " + one);
one = 999;
System.out.println(" and at end of method one is: " + one);

}
}

Figure 8-16 The PassArrayElement class

As you can see in Figure 8-17, the four numbers that were changed in the methodGetsOneInt()
method remain unchanged back in main() after the method executes. The variable
named one is local to the methodGetsOneInt() method, and any changes to variables
passed into the method are not permanent and are not reflected in the array in the main()
program. Each variable named one in the methodGetsOneInt() method holds only a
copy of the array element passed into the method. The individual array elements are

Figure 8-17 Output of the PassArrayElement application

Passing Arrays to and Returning Arrays from Methods

423

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

passed by value; that is, a copy of the value is made and used within the receiving method.
When any primitive type (boolean, char, byte, short, int, long, float, or double) is passed
to a method, the value is passed.

Arrays, like all nonprimitive objects, are reference types; this means that the object actually
holds a memory address where the values are stored. (You first learned the term reference
types in Chapter 2, where they were contrasted with primitive types.) Because an array
name is a reference, you cannot assign another array to it using the = operator, nor can you
compare two arrays using the == operator. Additionally, when you pass an array (that is, pass
its name) to a method, the receiving method gets a copy of the array’s actual memory address.
This means that the receiving method has access to, and the ability to alter, the original values
in the array elements in the calling method.

The class shown in Figure 8-18 creates an array of four integers. After the integers are
displayed, the array name (its address) is passed to a method named methodGetsArray().
Within the method, the numbers are displayed, which shows that they retain their
values from main(), but then the value 888 is assigned to each number. Even though
methodGetsArray() is a void method—meaning nothing is returned to the main()
method—when the main() method displays the array for the second time, all of the values
have been changed to 888, as you can see in the output in Figure 8-19. Because the
method receives a reference to the array, the methodGetsArray() method “knows”
the address of the array declared in main() and makes its changes directly to the
original array.

In some languages, arrays are passed by reference, meaning that a receiving method gets the
memory address. It is a subtle distinction, but in Java, the receiving method gets a copy of the original
address. In other words, in Java, an array is not passed by reference, but a reference to an array is
passed by value.

public class PassArray
{

public static void main(String[] args)
{

final int NUM_ELEMENTS = 4;
int[] someNums = {5, 10, 15, 20};
int x;
System.out.print("At start of main: ");
for(x = 0; x < NUM_ELEMENTS; ++x)

System.out.print(" " + someNums[x]);
System.out.println();
methodGetsArray(someNums);
System.out.print("At end of main: ");
for(x = 0; x < NUM_ELEMENTS; ++x)

System.out.print(" " + someNums[x]);
System.out.println();

}

Figure 8-18 The PassArray class (continues)

C H A P T E R 8 Arrays

424

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public static void methodGetsArray(int[] arr)
{

int x;
System.out.print("At start of method arr holds: ");
for(x = 0; x < arr.length; ++x)

System.out.print(" " + arr[x]);
System.out.println();
for(x = 0; x < arr.length; ++x)

arr[x] = 888;
System.out.print(" and at end of method arr holds: ");
for(x = 0; x < arr.length; ++x)

System.out.print(" " + arr[x]);
System.out.println();

}
}

Figure 8-18 The PassArray class

Notice that in the first shaded statement in Figure 8-18, the array name is passed to the
method and no brackets are used. In the method header, brackets are used to show that the
parameter is an array of integers (a reference) and not a simple int.

In some other languages, notably C, C++, and C#, you can choose to pass variables to methods by value or
reference. In Java, you cannot make this choice. Primitive type variables are always passed by value. When
you pass an object, a copy of the reference to the object is always passed.

Figure 8-19 Output of the PassArray application

(continued)

Passing Arrays to and Returning Arrays from Methods

425

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Returning an Array from a Method
A method can return an array reference. When a method returns an array reference, you
include square brackets with the return type in the method header. For example, Figure 8-20
shows a getArray() method that returns a locally declared array of ints. Square brackets are
used as part of the return type; the return statement returns the array name without any
brackets.

public static int[] getArray()
{

int[] scores = {90, 80, 70, 60};
return scores;

}

Figure 8-20 The getArray() method

When you call the getArray() method in Figure 8-20, you can store its returned value in
any integer array reference. For example, you might declare an array and make the method
call in the following statement:
int[] scoresFromMethod = getArray();

Watch the video Arrays and Methods.

TWO TRUTHS & A LIE

Passing Arrays to and Returning Arrays from Methods

1. You pass a single array element to a method using its name, and the method
must be prepared to receive the appropriate data type.

2. You pass an array to a method using its name followed by a pair of brackets;
arrays are passed by value.

3. When a method returns an array reference, you include square brackets with
the return type in the method header.

. doht e meht ot dessap si sser dda s’ yarr a eht
f o ypoc a; e man sti gni su doht e ma ot yarr a na ssap uoY. 2# si t ne met at s esl af ehT

C H A P T E R 8 Arrays

426

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Passing an Array to a Method

Next, you add a method to the BowlingTeamDemo3 application. The improvement
allows you to remove the data entry process from the main program and encapsulate
the process in its own method.

1. Open the BowlingTeamDemo3.java file if it is not already open. Immediately
save the file as BowlingTeamDemo4.java. Change the class name to
match the filename.

2. Just before the closing curly brace for the class, add the following shell for a
method that accepts a BowlingTeam array argument.
public static void getTeamData(BowlingTeam[] teams)
{
}

3. Within the getTeamData() method, add the following six declarations
(or copy them from the main() method):
String name;
final int NUM_TEAMS = 4;
int x;
int y;
final int NUM_TEAM_MEMBERS = 4;
Scanner input = new Scanner(System.in);

4. Cut the 13 lines of code that assign memory to the BowlingTeam array and
obtain all the data values. Place these 13 lines within the getTeamData()

method following the declarations.
for(y = 0; y < NUM_TEAMS; ++y)
{

teams[y] = new BowlingTeam();
System.out.print("Enter team name >> ");
name = input.nextLine();
teams[y].setTeamName(name);
for(x = 0; x < NUM_TEAM_MEMBERS; ++x)
{

System.out.print("Enter team member's name >> ");
name = input.nextLine();
teams[y].setMember(x, name);

}
}

(continues)

Passing Arrays to and Returning Arrays from Methods

427

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. In place of the 13 cut lines, insert a method call. This call passes a copy of the
array reference to the method. Notice that this call does not assign a return
value. The method is a void method and returns nothing. Nevertheless, the
array in the main() method will be updated because the method is receiving
access to the array’s memory address.
getTeamData(teams);

6. Save the file (as BowlingTeamDemo4.java), and then compile and execute
the program. Confirm that the program works exactly as it did before the new
method was added.

Don’t Do It
Don’t forget that the lowest array subscript is 0.

Don’t forget that the highest array subscript is one less than the length of the array.

Don’t forget the semicolon following the closing curly brace in an array initialization list.

Don’t forget that length is an array property and not a method. Conversely, length() is
a String method, and not a property.

Don’t place a subscript after an object’s field or method name when accessing an array of
objects. Instead, the subscript for an object follows the object and comes before the dot
and the field or method name.

Don’t assume that an array of characters is a string. Although an array of characters can
be treated like a string in languages like C++, you can’t do this in Java. For example, if you
display the name of a character array, you will see its address, not its contents.

Don’t forget that array names are references. Therefore, you cannot assign one array to
another using the = operator, nor can you compare array contents using the == operator.

Don’t use brackets with an array name when you pass it to a method. Do use brackets in
the method header that accepts the array.

Key Terms
An array is a named list of data items that all have the same type.

An element is one variable or object in an array.

(continued)

C H A P T E R 8 Arrays

428

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A subscript is an integer contained within square brackets that indicates one of an array’s
elements.

An index is a subscript.

Out of bounds describes a subscript that is not within the allowed range for an array.

An initialization list is a series of values provided for an array when it is declared.

Populating an array is the act of providing values for all the elements.

A property of an object is an instance variable or field.

The enhanced for loop allows you to cycle through an array without specifying the starting
and ending points for the loop control variable.

A foreach loop is an enhanced for loop.

A flag is a variable that holds a value (often true or false) as an indicator of whether some
condition has been met.

Searching an array is the process of comparing a value to a list of values in an array, looking
for a match.

A parallel array is one with the same number of elements as another, and for which the
values in corresponding elements are related.

A range match is the process of comparing a value to the endpoints of numerical ranges to
find a category in which the value belongs.

Passed by value describes what happens when a variable is passed to a method and a copy is
made in the receiving method.

Passed by reference describes what happens when a reference (address) is passed to
a method.

Chapter Summary
An array is a named list of data items that all have the same type. You declare an array
variable by inserting a pair of square brackets after the type. To reserve memory space for
an array, you use the keyword new. You use a subscript contained within square brackets
to refer to one of an array’s variables, or elements. In Java, any array’s elements are
numbered beginning with zero.

Array names represent computer memory addresses. When you declare an array name,
no computer memory address is assigned to it, and the array variable name has the value
null. When you use the keyword new or supply an initialization list, an array acquires an
actual memory address. When an initialization list is not provided, each data type has
a default value for its array elements.

Chapter Summary

429

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can shorten many array-based tasks by using a variable as a subscript. When an
application contains an array, it is common to perform loops that execute from 0 to one
less than the size of the array. The length field is an automatically created field that is
assigned to every array; it contains the number of elements in the array.

You can declare arrays that hold elements of any type, including Strings and other
objects. To use a method that belongs to an object that is part of an array, you insert the
appropriate subscript notation after the array name and before the dot that precedes the
method name.

By looping through an array and making comparisons, you can search an array to find a
match to a value. You can use a parallel array with the same number of elements to hold
related elements. You perform a range match by placing end values of ranges in an array
and making greater-than or less-than comparisons to each array element.

You can pass a single array element to a method, and the array receives a copy of the
passed value. You can pass an array name to a method, and the method receives a copy of
the array’s memory address and has access to the values in the original array.

Review Questions
1. An array is a list of data items that .

a. all have the same type
b. all have different names

c. all are integers
d. all are null

2. When you declare an array, .

a. you always reserve memory for it in the same statement
b. you might reserve memory for it in the same statement
c. you cannot reserve memory for it in the same statement
d. the ability to reserve memory for it in the same statement

depends on the type of the array

3. You reserve memory locations for an array when you .

a. declare the array name
b. use the keyword new

c. use the keyword mem

d. use the keyword size

4. For how many integers does the following statement reserve room?
int[] value = new int[34];

a. 0
b. 33

c. 34
d. 35

5. Which of the following can be used as an array subscript?

a. character
b. double

c. int

d. String

C H A P T E R 8 Arrays

430

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. If you declare an array as follows, how do you indicate the final element of the array?
int[] num = new int[6];

a. num[0]

b. num[5]

c. num[6]

d. impossible to tell

7. If you declare an integer array as follows, what is the value of num[2]?
int[] num = {101, 202, 303, 404, 505, 606};

a. 101
b. 202

c. 303
d. impossible to tell

8. Array names represent .

a. values
b. functions

c. references
d. allusions

9. Unicode value ‘\u0000’ is also known as .

a. nil

b. void

c. nada

d. null

10. When you initialize an array by giving it values upon creation, you .

a. do not explicitly give the array a size
b. also must give the array a size explicitly
c. must make all the values zero, blank, or false

d. must make certain each value is different from the others

11. In Java, you can declare an array of 12 elements and initialize .

a. only the first one
b. all of them

c. Both of these are true.
d. Neither of these is true.

12. Assume an array is declared as follows. Which of the following statements correctly
assigns the value 100 to each of the array elements?
int[] num = new int[4];

a. for(x = 0; x < 3; ++x) num[x] = 100;

b. for(x = 0; x < 4; ++x) num[x] = 100;

c. for(x = 1; x < 4; ++x) num[x] = 100;

d. for(x = 1; x < 5; ++x) num[x] = 100;

13. Suppose you have declared an array as follows:
int[] creditScores = {670, 720, 815};

What is the value of creditScores.length?

a. 0

b. 1

c. 2

d. 3

Review Questions

431

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14. If a class named Student contains a method setID() that takes an int argument and
you write an application in which you create an array of 20 Student objects named
scholar, which of the following statements correctly assigns an ID number to the
first Student scholar?

a. Student[0].setID(1234);

b. scholar[0].setID(1234);

c. Student.setID[0](1234);

d. scholar.setID[0](1234);

15. A parallel array is one that .

a. holds values that correspond to those in another array
b. holds an even number of values
c. is placed adjacent to another array in code
d. is placed adjacent to another array in memory

16. In which of the following situations would setting up parallel arrays be most useful?

a. You need to look up an employee’s ID number to find the employee’s last name.
b. You need to calculate interest earned on a savings account balance.
c. You need to store a list of 20 commonly misspelled words.
d. You need to determine the shortest distance between two points on a map.

17. When you pass an array element to a method, the method receives .

a. a copy of the array
b. the address of the array

c. a copy of the value in the element
d. the address of the element

18. A single array element of a primitive type is passed to a method by .

a. value
b. reference

c. address
d. osmosis

19. When you pass an array to a method, the method receives .

a. a copy of the array
b. a copy of the first element in the array
c. the address of the array
d. nothing

20. If a method should return an array to its calling method, .

a. the method’s return type must match its parameter type
b. the return type in the method header is preceded by an ampersand
c. the return type in the method header is followed by square brackets
d. A Java method cannot return an array.

C H A P T E R 8 Arrays

432

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

Programming Exercises

1. Write an application that stores 12 integers in an array. Display the integers from
first to last, and then display the integers from last to first. Save the file as
TwelveInts.java.

2. Allow a user to enter any number of double values up to 20. The user should enter
99999 to quit entering numbers. Display an error message if the user quits without
entering any numbers; otherwise, display each entered value and its distance from the
average. Save the file as DistanceFromAverage.java.

3. a. Write an application for Cody’s Car Care Shop that shows a user a list of available
services: oil change, tire rotation, battery check, or brake inspection. Allow the user
to enter a string that corresponds to one of the options, and display the option and
its price as $25, $22, $15, or $5, accordingly. Display an error message if the user
enters an invalid item. Save the file as CarCareChoice.java.

b. It might not be reasonable to expect users to type long entries such as “oil change”
accurately. Modify the CarCareChoice class so that as long as the user enters the
first three characters of a service, the choice is considered valid. Save the file as
CarCareChoice2.java.

4. Create an application containing an array that stores 10 integers. The application
should call five methods that in turn (1) display all the integers, (2) display all the
integers in reverse order, (3) display the sum of the integers, (4) display all values less
than a limiting argument, and (5) display all values that are higher than the calculated
average value. Save the file as ArrayMethodDemo.java.

5. a. Write an application that accepts up to 10 Strings, or fewer if the user enters
a terminating value. Divide the entered Strings into two lists—one for short
Strings that are 10 characters or fewer and the other for long Strings. After
data entry is complete, prompt the user to enter which type of String to display,
and then output the correct list. For this exercise, you can assume that if the
user does not request the list of short strings, the user wants the list of long
strings. If there are no Strings in a requested list, output an appropriate
message. Prompt the user continuously until a sentinel value is entered. Save
the file as CategorizeStrings.java.

b. Modify the CategorizeStrings application to divide the entered Strings into
those that contain no spaces, one space, or more. After data entry is complete,
continuously prompt the user to enter the type of String to display. If the user
does not enter one of the three valid choices, display all of the Strings. Save the
file as CategorizeStrings2.java.

6. a. Create a class named Salesperson. Data fields for Salesperson include an integer
ID number and a double annual sales amount. Methods include a constructor that
requires values for both data fields, as well as get and set methods for each of the

Exercises

433

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

data fields. Write an application named DemoSalesperson that declares an array of
10 Salesperson objects. Set each ID number to 9999 and each sales value to zero.
Display the 10 Salesperson objects. Save the files as Salesperson.java and
DemoSalesperson.java.

b. Modify the DemoSalesperson application so each Salesperson has a successive
ID number from 111 through 120 and a sales value that ranges from $25,000 to
$70,000, increasing by $5,000 for each successive Salesperson. Save the file as
DemoSalesperson2.java.

7. a. Create a CollegeCourse class. The class contains fields for the course ID (for
example, “CIS 210”), credit hours (for example, 3), and a letter grade (for example, ‘A’).
Include get and set methods for each field. Create a Student class containing an ID
number and an array of five CollegeCourse objects. Create a get and set method
for the Student ID number. Also create a get method that returns one of the
Student’s CollegeCourses; the method takes an integer argument and returns
the CollegeCourse in that position (0 through 4). Next, create a set method that
sets the value of one of the Student’s CollegeCourses; the method takes two
arguments—a CollegeCourse and an integer representing the CollegeCourse’s
position (0 through 4). Save the files as CollegeCourse.java and Student.java.

b. Write an application that prompts a professor to enter grades for five different
courses each for 10 students. Prompt the professor to enter data for one student at
a time, including student ID and course data for five courses. Use prompts
containing the number of the student whose data is being entered and the course
number—for example, “Enter ID for student #s”, where s is an integer from 1
through 10, indicating the student, and “Enter course ID #n”, where n is an integer
from 1 through 5, indicating the course number. Verify that the professor enters
only A, B, C, D, or F for the grade value for each course. Save the file as
InputGrades.java.

8. Write an application that allows a user to enter the names and birthdates of up to
10 friends. Continue to prompt the user for names and birthdates until the user
enters the sentinel value “ZZZ” for a name or has entered 10 names, whichever comes
first. When the user is finished entering names, produce a count of how many names
were entered, and then display the names. In a loop, continuously ask the user to type
one of the names and display the corresponding birthdate or an error message if the
name has not been previously entered. The loop continues until the user enters
“ZZZ” for a name. Save the application as BirthdayReminder.java.

9. A personal phone directory contains room for first names and phone numbers for
30 people. Assign names and phone numbers for the first 10 people. Prompt the user
for a name, and if the name is found in the list, display the corresponding phone
number. If the name is not found in the list, prompt the user for a phone number, and
add the new name and phone number to the list. Continue to prompt the user for
names until the user enters quit. After the arrays are full (containing 30 names), do
not allow the user to add new entries. Save the file as PhoneNumbers.java.

C H A P T E R 8 Arrays

434

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. In the exercises in Chapter 4, you created a CertOfDeposit class. Now, create an
application to accept data for an array of five CertOfDeposit objects, and then
display the data. Save the application as CertOfDepositArray.java.

11. In the exercises in Chapter 6, you created a class named Purchase. Each Purchase

contains an invoice number, amount of sale, amount of sales tax, and several
methods. Now, write a program that declares an array of five Purchase objects and
prompt a user for their values. As each Purchase object is created, continuously
prompt until the user enters an invoice number between 1000 and 8000 inclusive
and a non-negative sale amount. Prompt the user for values for each object and then
display all the values. Save the file as PurchaseArray.java.

Debugging Exercises
1. Each of the following files in the Chapter08 folder of your downloadable

student files has syntax and/or logic errors. In each case, determine the problem
and fix the program. After you correct the errors, save each file using the
same filename preceded with Fix. For example, DebugEight1.java will become
FixDebugEight1.java.

a. DebugEight1.java
b. DebugEight2.java

c. DebugEight3.java
d. DebugEight4.java

Game Zone
1. Write an application that contains an array of 10 multiple-choice quiz questions

related to your favorite hobby. Each question contains three answer choices. Also
create an array that holds the correct answer to each question—A, B, or C. Display
each question and verify that the user enters only A, B, or C as the answer—if not,
keep prompting the user until a valid response is entered. If the user responds to a
question correctly, display “Correct!”; otherwise, display “The correct answer is” and
the letter of the correct answer. After the user answers all the questions, display the
number of correct and incorrect answers. Save the file as Quiz.java.

2. a. In Chapter 4, you created a Die application that randomly “throws” five dice for
the computer and five dice for the player. The application displays the values.
Modify the application to decide the winner based on the following hierarchy of
Die values. Any higher combination beats a lower one—for example, five of a
kind beats four of a kind.

Five of a kind

Four of a kind

Three of a kind

A pair

Exercises

435

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For this game, the dice values do not count; for example, if both players have three of
a kind, it’s a tie, no matter what the values of the three dice are. Additionally, the
game does not recognize a full house (three of a kind plus two of a kind). Figure 8-21
shows a sample execution. Save the application as FiveDice2.java.

b. Improve the FiveDice2 game so that when both players have the same combina-
tion of dice, the higher value wins. For example, two 6s beats two 5s. Figure 8-22
shows a sample execution. Save the application as FiveDice3.java.

3. a. In Chapter 7, you modified a previously created Card class so that each Card

would hold the name of a suit (“Spades”, “Hearts”, “Diamonds”, or “Clubs”) as well
as a value (“Ace”, “King”, “Queen”, “Jack”, or a number value). Now, create an array
of 52 Card objects, assigning a different value to each Card, and display each Card.
Save the application as FullDeck.java.

Figure 8-22 Typical execution of the FiveDice3 application

Figure 8-21 Typical execution of the FiveDice2 application

C H A P T E R 8 Arrays

436

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. In Chapter 7, you created a War2 card game that randomly selects two Card

objects (one for the player and one for the computer) and declares a winner or
a tie based on the card values. Now create a game that plays 26 rounds of War,
dealing a full deck with no repeated cards. Some hints:

Start by creating an array of all 52 playing cards, as in Part a of this exercise.

Select a random number for the deck position of the player’s first card, and
assign the card at that array position to the player.

Move every higher-positioned card in the deck “down” one to fill in the gap.
In other words, if the player’s first random number is 49, select the card at
position 49, move the card that was in position 50 to position 49, and move
the card that was in position 51 to position 50. Only 51 cards remain in the
deck after the player’s first card is dealt, so the available-card array is smaller
by one.

In the same way, randomly select a card for the computer and “remove” the
card from the deck.

Display the values of the player’s and computer’s cards, compare their values,
and determine the winner.

When all the cards in the deck are exhausted, display a count of the number
of times the player wins, the number of times the computer wins, and the
number of ties.

Save the game as War3.java.

4. In Chapter 7, you created a Secret Phrase game similar to Hangman, in which the
user guesses letters in a partially hidden phrase in an attempt to determine the
complete phrase. Modify the program so that:

The phrase to be guessed is selected randomly from a list of at least 10 phrases.

The clue is presented to the user with asterisks replacing letters to be guessed but
with spaces in the appropriate locations. For example, if the phrase to be guessed
is “No man is an island,” then the user sees the following as a first clue:

** *** ** ** ******

The spaces provide valuable clues as to where individual words start and end.

Make sure that when a user makes a correct guess, all the matching letters are
filled in, regardless of case.

Save the game as SecretPhrase2.java.

Exercises

437

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Problems
1. In previous chapters, you developed classes that work with catering event

information for Carly’s Catering. Now modify the Event and EventDemo classes
as follows:

Modify the Event class to include an integer field that holds an event type. Add a
final String array that holds names of the types of events that Carly’s caters—
wedding, baptism, birthday, corporate, and other. Include get and set methods
for the integer event type field. If the argument passed to the method that sets
the event type is larger than the size of the array of String event types, then
set the integer to the element number occupied by “other”. Include a get method
that returns an event’s String event type based on the numeric event type.

To keep the EventDemo class simple, remove all the statements that compare
event sizes and that display the invitation Strings.

Modify the EventDemo class so that instead of creating three single Event

objects, it uses an array of three Event objects. Get data for each of the objects,
and then display all the details for each object.

Save the files as Event.java and EventDemo.java.
2. In previous chapters, you developed classes that hold rental contract information for

Sammy’s Seashore Supplies. Now modify the Rental and RentalDemo classes as
follows:

Modify the Rental class to include an integer field that holds an equipment type.
Add a final String array that holds names of the types of equipment that
Sammy’s rents—jet ski, pontoon boat, rowboat, canoe, kayak, beach chair,
umbrella, and other. Include get and set methods for the integer equipment type
field. If the argument passed to the method that sets the equipment type is larger
than the size of the array of String equipment types, then set the integer to the
element number occupied by “other”. Include a get method that returns a
rental’s String equipment type based on the numeric equipment type.

To keep the RentalDemo class simple, remove all the statements that compare
rental times and that display the coupon Strings.

Modify the RentalDemo class so that instead of creating three single Rental
objects, it uses an array of three Rental objects. Get data for each of the objects,
and then display all the details for each object.

Save the files as Rental.java and RentalDemo.java.

C H A P T E R 8 Arrays

438

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 9
Advanced Array
Concepts

In this chapter, you will:

Sort array elements using the bubble sort algorithm

Sort array elements using the insertion sort algorithm

Use two-dimensional and other multidimensional arrays

Use the Arrays class

Use the ArrayList class

Create enumerations

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sorting Array Elements Using the Bubble
Sort Algorithm
Sorting is the process of arranging a series of objects in some logical order. When you
place objects in order beginning with the object that has the lowest value, you are sorting in
ascending order; conversely, when you start with the object that has the largest value, you are
sorting in descending order.

The simplest possible sort involves two values that are out of order. To place the values
in order, you must swap the two values. Suppose that you have two variables—valA and
valB—and further suppose that valA = 16 and valB = 2. To exchange the values of the two
variables, you cannot simply use the following code:
valA = valB; // 2 goes to valA
valB = valA; // 2 goes to valB

If valB is 2, after you execute valA = valB;, both variables hold the value 2. The value 16 that
was held in valA is lost. When you execute the second assignment statement, valB = valA;,
each variable still holds the value 2.

The solution that allows you to retain both values is to employ a variable to hold valA’s value
temporarily during the swap:
temp = valA; // 16 goes to temp
valA = valB; // 2 goes to valA
valB = temp; // 16 goes to valB

Using this technique, valA’s value (16) is assigned to the temp variable. The value of valB
(2) is then assigned to valA, so valA and valB are equivalent. Then, the temp value (16) is
assigned to valB, so the values of the two variables finally are swapped.

If you want to sort any two values, valA and valB, in ascending order so that valA is the lower
value, you use the following if statement to make the decision whether to swap. If valA is
more than valB, you want to swap the values. If valA is not more than valB, you do not want
to swap the values.
if(valA > valB)
{

temp = valA;
valA = valB;
valB = temp;

}

Sorting two values is a fairly simple task; sorting more values is more complicated, especially if
you attempt to use a series of decisions. The task becomes manageable when you know how
to use an array.

Using the Bubble Sort Algorithm
Multiple sorting algorithms have been developed; an algorithm is a process or set of
steps that solve a problem. In the ascending bubble sort algorithm, you repeatedly
compare pairs of items, swapping them if they are out of order, and eventually creating

C H A P T E R 9 Advanced Array Concepts

440

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a sorted list. The bubble sort is neither the fastest nor most efficient sorting technique,
but it is one of the simplest to comprehend and provides deeper understanding of array
element manipulation.

To use a bubble sort, you place the original, unsorted values in an array. You compare the first
two numbers; if they are not in ascending order, you swap them. You compare the second and
third numbers; if they are not in ascending order, you swap them. You continue down the list,
and for each position x, if the value at position x + 1 is not larger, you want to swap the two
values.

Suppose you have declared an array as:
int[] someNums = {88, 33, 99, 22, 54};

Then, the process proceeds as follows:

Compare 88 and 33. They are out of order. Swap them. The list becomes 33, 88, 99, 22, 54.

Compare the second and third numbers in the list—88 and 99. They are in order.
Do nothing.

Compare the third and fourth numbers in the list—99 and 22. They are out of order. Swap
them. The list becomes 33, 88, 22, 99, 54.

Compare the fourth and fifth numbers—99 and 54. They are out of order. Swap them.
The list becomes 33, 88, 22, 54, 99.

When you reach the bottom of the list, the numbers are not in ascending order, but the
largest number, 99, has moved to the bottom of the list. This feature gives the bubble sort its
name—the “heaviest” value has sunk to the bottom of the list as the “lighter” values have
bubbled to the top.

Assuming b and temp both have been declared as integer variables, the code so far is as
follows:
for(b = 0; b < someNums.length - 1; ++b)

if(someNums[b] > someNums[b + 1])
{

temp = someNums[b];
someNums[b] = someNums[b + 1];
someNums[b + 1] = temp;

}

Instead of comparing b to someNums.length – 1 on every pass through the loop, it would be more
efficient to declare a variable to which you assign someNums.length - 1 and use that variable in the
comparison. That way, the arithmetic is performed just once. That step is omitted here to reduce the number
of steps in the example.

Notice that the for statement tests every value of b from 0 through 3. The array someNums
contains five integers, so the subscripts in the array range in value from 0 through 4. Within
the for loop, each someNums[b] is compared to someNums[b + 1], so the highest legal value for
b is 3. For a sort on any size array, the value of b must remain less than the array’s length
minus 1.

Sorting Array Elements Using the Bubble Sort Algorithm

441

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The list of numbers that began as 88, 33, 99, 22, 54 is currently 33, 88, 22, 54, 99. To continue
to sort the list, you must perform the entire comparison-swap procedure again.

Compare the first two values—33 and 88. They are in order; do nothing.

Compare the second and third values—88 and 22. They are out of order. Swap them
so the list becomes 33, 22, 88, 54, 99.

Compare the third and fourth values—88 and 54. They are out of order. Swap them so
the list becomes 33, 22, 54, 88, 99.

Compare the fourth and fifth values—88 and 99. They are in order; do nothing.

After this second pass through the list, the numbers are 33, 22, 54, 88, and 99—close to
ascending order, but not quite. You can see that with one more pass through the list, the
values 22 and 33 will swap, and the list is finally placed in order. To fully sort the worst-case
list, one in which the original numbers are descending (as out-of-ascending order as they
could possibly be), you need to go through the list four times, making comparisons and swaps.
At most, you always need to pass through the list as many times as its length minus one.
Figure 9-1 assumes that a, b, and temp are integers and shows the entire procedure.

for(a = 0; a < someNums.length – 1; ++a)
for(b = 0; b < someNums.length – 1; ++b)

if(someNums[b] > someNums[b + 1])
{

temp = someNums[b];
someNums[b] = someNums[b + 1];
someNums[b + 1] = temp;

}

Figure 9-1 Ascending bubble sort of the someNums array elements

To place the list in descending order, you need to make only one change in the code in Figure 9-1: You
change the greater-than sign (>) in if(someNums[b] > someNums[b + 1]) to a less-than sign (<).

Improving Bubble Sort Efficiency
When you use a bubble sort to sort any array into ascending order, the largest value “falls” to
the bottom of the array after you have compared each pair of values in the array one time.
The second time you go through the array making comparisons, there is no need to check the
last pair of values because the largest value is guaranteed to already be at the bottom of the
array. You can make the sort process more efficient by using a new control variable to limit
the repetitions of the inner for loop and reducing the value by one on each cycle through the
array. Figure 9-2 shows how you can use a new variable named comparisonsToMake to
control how many comparisons are made in the inner loop during each pass through the list
of values to be sorted. In the shaded statement, the comparisonsToMake value is decremented
by 1 on each pass through the list.

C H A P T E R 9 Advanced Array Concepts

442

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

int comparisonsToMake = someNums.length – 1;
for(a = 0; a < someNums.length – 1; ++a)
{

for(b = 0; b < comparisonsToMake; ++b)
{

if(someNums[b] > someNums[b + 1])
{

temp = someNums[b];
someNums[b] = someNums[b + 1];
someNums[b + 1] = temp;

}
}
−−comparisonsToMake;

}

Figure 9-2 More efficient ascending bubble sort of the someNums array elements

Watch the video Sorting.

Sorting Arrays of Objects
You can sort arrays of objects in much the same way that you sort arrays of primitive types.
The major difference occurs when you make the comparison that determines whether you
want to swap two array elements. When you sort an array of a primitive element type, you
compare the values of two array elements to determine whether they are out of order. When
array elements are objects, you usually want to sort based on a particular object field.

Assume that you have created a simple Employee class, as shown in Figure 9-3. The class
holds four data fields and get and set methods for the fields.

public class Employee
{

private int empNum;
private String lastName;
private String firstName;
private double salary;
public int getEmpNum()
{

return empNum;
}
public void setEmpNum(int emp)
{

empNum = emp;
}
public String getLastName()
{

return lastName;
}

Figure 9-3 The Employee class (continues)

Sorting Array Elements Using the Bubble Sort Algorithm

443

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public void setLastName(String name)
{

lastName = name;
}
public String getFirstName()
{

return firstName;
}
public void setFirstName(String name)
{

firstName = name;
}
public double getSalary()
{

return salary;
}
public void setSalary(double sal)
{

salary = sal;
}

}

Figure 9-3 The Employee class

You can write a program that contains an array of five Employee objects using the
following statement:
Employee[] someEmps = new Employee[5];

Assume that after you assign employee numbers and salaries to the Employee objects, you
want to sort the Employees in salary order. You can pass the array to a bubbleSort()
method that is prepared to receive Employee objects. Figure 9-4 shows the method.

public static void bubbleSort(Employee[] array)
{

int a, b;
Employee temp;
int highSubscript = array.length – 1;
for(a = 0; a < highSubscript; ++a)
for(b = 0; b < highSubscript; ++b)
if(array[b].getSalary() > array[b + 1].getSalary())
{

temp = array[b];
array[b] = array[b + 1];
array[b + 1] = temp;

}
}

Figure 9-4 The bubbleSort() method that sorts Employee objects by their salaries

(continued)

C H A P T E R 9 Advanced Array Concepts

444

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Examine Figure 9-4 carefully and notice that the bubbleSort() method is very similar to the
bubbleSort() method you use for an array of any primitive type, but there are three major
differences:

The bubbleSort() method header shows that it receives an array of type Employee.

The temp variable created for swapping is type Employee. The temp variable will hold
an Employee object, not just one number or one field. It is important to note that even
though only employee salaries are compared, you do not just swap employee salaries. You
do not want to substitute one employee’s salary for another’s. Instead, you swap each
Employee object’s empNum and salary as a unit.

The comparison for determining whether a swap should occur uses method calls to the
getSalary() method to compare the returned salary for each Employee object in the
array with the salary of the adjacent Employee object.

TWO TRUTHS & A LIE

Sorting Array Elements Using the Bubble Sort Algorithm

1. In an ascending bubble sort, you compare pairs of items, swapping them if they
are out of order, so that the largest items “bubble” to the top of the list, eventually
creating a sorted list.

2. When you sort objects, you usually want to sort based on a particular object field.

3. When you make a swap while sorting an array of objects, you typically swap entire
objects and not just the field on which the comparison is made.

.t sil detr os a gni t aer c yll aut neve,t sil eht f o pot
eht ot ” el bbub“ s meti t sell a ms eht t aht os,r edr of ot uo er a yeht fi meht gni ppa ws

, s meti f o sri ap er ap moc uoy,tr os el bbub gni dnecsa na nI . 1# si t ne met at s esl af ehT

You Do It

Using a Bubble Sort

In this section, you create a program in which you enter values that you sort using the
bubble sort algorithm. You display the values during each iteration of the outer
sorting loop so that you can track the values as they are repositioned in the array.

1. Open a new file in your text editor, and create the shell for a BubbleSortDemo

program as follows:
(continues)

Sorting Array Elements Using the Bubble Sort Algorithm

445

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.*;
class BubbleSortDemo
{

public static void main(String[] args)
{
}

}

2. Make some declarations between the curly braces of the main() method.
Declare an array of five integers and a variable to control the number of
comparisons to make during the sort. Declare a Scanner object, two integers
to use as subscripts for handling the array, and a temporary integer value to
use during the sort.
int[] someNums = new int[5];
int comparisonsToMake = someNums.length - 1;
Scanner keyboard = new Scanner(System.in);
int a, b, temp;

3. Write a for loop that prompts the user for a value for each array element
and accepts them.
for(a = 0; a < someNums.length; ++a)
{

System.out.print("Enter number " + (a + 1) + " >> ");
someNums[a] = keyboard.nextInt();

}

4. Next, call a method that accepts the array and the number of sort iterations
performed so far, which is 0. The purpose of the method is to display the
current status of the array as it is being sorted.
display(someNums, 0);

5. Add the nested loops that perform the sort. The outer loop controls
the number of passes through the list, and the inner loop controls the
comparisons on each pass through the list. When any two adjacent elements
are out of order, they are swapped. At the end of the nested loop, the current
list is output and the number of comparisons to be made on the next pass is
reduced by one.

for(a = 0; a < someNums.length - 1; ++a)
{

for(b = 0; b < comparisonsToMake; ++b)
{

(continued)

(continues)

C H A P T E R 9 Advanced Array Concepts

446

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

if(someNums[b] > someNums[b + 1])
{

temp = someNums[b];
someNums[b] = someNums[b + 1];
someNums[b + 1] = temp;

}
}
display(someNums, (a + 1));
−−comparisonsToMake;

}

6. After the closing brace for the main() method, but before the closing brace
for the class, insert the display() method. It accepts the array and the
current outer loop index, and it displays the array contents.
public static void display(int[] someNums, int a)
{

System.out.print("Iteration " + a + ": ");
for(int x = 0; x < someNums.length; ++x)

System.out.print(someNums[x] + " ");
System.out.println();

}

7. Save the file as BubbleSortDemo.java, and then compile and execute it.
Figure 9-5 shows a typical execution. Notice that after the first iteration, the
largest value has sunk to the bottom of the list. After the second iteration, the
two largest values are at the bottom of the list, and so on.

8. Modify the BubbleSortDemo application to any size array you choose. Confirm
that no matter how many array elements you specify, the sorting algorithm
works correctly and ends with a completely sorted list, regardless of the order
of your entered values.

Figure 9-5 Typical execution of the BubbleSortDemo application

(continued)

Sorting Array Elements Using the Bubble Sort Algorithm

447

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sorting Array Elements Using the Insertion
Sort Algorithm
The bubble sort works well and is relatively easy to understand and manipulate, but many
other sorting algorithms have been developed. For example, when you use an insertion sort,
you look at each list element one at a time. If an element is out of order relative to any of the
items earlier in the list, you move each earlier item down one position and then insert the
tested element. The insertion sort is similar to the technique you would most likely use to sort
a group of objects manually. For example, if a list contains the values 2, 3, 1, and 4, and you
want to place them in ascending order using an insertion sort, you test the values 2 and 3,
but you do not move them because they are in order. However, when you test the third value
in the list, 1, you move both 2 and 3 to later positions and insert 1 at the first position.

Figure 9-6 shows the logic that performs an ascending insertion sort using a five-element
integer array named someNums. The logic assumes that a, b, and temp have all been declared
as integers.

int[] someNums = {90, 85, 65, 95, 75};
a = 1;
while(a < someNums.length)
{

temp = someNums[a];
b = a - 1;
while(b >= 0 && someNums[b] > temp)
{

someNums[b + 1] = someNums[b];
−−b;

}
someNums[b + 1] = temp;
++a;

}

Figure 9-6 The insertion sort

The outer loop in Figure 9-6 varies a loop control variable a from 1 through one less than
the size of the array. The logic proceeds as follows:

First a is set to 1, and then the while loop begins.

1. The value of temp is set to someNums[1], which is 85, and b is set to 0.

2. Because b is greater than or equal to 0 and someNums[b] (90) is greater than temp, the
inner loop is entered. (If you were performing a descending sort, then you would ask
whether someNums[b] was less than temp.)

3. The value of someNums[1] becomes 90, and b is decremented, making it –1, so b is no
longer greater than or equal to 0, and the inner loop ends.

4. Then someNums[0] is set to temp, which is 85.

C H A P T E R 9 Advanced Array Concepts

448

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After these steps, 90 was moved down one position and 85 was inserted in the first position,
so the array values are in slightly better order than they were originally. The values are as
follows: 85, 90, 65, 95, 75.

Now, in the outer loop, a becomes 2. The logic in Figure 9-6 proceeds as follows:

1. The value of temp becomes 65, and b is set to 1.

2. The value of b is greater than or equal to 0, and someNums[b] (90) is greater than temp,
so the inner loop is entered.

3. The value of someNums[2] becomes 90, and b is decremented, making it 0, so the loop
executes again.

4. The value of someNums[1] becomes 85, and b is decremented, making it –1, so the
loop ends.

5. Then someNums[0] becomes 65.

After these steps, the array values are in better order than they were originally, because 65 and
85 now both come before 90. The values are: 65, 85, 90, 95, 75. Now, a becomes 3. The logic
in Figure 9-6 proceeds to work on the new list as follows:

1. The value of temp becomes 95, and b is set to 2.

2. For the loop to execute, b must be greater than or equal to 0, which it is, and someNums[b]

(90) must be greater than temp, which it is not. So, the inner loop does not execute.

3. Therefore, someNums[2] is set to 90, which it already was. In other words, no changes
are made.

Now, a is increased to 4. The logic in Figure 9-6 proceeds as follows:

1. The value of temp becomes 75, and b is set to 3.

2. The value of b is greater than or equal to 0, and someNums[b] (95) is greater than temp,
so the inner loop is entered.

3. The value of someNums[4] becomes 95, and b is decremented, making it 2, so the loop
executes again.

4. The value of someNums[3] becomes 90, and b is decremented, making it 1, so the
loop executes again.

5. The value of someNums[2] becomes 85, and b is decremented, making it 0; someNums[b]
(65) is no longer greater than temp (75), so the inner loop ends. In other words, the
values 85, 90, and 95 are each moved down one position, but 65 is left in place.

6. Then someNums[1] becomes 75.

After these steps, all the array values have been rearranged in ascending order as
follows: 65, 75, 85, 90, 95.

Watch the video The Insertion Sort.

Sorting Array Elements Using the Insertion Sort Algorithm

449

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Many sorting algorithms exist in addition to the bubble sort and insertion sort. You might want to investigate
the logic used by the selection sort, cocktail sort, gnome sort, and quick sort.

TWO TRUTHS & A LIE

Sorting Array Elements Using the Insertion Sort Algorithm

1. When you use an insertion sort, you look at each list element one at a time
and move items down if the tested element should be inserted before them.

2. You can create an ascending list using an insertion sort, but not a descending one.

3. The insertion sort is similar to the technique you would most likely use to sort a
group of objects manually.

.tr os noi tr esni na
gni su st sil gni dnecsed dna gni dnecsa ht ob et aer c nac uoY. 2# si t ne met at s esl af ehT

You Do It

Using an Insertion Sort

In this section, you modify the BubbleSortDemo program so it performs an
insertion sort.

1. Open the BubbleSortDemo.java file. Change the class name
to InsertionSortDemo, and immediately save the file as
InsertionSortDemo.java.

2. Remove the declaration for comparisonsToMake.

3. Remove the 14 lines of code that constitute the nested loops that perform
the bubble sort. In other words, remove all the lines from the start of the
second for loop through the closing curly brace following the statement
that decrements comparisonsToMake.

4. Replace the removed lines with the statements that perform the insertion sort.
These are the same statements you saw in Figure 9-6 with the addition of a call
to the display() method so that you can track the progress of the sort:

(continues)

C H A P T E R 9 Advanced Array Concepts

450

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a = 1;
while(a < someNums.length)
{

temp = someNums[a];
b = a - 1;
while(b >= 0 && someNums[b] > temp)
{

someNums[b + 1] = someNums[b];
−−b;

}
someNums[b + 1] = temp;
display(someNums, a);
++a;

}

5. Save the file as InsertionSortDemo.java, and then compile and
execute it. Figure 9-7 shows a typical execution. During the first loop,
77 is compared with 88 and inserted at the beginning of the array. In
the second loop, 66 is compared with both 77 and 88 and inserted at
the beginning of the array. Then the same thing happens with 55 and 44
until all the values are sorted.

6. Try the program with other input values and examine the output so that you
understand how the insertion sort algorithm works.

(continued)

Figure 9-7 Typical execution of the InsertionSortDemo program

Sorting Array Elements Using the Insertion Sort Algorithm

451

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using Two-Dimensional and Other
Multidimensional Arrays
When you declare an array such as int[] someNumbers = new int[3];, you can envision the
three declared integers as a column of numbers in memory, as shown in Figure 9-8. In other
words, you can picture the three declared numbers stacked one on
top of the next. An array that you can picture as a column of values,
and whose elements you can access using a single subscript, is a
one-dimensional or single-dimensional array. You can think of the
size of the array as its height.

Java also supports two-dimensional arrays. Two-dimensional arrays
have two or more columns of values, as shown in Figure 9-9.
The two dimensions represent the height and width of the array.
Another way to picture a two-dimensional array is as an array
of arrays. It is easiest to picture two-dimensional arrays as having
both rows and columns. You must use two subscripts when
you access an element in a two-dimensional array. When
mathematicians use a two-dimensional array, they often call it
a matrix or a table; you might have used a two-dimensional array
called a spreadsheet.

When you declare a one-dimensional array, you type a set of square brackets after the array’s
data type. To declare a two-dimensional array in Java, you type two sets of brackets after the
array type. For example, the array in Figure 9-9 can be declared as follows, creating an array
named someNumbers that holds three rows and four columns:
int[][] someNumbers = new int[3][4];

Just as with a one-dimensional array, if you do not provide values for the elements in a
two-dimensional numeric array, the values default to zero. You can assign other values to
the array elements later. For example, someNumbers[0][0] = 14; assigns the value 14 to the
element of the someNumbers array that is in the first column of the first row.

Alternatively, you can initialize a two-dimensional array with values when it is created.
For example, the following code assigns values to someNumbers when it is created:
int[][] someNumbers = { {8, 9, 10, 11},

{1, 3, 12, 15},
{5, 9, 44, 99} };

someNumbers[0]

someNumbers[1]

someNumbers[2]

Figure 9-8 View of
a single-dimensional
array in memory

someNumbers[0][0] someNumbers[0][1] someNumbers[0][2] someNumbers[0][3]
someNumbers[1][0] someNumbers[1][1] someNumbers[1][2] someNumbers[1][3]
someNumbers[2][0] someNumbers[2][1] someNumbers[2][2] someNumbers[2][3]

Figure 9-9 View of a two-dimensional array in memory

C H A P T E R 9 Advanced Array Concepts

452

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The someNumbers array contains three rows and four columns. You do not need to place
each row of values for a two-dimensional array on its own line. However, doing so makes
the positions of values easier to understand. You contain the entire set of values within
an outer pair of curly braces. The first row of the array holds the four integers 8, 9, 10,
and 11. Notice that these four integers are placed within their own inner set of curly
braces to indicate that they constitute one row, or the first row, which is row 0. Similarly,
1, 3, 12, and 15 make up the second row (row 1), which you reference with the subscript 1.
Next, 5, 9, 44, and 99 are the values in the third row (row 2), which you reference with the
subscript 2. The value of someNumbers[0][0] is 8. The value of someNumbers[0][1] is 9.
The value of someNumbers[2][3] is 99. The value within the first set of brackets
following the array name always refers to the row; the value within the second
brackets refers to the column.

As an example of how useful two-dimensional arrays can be, assume that you own an
apartment building with four floors—a basement, which you refer to as floor zero, and
three other floors numbered one, two, and three. In addition, each of the floors has studio
(with no bedroom) and one- and two-bedroom apartments. The monthly rent for each
type of apartment is different—the higher the floor, the higher the rent (the view is better),
and the rent is higher for apartments with more bedrooms. Table 9-1 shows the rental
amounts.

To determine a tenant’s rent, you need to know two pieces of information: the floor on which
the tenant rents an apartment and the number of bedrooms in the apartment. Within a Java
program, you can declare an array of rents using the following code:
int[][] rents = { {400, 450, 510},

{500, 560, 630},
{625, 676, 740},
{1000, 1250, 1600} };

If you declare two integers named floor and bedrooms, then any tenant’s rent can be
referred to as rents[floor][bedrooms]. Figure 9-10 shows an application that prompts
a user for a floor number and number of bedrooms. Figure 9-11 shows a typical
execution.

Floor Zero Bedrooms One Bedroom Two Bedrooms

0 400 450 510

1 500 560 630

2 625 676 740

3 1000 1250 1600

Table 9-1 Rents charged (in dollars)

Using Two-Dimensional and Other Multidimensional Arrays

453

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
class FindRent
{

public static void main(String[] args)
{

int[][] rents = { {400, 450, 510},
{500, 560, 630},
{625, 676, 740},
{1000, 1250, 1600} };

String entry;
int floor;
int bedrooms;
entry = JOptionPane.showInputDialog(null,

"Enter a floor number ");
floor = Integer.parseInt(entry);
entry = JOptionPane.showInputDialog(null,

"Enter number of bedrooms ");
bedrooms = Integer.parseInt(entry);
JOptionPane.showMessageDialog(null,
"The rent for a " + bedrooms +

" bedroom apartment on floor " + floor +
" is $" + rents[floor][bedrooms]);

}
}

Figure 9-10 The FindRent class

Passing a Two-Dimensional Array to a Method
When you pass a two-dimensional array to a method, you pass the array name just as you do
with a one-dimensional array. A method that receives a two-dimensional array uses two
bracket pairs following the data type in the parameter list of the method header. For example,

Figure 9-11 Typical execution of the FindRent program

C H A P T E R 9 Advanced Array Concepts

454

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the following method headers accept two-dimensional arrays of ints, doubles, and
Employees, respectively:
public static void displayScores(int[][] scoresArray)
public static boolean areAllPricesHigh(double[][] prices)
public static double computePayrollForAllEmployees(Employee[][] staff)

In each case, notice that the brackets indicating the array in the method header are empty.
There is no need to insert numbers into the brackets because each passed array name is a
starting memory address. The way you manipulate subscripts within the method determines
how rows and columns are accessed.

Using the length Field with a Two-Dimensional Array
In Chapter 8, you learned that a one-dimensional array has a length field that holds the
number of elements in the array. With a two-dimensional array, the length field holds the
number of rows in the array. Each row, in turn, has a length field that holds the number
of columns in the row. For example, suppose you declare a rents array as follows:
int[][] rents = { {400, 450, 510},

{500, 560, 630},
{625, 676, 740},
{1000, 1250, 1600} };

The value of rents.length is 4 because there are four rows in the array. The value of
rents[0].length is 3 because there are three columns in the first row of the rents array.
Similarly, the value of rents[1].length also is 3 because there are three columns in the
second row.

Figure 9-12 shows an application that uses the length fields associated with the rents array
to display all the rents. The floor variable varies from 0 through one less than 4 in the outer
loop, and the bdrms variable varies from 0 through one less than 3 in the inner loop. Figure 9-13
shows the output.

class DisplayRents
{

public static void main(String[] args)
{

int[][] rents = { {400, 450, 510},
{500, 560, 630},
{625, 676, 740},
{1000, 1250, 1600} };

int floor;
int bdrms;
for(floor = 0; floor < rents.length; ++floor)

for(bdrms = 0; bdrms < rents[floor].length; ++bdrms)
System.out.println("Floor " + floor +

" Bedrooms " + bdrms + " Rent is $" +
rents[floor][bdrms]);

}
}

Figure 9-12 The DisplayRents class

Using Two-Dimensional and Other Multidimensional Arrays

455

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Watch the video Two-Dimensional Arrays.

Understanding Ragged Arrays
In a two-dimensional array, each row also is an array. In Java, you can declare each row to
have a different length. When a two-dimensional array has rows of different lengths, it is a
ragged array because you can picture the ends of each row as uneven. You create a
ragged array by defining the number of rows for a two-dimensional array, but not defining
the number of columns in the rows. For example, suppose that you have four sales
representatives, each of whom covers a different number of states as their sales territory.
Further suppose that you want an array to store total sales for each state for each sales
representative. You would define the array as follows:
double[][] sales = new double[4][];

This statement declares an array with four rows, but the rows are not yet created. Then, you
can declare the individual rows, based on the number of states covered by each salesperson as
follows:
sales[0] = new double[12];
sales[1] = new double[18];
sales[2] = new double[9];
sales[3] = new double[11];

Using Other Multidimensional Arrays
Besides one- and two-dimensional arrays, Java also supports arrays with three, four,
and more dimensions. The general term for arrays with more than one dimension is
multidimensional arrays. For example, if you own an apartment building with a number of

Figure 9-13 Output of the DisplayRents program

C H A P T E R 9 Advanced Array Concepts

456

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

floors and different numbers of bedrooms available in apartments on each floor, you can use
a two-dimensional array to store the rental fees. If you own several apartment buildings, you
might want to employ a third dimension to store the building number. An expression such
as rents[building][floor][bedrooms] refers to a specific rent figure for a building whose
building number is stored in the building variable and whose floor and bedroom numbers
are stored in the floor and bedrooms variables. Specifically, rents[5][1][2] refers to a
two-bedroom apartment on the first floor of building 5. When you are programming in
Java, you can use four, five, or more dimensions in an array. As long as you can keep track
of the order of the variables needed as subscripts, and as long as you don’t exhaust your
computer’s memory, Java lets you create arrays of any size.

TWO TRUTHS & A LIE

Using Two-Dimensional and Other Multidimensional Arrays

1. Two-dimensional arrays have both rows and columns, so you must use two
subscripts when you access an element in a two-dimensional array.

2. The following array contains two columns and three rows:

int[][] myArray = { {12, 14, 19},
{33, 45, 88} };

3. With a two-dimensional array, the length field holds the number of rows in the
array; each row has a length field that holds the number of columns in the row.

. sn mul oc eer ht dna s wor owt sah n wohs yarr a ehT. 2# si t ne met at s esl af ehT

You Do It

Using a Two-Dimensional Array

In this section, you create an application that demonstrates using a two-dimensional
array.

1. Open a new file in your text editor, and start a class that will demonstrate
a working two-dimensional array:
import java.util.Scanner;
class TwoDimensionalArrayDemo
{

public static void main(String[] args)
{

(continues)

Using Two-Dimensional and Other Multidimensional Arrays

457

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Declare a three-by-three array of integers. By default, the elements will all be
initialized to 0.
int[][] count = new int[3][3];

3. Declare a Scanner object for input, variables to hold a row and column,
and a constant that can be used to indicate when the user wants to quit
the application.
Scanner input = new Scanner(System.in);
int row, column;
final int QUIT = 99;

4. Prompt the user to enter a row or the QUIT value to quit, then accept the
user’s input.
System.out.print("Enter a row or " + QUIT +

" to quit > ");
row = input.nextInt();

5. In a loop that continues if the user has not entered the QUIT value, prompt the
user for a column. If the row and column are both within appropriate ranges,
add 1 to the element in the selected position.
while(row != QUIT)
{

System.out.print("Enter a column > ");
column = input.nextInt();
if(row < count.length && column < count[row].length)
{

count[row][column]++;

6. Still within the if statement that checks for a valid row and column, add a
nested loop that displays each row and column of the newly incremented
array. The elements in each row are displayed on the same line, and a new
line is started at the end of each row. Add a closing curly brace for the
if statement.

for(int r = 0; r < count.length; ++r)
{

for(int c = 0; c < count[r].length; ++c)
System.out.print(count[r][c] + " ");

System.out.println();
}

}

7. Add an else clause to the if statement to display an error message when the
row or column value is too high.
else

System.out.println("Invalid position selected");

(continued)

(continues)

C H A P T E R 9 Advanced Array Concepts

458

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. At the end of the loop, prompt the user for and accept the next row number.
Add closing curly braces for the loop, the main() method, and the class.

System.out.print("Enter a row or " + QUIT +
" to quit > ");

row = input.nextInt();
}

}
}

9. Save the file as TwoDimensionalArrayDemo.java. Compile and execute
the program. Figure 9-14 shows a typical execution. As the user continues to
enter row and column values, the appropriate elements in the array are
incremented.

Using the Arrays Class
When you fully understand the power of arrays, you will want to use them to store all kinds of
objects. Frequently, you will want to perform similar tasks with different arrays—for example,
filling them with values and sorting their elements. Java provides an Arrays class, which

(continued)

Figure 9-14 Typical execution of the TwoDimensionalArrayDemo program

Using the Arrays Class

459

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

contains many useful methods for manipulating arrays. Table 9-2 shows some of the useful
methods of the Arrays class. For each method listed in the left column of the table, type
stands for a data type; an overloaded version of each method exists for each appropriate data
type. For example, there is a version of the sort() method to sort int, double, char, byte,
float, long, short, and Object arrays.

You will learn about the Object class in the chapter “Advanced Inheritance Concepts.”

The methods in the Arrays class are static methods, which means you use them with
the class name without instantiating an Arrays object. The Arrays class is located in the
java.util package, so you can use the statement import java.util.*; to access it. The
ArraysDemo application in Figure 9-15 demonstrates how you can use some of the methods in
the Arrays class. In the ArraysDemo class, the myScores array is created to hold five integers.
Then, a message and the array reference are passed to a display() method. The first line
of the output in Figure 9-16 shows that the original array is filled with 0s at creation. After
the first display, the Arrays.fill() method is called in the first shaded statement in
Figure 9-15. Because the arguments are the name of the array and the number 8, when
the array is displayed a second time the output is all 8s. In the application, two of the
array elements are changed to 6 and 3, and the array is displayed again. Finally, in the
second shaded statement, the Arrays.sort() method is called. The output in Figure 9-16
shows that when the display() method executes the fourth time, the array elements have
been sorted in ascending order.

Method Purpose

static int binarySearch(type [] a, type key) Searches the specified array for the specified
key value using the binary search algorithm

static boolean equals(type[] a, type[] a2) Returns true if the two specified arrays of
the same type are equal to one another

static void fill(type[] a, type val) Assigns the specified value to each element of
the specified array

static void sort(type[] a) Sorts the specified array into ascending order

static void sort(type[] a, int fromIndex,

int toIndex)
Sorts the specified range of the array into
ascending order

static void parallelSort(type[] a) Sorts the specified array into ascending order

static void parallelSort(type[] a,

int fromIndex, int toIndex)
Sorts the specified range of the array into
ascending order

Table 9-2 Useful methods of the Arrays class

C H A P T E R 9 Advanced Array Concepts

460

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.*;
public class ArraysDemo
{

public static void main(String[] args)
{

int[] myScores = new int [5];
display("Original array: ", myScores);
Arrays.fill(myScores, 8);
display("After filling with 8s: ", myScores);
myScores[2] = 6;
myScores[4] = 3;
display("After changing two values: ", myScores);
Arrays.sort(myScores);
display("After sorting: ", myScores);

}
public static void display(String message, int array[])
{

int sz = array.length;
System.out.print(message);
for(int x = 0; x < sz; ++x)

System.out.print(array[x] + " ");
System.out.println();

}
}

Figure 9-15 The ArraysDemo application

Figure 9-16 Output of the ArraysDemo application

Using the Arrays Class

461

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Arrays class parallelSort() methods are a new feature in Java 8. You use the methods
the same way you use the sort() methods, but their algorithms make the sorting more
efficient if thousands or millions of objects need to be sorted.

The Arrays class binarySearch() methods provide convenient ways to search through
sorted lists of values of various data types. It is important that the list be in order before you
use it in a call to binarySearch(); otherwise, the results are unpredictable. You do not have
to understand how a binary search works to use the binarySearch() method, but basically
the operation takes place as follows:

You have a sorted array and an item for which you are searching within the array. Based
on the array size, you determine the middle position. (In an array with an even number of
elements, this can be either of the two middle positions.)

You compare the item you are looking for with the element in the middle position of the
array and decide whether your item is above that point in the array—that is, whether your
item’s value is less than the middle-point value.

If it is above that point in the array, you next find the middle position of the top half of the
array; if it is not above that point, you find the middle position of the bottom half. Either
way, you compare your item with that of the new middle position and divide the search
area in half again.

Ultimately, you find the element or determine that it is not in the array.

Programmers often refer to a binary search as a “divide and conquer” procedure. If you have ever played
a game in which you tried to guess what number someone was thinking, you might have used a similar
technique.

Suppose your organization uses six single-character product codes. Figure 9-17 contains a
VerifyCode application that verifies a product code entered by the user. The array codes
holds six values in ascending order. The user enters a code that is extracted from the first
String position using the String class charAt() method. Next, the array of valid characters
and the user-entered character are passed to the Arrays.binarySearch() method. If the
character is found in the array, its position is returned. If the character is not found in the
array, a negative integer is returned and the application displays an error message. Figure 9-18
shows the program’s execution when the user enters K; the character is found in position 2
(the third position) in the array.

The negative integer returned by the binarySearch() method when the value is not found is the
negative equivalent of the array size. In most applications, you do not care about the exact value returned
when there is no match; you care only whether it is negative.

C H A P T E R 9 Advanced Array Concepts

462

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.*;
import javax.swing.*;
public class VerifyCode
{

public static void main(String[] args)
{

char[] codes = {'B', 'E', 'K', 'M', 'P', 'T'};
String entry;
char usersCode;
int position;
entry = JOptionPane.showInputDialog(null,

"Enter a product code");
usersCode = entry.charAt(0);
position = Arrays.binarySearch(codes, usersCode);
if(position >= 0)

JOptionPane.showMessageDialog(null, "Position of " +
usersCode + " is " + position);

else
JOptionPane.showMessageDialog(null, usersCode +

" is an invalid code");
}

}

Figure 9-17 The VerifyCode application

The sort() and binarySearch() methods in the Arrays class are very useful and allow you to
achieve results by writing fewer instructions than if you had to write the methods yourself. This does not
mean you wasted your time reading about sorting and searching methods earlier in this chapter. The more
completely you understand how arrays can be manipulated, the more useful, efficient, and creative your
future applications will be.

Figure 9-18 Typical execution of the VerifyCode application

Using the Arrays Class

463

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using the Arrays Class

1. The Arrays class contains methods for manipulating arrays, such as
binarySearch(), fill(), and sort().

2. You can use the Arrays class binarySearch() method successfully on
any array as soon as you have assigned values to the array elements.

3. The binarySearch() method works by continuously deciding whether the
element sought is above or below the halfway point in sublists of the
original list.

.r edr o ni ebt su mst ne mel e yarr a eht , yll uf sseccus doht e m
)(hcraeSyranib ssal c syarrA eht esu nac uoy er of eB. 2# si t ne met at s esl af ehT

You Do It

Using Arrays Class Methods

In this section, you create an application that demonstrates several Arrays
class methods. The application will allow the user to enter a menu of entrées
that are available for the day at a restaurant. Then, the application will present the
menu to the user, allow a request, and indicate whether the requested item is on
the menu.

1. Open a new file in your text editor, and type the import statements you need
to create an application that will use the JOptionPane and the Arrays classes:
import java.util.*;
import javax.swing.*;

2. Add the first few lines of the MenuSearch application class:
public class MenuSearch
{

public static void main(String[] args)
{

(continues)

C H A P T E R 9 Advanced Array Concepts

464

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Declare an array to hold the day’s menu choices; the user is allowed to enter
up to 10 entrées. Also declare two Strings—one to hold the user’s current
entry and the other to accumulate the entire menu list as it is entered. The two
String variables are initialized to empty Strings using quotation marks; if you
do not initialize these Strings, you receive a compiler error because you
might attempt to display them without having entered a legitimate value. Also,
declare an integer to use as a subscript for the array, another to hold the
number of menu items entered, and a third to hold the highest allowable
subscript, which is 1 less than the array size:
String[] menuChoices = new String[10];
String entry= "", menuString = "";
int x = 0;
int numEntered;
int highestSub = menuChoices.length - 1;

4. Use the Arrays.fill() method to fill the menu array with z characters, as
shown in the following line of code. You use this method so that when you
perform a search later, actual values will be stored in any unused menu
positions. If you ignore this step and fill less than half the array, your
search method might generate an error.
Arrays.fill(menuChoices, "zzzzzzz");

Lowercase zs were purposely chosen as the array fill characters
because they have a higher value than any other letter. Therefore,
when the user’s entries are sorted, the zzzzzzz entries will be at the
bottom of the list.

5. Display an input dialog box into which the user can enter a menu item. Allow
the user to quit before entering 10 items by typing “zzz”. (Using a value such
as “zzz” is a common programming technique to check for the user’s desire
to stop entering data. If the data items are numeric instead of text, you might
use a value such as 999. Values the user enters that are not “real” data, but
just signals to stop, are often called dummy values.) After the user enters the
first menu item, the application enters a loop that continues to add the
entered item to the menu list, increase the subscript, and prompt for a new
menu item. The loop continues while the user has not entered “zzz” and the
subscript has not exceeded the allowable limit. When the loop ends, save the
number of menu items entered:

(continued)

(continues)

Using the Arrays Class

465

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

menuChoices[x] = JOptionPane.showInputDialog(null,
"Enter an item for today's menu, or zzz to quit");

while(!menuChoices[x].equals("zzz") && x < highestSub)
{

menuString = menuString + menuChoices[x] + "\n";
++x;
if(x < highestSub)

menuChoices[x] = JOptionPane.showInputDialog(null,
"Enter an item for today's menu, or zzz to quit");

}
numEntered = x;

6. When the menu is complete, display it for the user and allow the user to make
a request:
entry = JOptionPane.showInputDialog(null,

"Today's menu is:\n" + menuString +
"Please make a selection:");

7. Sort the array from index position 0 to numEntered so that it is in ascending
order prior to using the binarySearch() method. If you do not sort the array,
the result of the binarySearch() method is unpredictable. You could sort the
entire array, but it is more efficient to sort only the elements that hold actual
menu items:
Arrays.sort(menuChoices, 0, numEntered);

8. Use the Arrays.binarySearch() method to search for the requested entry in
the previously sorted array. If the method returns a nonnegative value that is
less than the numEntered value, display the message “Excellent choice”;
otherwise, display an error message:
x = Arrays.binarySearch(menuChoices, entry);
if(x >= 0 && x < numEntered)

JOptionPane.showMessageDialog(null, "Excellent choice");
else

JOptionPane.showMessageDialog(null,
"Sorry - that item is not on tonight's menu");

9. Add the closing curly braces for the main() method and the class, and save
the file as MenuSearch.java. Compile and execute the application. When
prompted, enter as many menu choices as you want, and enter “zzz” when
you want to quit data entry. When prompted again, enter a menu choice and
observe the results. (A choice you enter must match the spelling in the menu
exactly.) Figure 9-19 shows a typical menu as it is presented to the user and
the results after the user makes a valid choice.

(continued)

(continues)

C H A P T E R 9 Advanced Array Concepts

466

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the ArrayList Class
In addition to the Arrays class, Java provides an ArrayList class that can be used to create
containers that store lists of objects. The ArrayList class provides some advantages over the
Arrays class. Specifically, an ArrayList is dynamically resizable, meaning that its size can
change during program execution. This means that:

You can add an item at any point in an ArrayList container, and the array size expands
automatically to accommodate the new item.

You can remove an item at any point in an ArrayList container, and the array size
contracts automatically.

To use the ArrayList class, you must use one of the following import statements:
import java.util.ArrayList;
import java.util.*;

Then, to declare an ArrayList, you can use the default constructor, as in the following
example that declares a list of Strings:
ArrayList<String> names = new ArrayList<String>();

An ArrayList can hold any type of object; adding a data type in angle brackets causes Java to
check that you are assigning appropriate types to a list. You can omit the angle brackets
and data type following the ArrayList class name, but you receive a warning that you are
using an unchecked or unsafe operation.

The default constructor creates an ArrayList with a capacity of 10 items. An ArrayList’s
capacity is the number of items it can hold without having to increase its size. By definition,

Figure 9-19 Typical execution of the MenuSearch application

(continued)

Using the ArrayList Class

467

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

an ArrayList’s capacity is greater than or equal to its size. You can also specify a capacity
if you like. For example, the following statement declares an ArrayList that can hold
20 names:
ArrayList<String> names = new ArrayList<String>(20);

If you know you will need more than 10 items at the outset, it is more efficient to create an
ArrayList with a larger capacity.

Table 9-3 summarizes some useful ArrayList methods.

In the chapter “Advanced Inheritance Concepts,” you will learn that the Object class is the most generic
Java class.

To add an item to the end of an ArrayList, you can use the add() method. For example,
to add the name Abigail to an ArrayList named names, you can make the following
statement:
names.add("Abigail");

You can insert an item into a specific position in an ArrayList by using an overloaded version
of the add() method that includes the position. For example, to insert the name Bob in
the first position of the names ArrayList, you use the following statement:
names.add(0, "Bob");

With each of the methods described in this section, you receive an error message if the
position number is invalid for the ArrayList.

As you can see from Table 9-3, you also can alter and remove items from an ArrayList.
The ArrayList class contains a size() method that returns the current size of the
ArrayList. Figure 9-20 contains a program that demonstrates each of these methods.

Method Purpose

public void add(Object)

public void add(int, Object)

Adds an item to an ArrayList; the default version adds an
item at the next available location; an overloaded version
allows you to specify a position at which to add the item

public void remove(int) Removes an item from an ArrayList at a specified location

public void set(int, Object) Alters an item at a specified ArrayList location

Object get(int) Retrieves an item from a specified location in an ArrayList

public int size() Returns the current ArrayList size

Table 9-3 Useful methods of the ArrayList class

C H A P T E R 9 Advanced Array Concepts

468

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.ArrayList;
public class ArrayListDemo
{

public static void main(String[] args)
{

ArrayList<String> names = new ArrayList<String>();
names.add("Abigail");
display(names);
names.add("Brian");
display(names);
names.add("Zachary");
display(names);
names.add(2, "Christy");
display(names);
names.remove(1);
display(names);
names.set(0, "Annette");
display(names);

}
public static void display(ArrayList<String> names)
{

System.out.println("\nThe size of the list is " + names.size());
for(int x = 0; x < names.size(); ++x)

System.out.println("position " + x + " Name: " +
names.get(x));

}
}

Figure 9-20 The ArrayListDemo program

In the application in Figure 9-20, an ArrayList is created and Abigail is added to the list.
The ArrayList is passed to a display() method that displays the current list size and all the
names in the list. You can see from the output in Figure 9-21 that at this point, the ArrayList

size is 1, and the array contains just one name. Examine the program in Figure 9-20 along
with the output in Figure 9-21 so that you understand how the ArrayList is altered as names
are added, removed, and replaced.

Using the ArrayList Class

469

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can display the contents of an ArrayList of Strings without looping through
the values. For example, Figure 9-22 shows an ArrayList named students that the user
populates interactively. Displaying the array name as shown in the shaded statement
produces a comma-separated list between square brackets. Figure 9-23 shows a typical
execution.

Figure 9-21 Output of the ArrayListDemo program

C H A P T E R 9 Advanced Array Concepts

470

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.util.ArrayList;
public class ArrayListDemo2
{

public static void main(String[] args)
{

ArrayList<String> students = new ArrayList<String>();
String name;
final int LIMIT = 4;
for(int x = 0; x < LIMIT; ++x)
{

name = JOptionPane.showInputDialog(null,
"Enter a student's name");

students.add(name);
}
System.out.println("The names are " + students);

}
}

Figure 9-22 The ArrayListDemo2 class

Figure 9-23 Typical execution of the ArrayListDemo2 application

Using the ArrayList Class

471

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can sort an ArrayList using the Collections.sort() method and providing the
ArrayList as the argument—for example:
Collections.sort(students);

To use this method, you must import the java.util.Collections package at the
top of the file.

TWO TRUTHS & A LIE

Using the ArrayList Class

1. An advantage of the ArrayList class over the Arrays class is that an
ArrayList is dynamically resizable.

2. An advantage of the ArrayList class over the Arrays class is that it can
hold multiple object types.

3. An advantage of the ArrayList class over the Arrays class is that it can
hold primitive data types such as int and double.

. sepyt evi ti mi r p dl oh
t onnacti t aht si ssal c tsiLyarrA eht f o egat navdasi d A. 3# si t ne met at s esl af ehT

Creating Enumerations
Data types have a specific set of values. For example, in Chapter 2 you learned that a byte
cannot hold a value larger than 127 and an int cannot hold a value larger than 2,147,483,647.
You can also create your own data types that have a finite set of legal values. A programmer-
created data type with a fixed set of values is an enumerated data type.

In Java, you create an enumerated data type in a statement that uses the keyword enum, an
identifier for the type, and a pair of curly braces that contain a list of the enum constants,
which are the allowed values for the type. For example, the following code creates an
enumerated type named Month that contains 12 values:
enum Month {JAN, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC};

By convention, the identifier for an enumerated type begins with an uppercase letter. This
makes sense because an enumerated type is a class. Also, by convention, the enum constants,
like other constants, appear in all uppercase letters. The constants are not strings and they are
not enclosed in quotes; they are Java identifiers.

After you create an enumerated data type, you can declare variables of that type. For example,
you might declare the following:
Month birthMonth;

C H A P T E R 9 Advanced Array Concepts

472

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can assign any of the enum constants to the variable. Therefore, you can code a statement
such as the following:
birthMonth = Month.MAY;

An enumeration type like Month is a class, and its enum constants act like objects instantiated
from the class, including having access to the methods of the class. These built-in methods
include the ones shown in Table 9-4. Each of these methods is nonstatic; that is, each is used
with an enum object.

Several static methods are also available to use with enumerations. These are used with the
type and not with the individual constants. Table 9-5 describes two useful static methods.

Method Description Example if birthMonth = Month.MAY

toString() The toString() method returns the
name of the calling constant object.

birthMonth.toString() has the
value “MAY”
You can pass birthMonth to print()

or println() and it is automatically
converted to its string equivalent.

ordinal() The ordinal() method returns an
integer that represents the constant’s
position in the list of constants. As
with arrays, the first position is 0.

birthMonth.ordinal() is 4

equals() The equals() method returns true

if its argument is equal to the calling
object’s value.

birthMonth.equals(Month.MAY)

is true

birthMonth.equals(Month.NOV)

is false

compareTo() The compareTo() method returns a
negative integer if the calling object’s
ordinal value is less than that of the
argument, 0 if they are the same, and
a positive integer if the calling object’s
ordinal value is greater than that of the
argument.

birthMonth.compareTo(Month.JUL)
is negative
birthMonth.compareTo(Month.FEB)

is positive
birthMonth.compareTo(Month.MAY)

is 0

Table 9-4 Some useful nonstatic enum methods

Method Description Example with Month Enumeration

valueOf() The valueOf() method accepts a
string parameter and returns an
enumeration constant.

Month.valueOf("DEC") returns the DEC

enum constant

values() The values() method returns an
array of the enumerated constants.

Month.values() returns an array with 12
elements that contain the enum constants

Table 9-5 Some static enum methods

Creating Enumerations

473

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can declare an enumerated type in its own file, in which case the filename matches the
type name and has a .java extension. You will use this approach in a “You Do It” exercise later
in this chapter. Alternatively, you can declare an enumerated type within a class, but not
within a method. Figure 9-24 is an application that declares a Month enumeration and
demonstrates its use. Figure 9-25 shows two typical executions.

import java.util.Scanner;
public class EnumDemo
{

enum Month {JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC};

public static void main(String[] args)
{

Month birthMonth;
String userEntry;
int position;
int comparison;
Scanner input = new Scanner(System.in);
System.out.println("The months are:");
for(Month mon : Month.values())

System.out.print(mon + " ");
System.out.print("\n\nEnter the first three letters of " +

"your birth month >> ");
userEntry = input.nextLine().toUpperCase();
birthMonth = Month.valueOf(userEntry);
System.out.println("You entered " + birthMonth);
position = birthMonth.ordinal();
System.out.println(birthMonth + " is in position " + position);
System.out.println("So its month number is " + (position + 1));
comparison = birthMonth.compareTo(Month.JUN);
if(comparison < 0)

System.out.println(birthMonth +
" is earlier in the year than " + Month.JUN);

else
if(comparison > 0)

System.out.println(birthMonth +
" is later in the year than " + Month.JUN);

else
System.out.println(birthMonth + " is " + Month.JUN);

}
}

Figure 9-24 The EnumDemo class

C H A P T E R 9 Advanced Array Concepts

474

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the application in Figure 9-24, a Month enumeration is declared; in the main() method,
a Month variable is declared in the first shaded statement. The second shaded statement
uses the enhanced for loop, which you first learned to use with arrays in Chapter 8. The
enhanced for loop declares a local Month variable named mon that takes on the value of
each element in the Month.value() array in turn so it can be displayed.

In the program in Figure 9-24, the user then is prompted to enter the first three letters for a
month, which are converted to their uppercase equivalents. The third shaded statement in
the figure uses the valueOf() method to convert the user’s string to an enumeration value.
The fourth shaded statement gets the position of the month in the enumeration list. The last
shaded statement compares the entered month to the JUN constant. This is followed by an
if statement that displays whether the user’s entered month comes before or after JUN in the
list, or is equivalent to it.

In Java 7 and 8, you can use comparison operators with enumeration constants instead of
using the compareTo() method to return a number. For example, you can write the following:
if(birthMonth < Month.JUN)

System.out.println(birthMonth +
" is earlier in the year than " + Month.JUN);

You can use enumerations to control a switch structure. Figure 9-26 contains a class that
declares a Property enumeration for a real estate company. The program assigns one of the
values to a Property variable and then uses a switch structure to display an appropriate
message. Figure 9-27 shows the result.

Figure 9-25 Two typical executions of the EnumDemo application

Creating Enumerations

475

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.Scanner;
public class EnumDemo2
{

enum Property {SINGLE_FAMILY, MULTIPLE_FAMILY,
CONDOMINIUM, LAND, BUSINESS};

public static void main(String[] args)
{

Property propForSale = Property.MULTIPLE_FAMILY;
switch(propForSale)
{

case SINGLE_FAMILY:
case MULTIPLE_FAMILY:

System.out.println("Listing fee is 5%");
break;

case CONDOMINIUM:
System.out.println("Listing fee is 6%");
break;

case LAND:
case BUSINESS:

System.out.println
("We do not handle this type of property");

}
}

}

Figure 9-26 The EnumDemo2 class

Creating an enumeration type provides you with several advantages. For example, the Month

enumeration improves your programs in the following ways:

If you did not create an enumerated type for month values, you could use another type—
for example, ints or Strings. The problem is that any value could be assigned to an int

or String variable, but only the 12 allowed values can be assigned to a Month.

If you did not create an enumerated type for month values, you could create another type
to represent months, but invalid behavior could be applied to the values. For example, if
you used integers to represent months, you could add, subtract, multiply, or divide two

Figure 9-27 Output of the EnumDemo2 application

C H A P T E R 9 Advanced Array Concepts

476

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

months, which is not logical. Programmers say using enums makes the values type-safe.
Type-safe describes a data type for which only appropriate behaviors are allowed.

The enum constants provide a form of self-documentation. Someone reading your
program might misinterpret what 9 means as a month value, but there is less confusion
when you use the identifier OCT.

As with other classes, you can also add methods and other fields to an enum type.

Watch the video Enumerations.

TWO TRUTHS & A LIE

Creating Enumerations

Assume that you have coded the following:

enum Color {RED, WHITE, BLUE};
Color myColor = Color.RED;

1. The value of myColor.ordinal() is 1.

2. The value of myColor.compareTo(Color.RED) is 0.

3. The value of myColor < Color.WHITE is true.

. 0 si)(lanidro.roloCym

f o eul av eht ,t nat snoc munet srif eht sA. 1# si t ne met at s esl af ehT

You Do It

Creating Enumerations

In this section, you create two enumerations that hold colors and car model types.
You will use them as field types in a Car class and write a demonstration program that
shows how the enumerations are used.

1. Open a new file in your text editor, and type the following Color enumeration:
enum Color {BLACK, BLUE, GREEN, RED, WHITE, YELLOW};

2. Save the file as Color.java.

(continues)

Creating Enumerations

477

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Open a new file in your text editor, and create the following Model enumeration:
enum Model {SEDAN, CONVERTIBLE, MINIVAN};

4. Save the file as Model.java. Next, open a new file in your text editor, and
start to define a Car class that holds three fields: a year, a model, and a color.
public class Car
{

private int year;
private Model model;
private Color color;

5. Add a constructor for the Car class that accepts parameters that hold the
values for year, model, and color as follows:
public Car(int yr, Model m, Color c)
{

year = yr;
model = m;
color = c;

}

6. Add a display() method that displays a Car object’s data, then add a closing
curly brace for the class.

public void display()
{

System.out.println("Car is a " + year +
" " + color + " " + model);

}
}

7. Save the file as Car.java.

8. Open a new file in your text editor, and write a short demonstration
program that instantiates two Car objects and assigns values to them
using enumeration values for the models and colors.
public class CarDemo
{

public static void main(String[] args)
{

Car firstCar = new Car(2012, Model.MINIVAN, Color.BLUE);
Car secondcar = new Car(2014, Model.CONVERTIBLE,

Color.RED);
firstCar.display();
secondcar.display();

}
}

(continued)

(continues)

C H A P T E R 9 Advanced Array Concepts

478

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Save the file as CarDemo.java, and then compile and execute it. Figure 9-28
shows that the values are assigned correctly.

Don’t Do It
Don’t forget that the first subscript used with a two-dimensional array represents the row,
and that the second subscript represents the column.

Don’t try to store primitive data types in an ArrayList structure.

Don’t think enum constants are strings; they are not enclosed in quotes.

Key Terms
Sorting is the process of arranging a series of objects in some logical order.

Ascending order describes the order of objects arranged from lowest to highest value.

Descending order describes the order of objects arranged from highest to lowest value.

An algorithm is a process or set of steps that solve a problem.

A bubble sort operates by comparing pairs of items and swapping them if they are out
of order, so that the smallest items “bubble” to the top of the list, eventually creating
a sorted list.

An insertion sort operates by comparing list elements, and if an element is out of order
relative to any of the items earlier in the list, you move each earlier item down one position
and then insert the tested element.

Figure 9-28 Output of the CarDemo program

(continued)

Key Terms

479

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A one-dimensional array or single-dimensional array contains one column of values; you
access its elements using a single subscript.

Two-dimensional arrays have two or more columns of values, and you must use two
subscripts to access an element.

Matrix and table are names used for two-dimensional arrays.

A ragged array is a two-dimensional array that has rows of different lengths.

Multidimensional arrays contain two or more dimensions.

Dummy values are values the user enters that are not “real” data; they are just signals to stop
data entry.

Dynamically resizable describes an object whose size can change during program
execution.

An ArrayList’s capacity is the number of items it can hold without having to increase
its size.

An enumerated data type is a programmer-created data type with a fixed set of values.

The enum constants are the allowed values for an enumerated data type.

Type-safe describes a data type for which only appropriate behaviors are allowed.

Chapter Summary
Sorting is the process of arranging a series of objects in ascending or descending order.
With a bubble sort, you continue to compare pairs of items, swapping them if they are out
of order, so that the smallest items “bubble” to the top of the list, eventually creating a
sorted list.

With an insertion sort, you look at each list element one at a time, and if an element is out
of order relative to any of the items earlier in the list, you move each earlier item down
one position and then insert the tested element.

You can sort arrays of objects in much the same way that you sort arrays of primitive
types. The major difference occurs when you make the comparison that determines
whether you want to swap two array elements. When array elements are objects, you
usually want to sort based on a particular object field.

A one-dimensional or single-dimensional array is accessed using a single subscript.
Two-dimensional arrays have both rows and columns and require two subscripts to
access. To declare a two-dimensional array, you type two sets of brackets after the
array type.

The Java Arrays class contains many useful methods for manipulating arrays. These
methods provide ways to easily search, compare, fill, and sort arrays.

C H A P T E R 9 Advanced Array Concepts

480

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Java ArrayList class contains useful methods for manipulating dynamically sized
arrays. You can add objects to, remove objects from, and replace objects in ArrayList
containers.

An enumerated data type is a programmer-created type with a fixed set of values. In Java,
you create an enumerated data type in a statement that uses the keyword enum, an
identifier for the type, and a pair of curly braces that contain a list of the enum constants,
which are the allowed values for the type.

Review Questions
1. When you place objects in order beginning with the object with the highest value,

you are sorting in order.

a. acquiescing
b. ascending

c. demeaning
d. descending

2. Using a bubble sort involves .

a. comparing parallel arrays
b. comparing each array element to the average
c. comparing each array element to the adjacent array element
d. swapping every array element with its adjacent element

3. When you use a bubble sort to perform an ascending sort, after the first pass through
an array the largest value is .

a. at the beginning of the list
b. in the middle of the list
c. at the end of the list
d. It is impossible to determine the answer without more information.

4. When you use a bubble sort to perform an ascending sort, after the first pass through
an array the smallest value is .

a. at the beginning of the list
b. in the middle of the list
c. at the end of the list
d. It is impossible to determine the answer without more information.

5. When array elements are objects, you usually want to sort based on a
particular of the object.

a. field
b. method

c. name
d. type

Review Questions

481

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. The following defines a array:
int[][] nums = { {1, 2}, {3, 4}, {5, 6} };

a. one-dimensional
b. two-dimensional

c. three-dimensional
d. six-dimensional

7. How many rows are contained in the following array?
double[][] prices = { {2.56, 3.57, 4.58, 5.59},

{12.35, 13.35, 14.35, 15.00} };

a. 1
b. 2

c. 4
d. 8

8. How many columns are contained in the following array?
double[][] prices = { {2.56, 3.57, 4.58, 5.59},

{12.35, 13.35, 14.35, 15.00} };

a. 1
b. 2

c. 4
d. 8

9. In the following array, what is the value of code[2][1]?
char[][] code = { {'A ', 'D ', 'M '},

{'P ', 'R ', 'S '},
{'U ', 'V ', 'Z '} };

a. 'P'

b. 'R'

c. 'U'

d. 'V'

10. In the following array, what is the value of address[1][1]?
String address = { {"123 Oak ", "345 Elm "},

{"87 Maple ", "901 Linden "} };

a. "123 Oak "

b. "345 Elm "

c. "87 Maple "

d. "901 Linden "

11. In the following array, what is the value of fees.length?
double[][] fees = { {3.00, 3.50, 4.00, 5.00},

{6.35, 7.35, 8.35, 9.00} };

a. 2
b. 4

c. 8
d. none of the above

12. In the following array, what is the value of fees[1].length?
double[][] fees = { {3.00, 3.50, 4.00, 5.00},

{6.35, 7.35, 8.35, 9.00} };

a. 2
b. 4

c. 8
d. none of the above

C H A P T E R 9 Advanced Array Concepts

482

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13. You place after the data type in the parameter list of a method that
receives a two-dimensional array.

a. a pair of empty brackets
b. two pairs of empty brackets
c. a pair of brackets that contain the number of rows followed by a pair of

empty brackets
d. a pair of empty brackets followed by brackets that contain the number of

columns

14. A array has rows of different lengths.

a. ragged
b. jagged

c. haggard
d. tattered

15. If the value of credits[0].length is not equal to credits[1].length, you know
credits is .

a. a three-dimensional array
b. an uninitialized array

c. a partially populated array
d. a jagged array

16. Which of the following is true if a successfully running program contains the
following statement:
Arrays.fill(tax, 10);

a. tax is a two-dimensional array.
b. fill() is a nonstatic method.

c. tax is an array with 10 elements.
d. none of the above

17. Which of the following is a requirement when you use a binary search method
with an array?

a. The array must be numeric.
b. The array must have been sorted in ascending order.
c. The array must have at least three elements.
d. none of the above

18. The chief advantage to using the ArrayList class instead of the Arrays class is that
an ArrayList .

a. can be much larger
b. is easier to search
c. is dynamically resizable
d. can be used as an argument to a static method

Review Questions

483

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

19. The chief disadvantage to using the ArrayList class instead of the Arrays class is
that an ArrayList .

a. cannot be sorted
b. cannot store primitive data types
c. cannot be accessed using subscripts
d. All of the above are disadvantages to using an ArrayList.

20. An advantage to using an enumerated data type is .

a. errors are reduced because only a limited set of values can be used
with the type

b. time is saved because programs with enumerated types compile faster
c. coding time is reduced because enumerated types are created automatically

by the compiler
d. All of the above are true.

Exercises

Programming Exercises

1. a. Write an application containing an array of 20 String values, and display them in
ascending order. Save the file as StringSort.java.

b. Write an application that accepts any number of String values from a user up to
20, and display them in ascending order. Save the file as StringSort2.java.

2. a. The mean of a list of numbers is its arithmetic average. The median of a list is its
middle value when the values are placed in order. For example, if a list contains 1,
4, 7, 8, and 10, then the mean is 6 and the median is 7. Write an application that
allows you to enter five integers and displays the values, their mean, and their
median. Save the file as MeanMedian.java.

b. Revise the MeanMedian class so that the user can enter any number of values up
to 20. If the list has an even number of values, the median is the numeric average
of the values in the two middle positions. Save the file as MeanMedian2.java.

3. a. Radio station JAVA wants a class to keep track of recordings it plays. Create
a class named Recording that contains fields to hold methods for setting and
getting a Recording’s title, artist, and playing time in seconds. Save the file
as Recording.java.

b. Write an application that instantiates five Recording objects and prompts the user
for values for the data fields. Then prompt the user to enter which field the
Recordings should be sorted by—song title, artist, or playing time. Perform the
requested sort procedure, and display the Recording objects. Save the file as
RecordingSort.java.

C H A P T E R 9 Advanced Array Concepts

484

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. In Chapter 8, you created a Salesperson class with fields for an ID number and
sales values. Now, create an application that allows a user to enter values for an
array of seven Salesperson objects. Offer the user the choice of displaying the
objects in order by either ID number or sales value. Save the application as
SalespersonSort.java.

5. In Chapter 8, you created a Salesperson class with fields for an ID number and sales
values. Now, create an application that allows you to store an array that acts as a
database of any number of Salesperson objects up to 20. While the user decides to
continue, offer three options: to add a record to the database, to delete a record from
the database, or to change a record in the database. Then proceed as follows:

If the user selects the add option, issue an error message if the database is full.
Otherwise, prompt the user for an ID number. If the ID number already exists in
the database, issue an error message. Otherwise, prompt the user for a sales value
and add the new record to the database.

If the user selects the delete option, issue an error message if the database is
empty. Otherwise, prompt the user for an ID number. If the ID number does not
exist, issue an error message. Otherwise, do not access the record for any future
processing.

If the user selects the change option, issue an error message if the database is
empty. Otherwise, prompt the user for an ID number. If the requested record
does not exist, issue an error message. Otherwise, prompt the user for a new
sales value and change the sales value for the record.

After each option executes, display the updated database in ascending order by
Salesperson ID number and prompt the user to select the next action. Save the
application as SalespersonDatabase.java.

6. Write an application that stores at least five different department and supervisor
names in a two-dimensional array. Allow the user to enter a department name (such
as “Marketing”) and display the corresponding supervisor’s name. If the department
does not exist, display an error message. Save the file as Departments.java.

7. In the exercises in Chapter 6, you created a class named Purchase. Each Purchase
contains an invoice number, amount of sale, amount of sales tax, and several
methods. Add get methods for the invoice number and sale amount fields so their
values can be used in comparisons. Next, write a program that declares an array of
five Purchase objects and prompt a user for their values. Then, in a loop that
continues until a user inputs a sentinel value, ask the user whether the Purchase

objects should be sorted and displayed in invoice number order or sale amount order.
Save the file as SortPurchasesArray.java.

8. Create an application that contains an enumeration that represents the days of the
week. Display a list of the days, then prompt the user for a day. Display business hours
for the chosen day. Assume that the business is open from 11 to 5 on Sunday, 9 to 9
on weekdays, and 10 to 6 on Saturday. Save the file as DayOfWeek.java.

Exercises

485

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Create a class named Majors that includes an enumeration for the six majors
offered by a college as follows: ACC, CHEM, CIS, ENG, HIS, PHYS. Display the
enumeration values for the user, then prompt the user to enter a major. Display the
college division in which the major falls. ACC and CIS are in the Business Division,
CHEM and PHYS are in the Science Division, and ENG and HIS are in the
Humanities Division. Save the file as Majors.java.

10. Morgan’s Department Store distributes bonuses to its salespeople after the holiday
rush. Table 9-6 shows the bonuses, which are based on full weeks worked during the
season and the number of positive online customer reviews. Write a program that
allows a user to continuously enter values for the two bonus-determining factors
and displays the appropriate bonus. Save the file as MorgansBonuses.java.

Debugging Exercises
1. Each of the following files in the Chapter09 folder in your downloadable student

files has syntax and/or logic errors. In each case, determine the problem and
fix the program. After you correct the errors, save each file using the same
filename preceded with Fix. For example, DebugNine1.java will become
FixDebugNine1.java.

a. DebugNine1.java

b. DebugNine2.java

c. DebugNine3.java

d. DebugNine4.java

e. Movie.java, which is used by DebugNine2.java.

Positive Reviews Received

Full Weeks Worked 0 1 2 3 4 or More

0 5.00 9.00 16.00 22.00 30.00

1 10.00 12.00 18.00 24.00 36.00

2 20.00 25.00 32.00 42.00 53.00

3 32.00 38.00 45.00 55.00 68.00

4 46.00 54.00 65.00 77.00 90.00

5 60.00 72.00 84.00 96.00 120.00

6 or more 85.00 100.00 120.00 140.00 175.00

Table 9-6 Morgan’s Department Store bonuses

C H A P T E R 9 Advanced Array Concepts

486

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Game Zone
1. Create a guessing game called “Does It Have Legs?”, in which you think of an animal

and the computer tries to guess what it is. The game continually becomes “smarter”
as you play because you teach it how to become more specific with its questions. For
example, a typical game session might proceed as follows:

Computer: Does the animal you are thinking of have legs?

Player: Yes.

Computer: Is it a dog?

Player: Yes.

Computer: Yay! I win. Do you want to play again?

Player: Yes.

Computer: Does the animal you are thinking of have legs?

Player: Yes.

Computer: Is it a dog?

Player: No.

Computer: I give up. What was your animal?

Player: Horse.

Computer: Type a question for which the answer is Yes for Dog but No for Horse.

Player: Does it live in the house?

Computer: Do you want to play again?

Player: Yes.

Computer: Does the animal you are thinking of have legs?

Player: Yes.

Computer: Does it live in the house?

Player: No.

Computer: Is it a Horse?

Player: No.

Computer: I give up. What was your animal?

Player: Cow.

Exercises

487

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Computer: Type a question for which the answer is Yes for Horse but No for Cow.

Player: Do people ride it?

Computer: Do you want to play again?

Player: Yes.

Computer: Does the animal you are thinking of have legs?

Player: Yes.

Computer: Does it live in the house?

Player: No.

Computer: Do people ride it?

Player: No.

Computer: Is it a Cow?

Player: Yes.

Computer: Yay! I win. Do you want to play again?

Player: No.

(Hint: You might want to look up “binary trees” on the Internet as a method to
organize this application.)

Save the application as DoesItHaveLegs.java.

2. a. Create a Tic Tac Toe game. In this game, two players alternate placing Xs
and Os into a grid until one player has three matching symbols in a row,
horizontally, vertically, or diagonally. Create a game in which the user is
presented with a three-by-three grid containing the digits 1 through 9.
When the user chooses a position by typing a number, place an X in the
appropriate spot. Generate a random number for the position where the
computer will place an O. Do not allow the player or the computer to
place a symbol where one has already been placed. Figure 9-29 shows the
first four windows in a typical game. When either the player or computer
has three symbols in a row, declare a winner; if all positions have been
exhausted and no one has three symbols in a row, declare a tie. Save the
game as TicTacToe.java.

C H A P T E R 9 Advanced Array Concepts

488

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. In the TicTacToe application, the computer’s selection is chosen randomly.
Improve the TicTacToe game so that when the computer has two Os in any
row, column, or diagonal, it selects the winning position for its next move rather
than selecting a position randomly. Save the improved game as TicTacToe2.java.

3. In Chapter 8, you created an application class named FullDeck that implemented a
52-element array that represented each card in a standard deck of playing cards. Now,
create an enumeration that holds the four suits SPADES, HEARTS, DIAMONDS, and CLUBS.
Save the enumeration in a file named Suit.java. Modify the Card class from Chapter 8
to use the enumeration, and save the class as Card2.java. Modify the FullDeck
application to use the new Card class, and save the application as FullDeck2.java.

4. In Chapter 7, you improved a Rock Paper Scissors game played between a user and
the computer. Add an enumeration that holds three values that represent ROCK,
PAPER, and SCISSORS, and use it for all comparisons in the program. Save the file as
RockPaperScissors3.java.

Figure 9-29 Typical game of TicTacToe in progress

Exercises

489

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Problems
1. In the last chapter, you modified the EventDemo program for Carly’s Catering to

accept and display data for an array of three Event objects. Now, modify the
program to use an array of eight Event objects. Prompt the user to choose an
option to sort Events in ascending order by event number, number of guests, or
event type. Display the sorted list, and continue to prompt the user for sorting
options until the user enters a sentinel value. Save the file as EventDemo.java.

2. In the last chapter, you modified the RentalDemo program for Sammy’s Seashore
Supplies to accept and display data for an array of three Rental objects. Now,
modify the program to use an array of eight Rental objects. Prompt the user to
choose an option to sort Rentals in ascending order by contract number, price, or
equipment type. Display the sorted list, and continue to prompt the user for sorting
options until the user enters a sentinel value. Save the file as RentalDemo.java.

C H A P T E R 9 Advanced Array Concepts

490

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 10
Introduction to
Inheritance

In this chapter, you will:

Learn about the concept of inheritance

Extend classes

Override superclass methods

Call constructors during inheritance

Access superclass methods

Employ information hiding

Learn which methods you cannot override

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning About the Concept of Inheritance
In Java and all object-oriented languages, inheritance is a mechanism that enables one class to
acquire all the behaviors and attributes of another class, meaning that you can create a new
class simply by indicating the ways in which it differs from a class that has already been
developed and tested.

You are familiar with the concept of inheritance from all sorts of nonprogramming
situations. When you use the term inheritance, you might think of genetic inheritance. You
know from biology that your blood type and eye color are the product of inherited genes;
you can say that many facts about you—your attributes, or “data fields”—are inherited.
Similarly, you often can credit your behavior to inheritance. For example, your attitude
toward saving money might be the same as your grandmother’s, and the odd way that
you pull on your ear when you are tired might match what your Uncle Steve does—thus,
your methods are inherited, too.

You also might choose plants and animals based on inheritance. You plant impatiens next
to your house because of your shady location; you adopt a Doberman Pinscher because you
need a watchdog. Every individual plant and pet has slightly different characteristics, but
within a species, you can count on many consistent inherited attributes and behaviors.
Similarly, the classes you create in object-oriented programming languages can inherit
data and methods from existing classes. When you create a class by making it inherit from
another class, the new class automatically contains the data fields and methods of the
original class.

Diagramming Inheritance Using the UML
Beginning with the first chapter of this book, you have been creating classes and instantiating
them. Programmers and analysts sometimes use a graphical language to describe classes and
object-oriented processes; this Unified Modeling Language (UML) consists of many types of
diagrams, some of which can help illustrate inheritance.

For example, consider the simple Employee class shown in Figure 10-1. The class contains
two data fields, id and salary, and four methods: a get and set method for each field.
Figure 10-2 shows a UML class diagram for the Employee class. A class diagram is a visual
tool that provides you with an overview of a class. It consists of a rectangle divided into
three sections—the top section contains the name of the class, the middle section contains
the names and data types of the attributes, and the bottom section contains the methods.
Only the method return type, name, and arguments are provided in the diagram—the
instructions that make up the method body are omitted.

C H A P T E R 1 0 Introduction to Inheritance

492

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class Employee
{

private int id;
private double salary;
public int getId()
{

return id;
}
public double getSalary()
{

return salary;
}
public void setId(int idNum)
{

id = idNum;
}
public void setSalary(double sal)
{

salary = sal;
}

}

Figure 10-1 The Employee class

By convention, a class diagram contains the data type following each attribute or method, as shown in
Figure 10-2. A minus sign (−) is inserted in front of each private field or method, and a plus sign (+) is
inserted in front of each public field or method.

Commonly, UML diagram creators refrain from using Java terminology such as int in a class diagram.
Instead, they might use a more general term, such as integer. The Employee class is designed in natural
language (English) and might be implemented in any programming language, and languages other than
Java might use a different keyword to designate integer variables. Because you are studying Java, this
book uses the Java keywords in diagrams. For more information on UML, you can go to the Object
Management Group’s Web site at www.omg.org. OMG is an international, nonprofit computer industry
consortium.

After you create the Employee class, you can create specific Employee objects, such as the
following:
Employee receptionist = new Employee();
Employee deliveryPerson = new Employee();

These Employee objects can eventually possess different numbers and salaries, but
because they are Employee objects, you know that each Employee has some ID number
and salary.

Suppose that you hire a new type of Employee such as a salesperson or service representative
that requires not only an ID number and a salary, but also a data field to indicate the territory

Employee

-id : int
-salary : double

+getId() : int
+getSalary() : double
+setId(int idNum) : void
+setSalary(double sal) : void

Figure 10-2 The Employee class diagram

Learning About the Concept of Inheritance

493

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

served. You can create a class with a name such as EmployeeWithTerritory, and provide
the class three fields (idNum, salary, and territory) and six methods (get and set methods
for each of the three fields). However, when you do this, you are duplicating much of the
work that you have already done for the Employee class. The wise, efficient alternative is to
create the class EmployeeWithTerritory so it inherits all the attributes and methods of
Employee. Then, you can add just the one field and two methods that are new within
EmployeeWithTerritory objects. Figure 10-3 shows a class diagram of the two classes and
their relationship. In a UML diagram, an inheritance relationship is indicated with an arrow
that points from the descendant class to the original class.

When you use inheritance to create the EmployeeWithTerritory class, you:

Save time because the Employee fields and methods already exist

Reduce errors because the Employee methods already have been used and tested

Reduce the amount of new learning required for programmers to use the new class if they
are already familiar with the original class

The ability to use inheritance in Java makes programs easier to write, less error-prone, and
more quickly understood. Besides creating EmployeeWithTerritory, you also can create
several other specific Employee classes (perhaps EmployeeEarningCommission, including
a commission rate, or DismissedEmployee, including a reason for dismissal). By using
inheritance, you can develop each new class correctly and more quickly. The concept of
inheritance is useful because it makes a class’s code more easily reusable. Each defined
data field and each method already written and tested in the original class becomes part
of the new class that inherits it.

Employee

-id : int
-salary : double

+getId() : int
+getSalary() : double
+setId(int idNum) : void
+setSalary(double sal) : void

EmployeeWithTerritory

-territory : int

+getTerritory() : int
+setTerritory(int terr) : void

Figure 10-3 Class diagram showing the relationship between Employee and
EmployeeWithTerritory

C H A P T E R 1 0 Introduction to Inheritance

494

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Inheritance Terminology
A class that is used as a basis for inheritance, such as Employee, is a base class. When you
create a class that inherits from a base class (such as EmployeeWithTerritory), it is a derived
class. When considering two classes that inherit from each other, you can tell which is the
base class and which is the derived class by using the two classes in a sentence with the phrase
“is a(n).” A derived class always “is a” case or example of the more general base class. For
example, a Tree class can be a base class to an Evergreen class. An Evergreen “is a” Tree,
so Tree is the base class; however, it is not true for all Trees that “a Tree is an Evergreen.”
Similarly, an EmployeeWithTerritory “is an” Employee—but not the other way around—so
Employee is the base class.

Because a derived class object “is an” instance of the base class too, you can assign a derived class object’s
reference to a base class reference. Similarly, if a method accepts a base class object reference, it also will
accept references to its derived classes. The next chapter describes these concepts in greater detail.

Do not confuse “is a” situations with “has a” situations. For example, you might create a
Business class that contains an array of Department objects; in turn, each Department object
might contain an array of Employee objects. You would not say “A department is a business,”
but that “a business has departments.” Therefore, this relationship is not inheritance; it is
composition—the relationship in which a class contains one or more members of another
class, when those members would not continue to exist without the object that contains
them. (For example, if a Business closes, its Departments do too.) Similarly, you would not
say “an employee is a department,” but that “a department has employees.” This relationship
is not inheritance either; it is a specific type of composition known as aggregation—the
relationship in which a class contains one or more members of another class, when those
members would continue to exist without the object that contains them. (For example, if a
business or department closed, the employees would continue to exist.) On the other hand, if
Employees no longer existed, no EmployeeWithTerritory would exist either.

You can use the terms superclass and subclass as synonyms for base class and derived class,
respectively. Thus, Evergreen can be called a subclass of the Tree superclass. You can also
use the terms parent class and child class. An EmployeeWithTerritory is a child to the
Employee parent. Use the pair of terms with which you are most comfortable; all of these
terms are used interchangeably throughout this book.

As an alternative way to discover which of two classes is the base class or subclass, you can try
saying the two class names together. When people say their names together, they state the
more specific name before the all-encompassing family name, as in “Ginny Kroening.”
Similarly, with classes, the order that “makes more sense” is the child-parent order.
“Evergreen Tree” makes more sense than “Tree Evergreen,” so Evergreen is the child class.

Finally, you usually can distinguish superclasses from their subclasses by size. Although it
is not required, in general a subclass is larger than a superclass because it usually has
additional fields and methods. A subclass description might look small, but any subclass
contains all the fields and methods of its superclass, as well as the new, more specific
fields and methods you add to that subclass.

Learning About the Concept of Inheritance

495

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Watch the video Inheritance.

TWO TRUTHS & A LIE

Learning About the Concept of Inheritance

1. When you use inheritance in Java, you can create a new class that contains
all the data and methods of an existing class.

2. When you use inheritance, you save time and reduce errors.

3. A class that is used as a basis for inheritance is called a subclass.

. ssal cr epus a morf
sti r ehni t aht ssal c a si ssal cbus A. ssal ct ner apr o, ssal c esab, ssal cr epus a

dell ac si ecnati r ehni r of si sab a sa desu si t aht ssal c A. 3# si t ne met at s esl af ehT

Extending Classes
You use the keyword extends to achieve inheritance in Java. For example, the following
class header creates a superclass–subclass relationship between Employee and
EmployeeWithTerritory:
public class EmployeeWithTerritory extends Employee

Each EmployeeWithTerritory automatically receives the data fields and methods of the
superclass Employee; you then add new fields and methods to the newly created subclass.
Figure 10-4 shows an EmployeeWithTerritory class.

public class EmployeeWithTerritory extends Employee
{

private int territory;
public int getTerritory()
{

return territory;
}
public void setTerritory(int terr)
{

territory = terr;
}

}

Figure 10-4 The EmployeeWithTerritory class

C H A P T E R 1 0 Introduction to Inheritance

496

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can write a statement that instantiates a derived class object, such as the following:
EmployeeWithTerritory northernRep = new EmployeeWithTerritory();

Then you can use any of the next statements to get field values for the northernRep object:
northernRep.getId();
northernRep.getSalary();
northernRep.getTerritory();

The northernRep object has access to all three get methods—two methods that it inherits
from Employee and one method that belongs to EmployeeWithTerritory.

Similarly, after the northernRep object is declared, any of the following statements are legal:
northernRep.setId(915);
northernRep.setSalary(210.00);
northernRep.setTerritory(5);

The northernRep object has access to all the parent Employee class set methods, as well as its
own class’s new set method.

Inheritance is a one-way proposition; a child inherits from a parent, not the other
way around. When you instantiate an Employee object, it does not have access to the
EmployeeWithTerritory methods. It makes sense that a parent class object does not
have access to its child’s data and methods. When you create the parent class, you
do not know how many future subclasses it might have or what their data fields or
methods might look like.

In addition, subclasses are more specific than the superclass they extend. An Orthodontist

class and Periodontist class are children of the Dentist parent class. You do not expect
all members of the general parent class Dentist to have the Orthodontist’s applyBraces()
method or the Periodontist’s deepClean() method. However, Orthodontist objects and
Periodontist objects have access to the more general Dentist methods conductExam()
and billPatients().

You can use the instanceof operator to determine whether an object is a member or
descendant of a class. For example, if northernRep is an EmployeeWithTerritory object, the
value of each of the following expressions is true:
northernRep instanceof EmployeeWithTerritory
northernRep instanceof Employee

If aClerk is an Employee object, the following is true:
aClerk instanceof Employee

However, the following is false:
aClerk instanceof EmployeeWithTerritory

Programmers say that instanceof yields true if the operand on the left can be upcast to the
operand on the right.

Extending Classes

497

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Extending Classes

1. You use the keyword inherits to achieve inheritance in Java.

2. A derived class has access to all its parents’ nonprivate methods.

3. Subclasses are more specific than the superclass they extend.

. avaJ ni
ecnati r ehni evei hca ot sdnetxe dr owyek eht esu uoY. 1# si t ne met at s esl af ehT

You Do It

Demonstrating Inheritance

In this section, you create a working example of inheritance. To see the effects of
inheritance, you create this example in four stages:

First, you create a Party class that holds just one data field and three methods.

After you create the general Party class, you write an application to demonstrate
its use.

Then, you create a more specific DinnerParty subclass that inherits the fields
and methods of the Party class.

Finally, you modify the demonstration application to add an example using the
DinnerParty class.

Creating a Superclass and an Application to Use It

1. Open a new file, and enter the following first few lines for a simple Party

class. The class hosts one integer data field—the number of guests expected
at the party:
public class Party
{

private int guests;

(continues)

C H A P T E R 1 0 Introduction to Inheritance

498

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Add the following methods that get and set the number of guests:
public int getGuests()
{

return guests;
}
public void setGuests(int numGuests)
{

guests = numGuests;
}

3. Add a method that displays a party invitation:
public void displayInvitation()
{

System.out.println("Please come to my party!");
}

4. Add the closing curly brace for the class, and then save the file as Party.java.
Compile the class; if necessary, correct any errors and compile again.

Writing an Application that Uses the Party Class

Now that you have created a class, you can use it in an application. A very simple
application creates a Party object, prompts the user for the number of guests at the
party, sets the data field, and displays the results.

1. Open a new file, and start to write a UseParty application that has one
method—a main() method. Declare a variable for the number of guests,
a Party object, and a Scanner object to use for input:
import java.util.*;
public class UseParty
{

public static void main(String[] args)
{

int guests;
Party aParty = new Party();
Scanner keyboard = new Scanner(System.in);

2. Continue the main() method by prompting the user for a number of guests
and accepting the value from the keyboard. Set the number of guests in the
Party object, and then display the value.
System.out.print("Enter number of guests for the party >> ");
guests = keyboard.nextInt();
aParty.setGuests(guests);
System.out.println("The party has " + aParty.getGuests() + "

guests");

(continued)

(continues)

Extending Classes

499

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Add a statement to display the party invitation, and then add the closing curly
braces for the main() method and for the class:

aParty.displayInvitation();
}

}

4. Save the file as UseParty.java, then compile and run the application.
Figure 10-5 shows a typical execution.

Creating a Subclass from the Party Class

Next, you create a class named DinnerParty. A DinnerParty “is a” type of Party at
which dinner is served, so DinnerParty is a child class of Party.

1. Open a new file, and type the first few lines for the DinnerParty class:
public class DinnerParty extends Party
{

2. A DinnerParty contains a number of guests, but you do not have to define the
variable here. The variable is already defined in Party, which is the superclass of
this class. You only need to add any variables that are particular to a DinnerParty.
Enter the following code to add an integer code for the dinner menu choice:
private int dinnerChoice;

3. The Party class already contains methods to get and set the number of guests,
so DinnerParty only needs methods to get and set the dinnerChoice variable
as follows:
public int getDinnerChoice()
{

return dinnerChoice;
}
public void setDinnerChoice(int choice)
{

dinnerChoice = choice;
}

Figure 10-5 Typical execution of the UseParty application

(continued)

(continues)

C H A P T E R 1 0 Introduction to Inheritance

500

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Add a closing curly brace for the class.

5. Save the file as DinnerParty.java, and then compile it.

Creating an Application that Uses the DinnerParty Class

Now, you can modify the UseParty application so that it creates a DinnerParty as
well as a plain Party.

1. Open the UseParty.java file, and change the class name to UseDinnerParty.
Immediately save the file as UseDinnerParty.java.

2. Include a new variable that holds the dinner choice for a DinnerParty:
int choice;

3. After the statement that constructs the Party object, type the following
DinnerParty object declaration:
DinnerParty aDinnerParty = new DinnerParty();

4. At the end of the main() method, after the Party object data and invitation are
displayed, add a prompt for the number of guests for the DinnerParty.
Accept the value the user enters and assign it to the object. Even though the
DinnerParty class does not contain a setGuests() method, its parent class
does, so aDinnerParty can use the method.
System.out.print("Enter number of guests for the dinner party >> ");
guests = keyboard.nextInt();
aDinnerParty.setGuests(guests);

5. Next, prompt the user for a dinner choice. To keep this example simple, the
program provides only two choices and does not provide range checking.
Accept a response from the user, assign it to the object, and then display all
the data for the DinnerParty. Even though the DinnerParty class does not
contain a getGuests() method, its parent class does, so aDinnerParty can
use the method. The DinnerParty class uses its own setDinnerChoice() and
getDinnerChoice() methods.
System.out.print

("Enter the menu option –– 1 for chicken or 2 for beef >> ");
choice = keyboard.nextInt();
aDinnerParty.setDinnerChoice(choice);
System.out.println("The dinner party has " +

aDinnerParty.getGuests() + " guests");
System.out.println("Menu option " +

aDinnerParty.getDinnerChoice () + " will be served");

(continued)

(continues)

Extending Classes

501

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Add a statement to call the displayInvitation() method with the
DinnerParty object. Even though the DinnerParty class does not contain
a displayInvitation() method, its parent class does, so aDinnerParty can
use the method.
aDinnerParty.displayInvitation();

7. Save the file, compile it, and run it using values of your choice. Figure 10-6
shows a typical execution. The DinnerParty object successfully uses the
data field and methods of its superclass, as well as its own data field and
methods.

Overriding Superclass Methods
When you create a subclass by extending an existing class, the new subclass contains data
and methods that were defined in the original superclass. In other words, any child class
object has all the attributes of its parent. Sometimes, however, the superclass data fields
and methods are not entirely appropriate for the subclass objects; in these cases, you want
to override the parent class members. To override a field or method in a child class means
to use the child’s version instead of the parent’s version.

When you use the English language, you often use the same method name to indicate diverse
meanings. For example, if you think of MusicalInstrument as a class, you can think of play()
as a method of that class. If you think of various subclasses such as Guitar and Drum, you
know that you carry out the play() method quite differently for each subclass. Using the
same method name to indicate different implementations is called polymorphism, a term
meaning “many forms”—many different forms of action take place, even though you use the
same word to describe the action. In other words, many forms of the same action-describing
word exist, depending on the associated object.

(continued)

Figure 10-6 Typical execution of the UseDinnerParty application

C H A P T E R 1 0 Introduction to Inheritance

502

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You first learned the term polymorphism in Chapter 1. Polymorphism is one of the basic principles of object-
oriented programming. If a programming language does not support polymorphism, the language is not
considered object oriented.

For example, suppose that you create an Employee superclass containing data fields such as
firstName, lastName, socialSecurityNumber, dateOfHire, rateOfPay, and so on, and the
methods contained in the Employee class include the usual collection of get and set methods.
If your usual time period for payment to each Employee object is weekly, your
displayRateOfPay() method might include a statement such as:
System.out.println("Pay is " + rateOfPay + " per week");

Imagine your company has a few Employees who are not paid weekly. Maybe some are
paid by the hour, and others are Employees whose work is contracted on a job-to-job
basis. Because each Employee type requires different paycheck-calculating procedures,
you might want to create subclasses of Employee, such as HourlyEmployee and
ContractEmployee.

When you call the displayRateOfPay() method for an HourlyEmployee object, you
want the display to include the phrase “per hour”, as in “Pay is $8.75 per hour.” When
you call the displayRateOfPay() method for a ContractEmployee, you want to include
“per contract”, as in “Pay is $2000 per contract.” Each class—the Employee superclass and
the two subclasses—requires its own displayRateOfPay() method. Fortunately, if you
create separate displayRateOfPay() methods for each class, the objects of each class use
the appropriate method for that class. When you create a method in a child class that has
the same name and parameter list as a method in its parent class, you override the method
in the parent class. When you use the method name with a child object, the child’s version
of the method is used.

It is important to note that each subclass method overrides any method in the parent
class that has both the same name and parameter list. If the parent class method has the
same name but a different parameter list, the subclass method does not override the parent
class version; instead, the subclass method overloads the parent class method, and any
subclass object has access to both versions. You learned about overloading methods in
Chapter 4. You first saw the term override in Chapter 4, when you learned that a variable
declared within a block overrides another variable with the same name declared outside the
block.

If you could not override superclass methods, you could always create a unique name for
each subclass method, such as displayRateOfPayForHourly(), but the classes you create
are easier to write and understand if you use one reasonable name for methods that do
essentially the same thing. Because you are attempting to display the rate of pay for each
object, displayRateOfPay() is a clear and appropriate method name for all the object
types.

A child class object can use an overridden parent’s method by using the keyword super. You will learn
about this word later in this chapter.

Overriding Superclass Methods

503

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Object-oriented programmers use the term polymorphism when discussing any operation
that has multiple meanings, regardless of whether inheritance is involved. For example, the
plus sign (+) is polymorphic because it operates differently depending on its operands. You
can use the plus sign to add integers or doubles, to concatenate strings, or to indicate a
positive value. As another example, methods with the same name but different parameter lists
are polymorphic because the method call operates differently depending on its arguments.
When Java developers refer to methods that work appropriately for subclasses of the same
parent class, the more specific term is subtype polymorphism.

Using the @Override Tag
When you override a parent class method in a child class, you can insert an override
annotation just prior to the method. The override annotation lets the compiler know that
your intention is to override a method in the parent class rather than create a method with
a new signature. For example, if the Employee class contains a displayRateOfPay() method
that displays a weekly pay rate and your intention is to override the method in the child
ContractEmployee class to display a contractual pay rate, you can write the child class
method as follows:
@Override
public void displayRateOfPay()
{

System.out.println("Pay is " + rateOfPay + " per contract ");
}

The @Override tag before the method header announces your intention to override a
parent class method and causes the compiler to issue an error message if you do
not—most likely because you made a typographical error in the header of the child
class’s method so that it does not match the parent class version. A program will work
and properly override parent class methods without any @Override tags, but using the
tags can help you prevent errors and serves as a form of documentation for your
intentions.

Some programmers place the @Override tag on the same line as the method header. You should use the
style that is conventional in your organization.

Watch the video Handling Methods and Inheritance.

C H A P T E R 1 0 Introduction to Inheritance

504

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Overriding Superclass Methods

1. Any child class object has all the attributes of its parent, but all of those
attributes might not be directly accessible.

2. You override a parent class method by creating a child class method with
the same identifier but a different parameter list or return type.

3. When a child class method overrides a parent class method, and you use the
method name with a child class object, the child class method version executes.

. gni daol r evo ni r ot caf
at on si epyt nr ut er ehT.t sil r et e mar ap dna r eifi t nedi e mas eht hti w doht e mssal c
dli hc a gni t aer c yb doht e mssal ct ner ap a edi rr evo uoY. 2# si t ne met at s esl af ehT

You Do It

Overriding a Superclass Method

In the previous “You Do It” section, you created Party and DinnerParty classes. The
DinnerParty class extends Party, and so can use its displayInvitation() method.
Suppose that you want a DinnerParty object to use a specialized invitation. In this
section, you override the parent class method so that the same method name acts
uniquely for the child class object.

1. Open the DinnerParty.java class. Change the class name to DinnerParty2,
and save the file as DinnerParty2.java.

2. Create a displayInvitation() method that overrides the parent class
method with the same name as follows:
@Override
public void displayInvitation()
{

System.out.println("Please come to my dinner party!");
}

3. Save the class and compile it.

4. Open the UseDinnerParty.java file. Change the class name to
UseDinnerParty2, and immediately save the file as UseDinnerParty2.java.

(continues)

Overriding Superclass Methods

505

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Change the declaration of the aDinnerParty object so that it uses the
DinnerParty2 class as a data type and DinnerParty2 as the constructor
name.

6. Save the class, compile it, and execute it. Figure 10-7 shows a typical
execution. Each type of object uses its own version of the
displayInvitation() method.

7. Purposely introduce an error into the child class displayInvitation()

method header. For example, you might make the I lowercase, as in
displayinvitation(). Save and compile the DinnerParty2.java file.
You receive a compiler error message similar to the following:

Method does not override or implement a method from a supertype.

(You will learn about the keyword implements in Chapter 11.)

8. Comment out the @Override annotation by inserting two forward slashes (//)
in front of it. Save and compile the DinnerParty2.java file. This time the
compilation is successful because displayinvitation() is a valid method
name—it’s just not one that overrides a parent class method. If you wanted to
use this method in an application, you would have to remember to use a
lowercase i for invitation in the method name. However, it would not be
recommended because you could easily confuse displayinvitation()

with displayInvitation().

9. Remove the comment slashes from the @Override annotation and reinstate
the uppercase I in the displayInvitation() method header. Save and
recompile the class, and confirm it is error-free.

(continued)

Figure 10-7 Typical execution of the UseDinnerParty2 program

C H A P T E R 1 0 Introduction to Inheritance

506

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Calling Constructors During Inheritance
When you create any object, as in the following statement, you are calling a constructor:
SomeClass anObject = new SomeClass();

When you instantiate an object that is a member of a subclass, you are actually calling at least
two constructors: the constructor for the base class and the constructor for the extended,
derived class. When you create any subclass object, the superclass constructor must execute
first, and then the subclass constructor executes.

In the chapter “Advanced Inheritance Concepts,” you will learn that every Java object automatically is a child of a
class namedObject. So, when you instantiate any object, you call its constructor andObject’s constructor,
and when you create parent and child classes of your own, the child classes actually use three constructors.

When a superclass contains a default constructor and you instantiate a subclass object, the
execution of the superclass constructor usually is transparent—that is, nothing calls attention
to the fact that the superclass constructor is executing unless the constructor contains some
action such as displaying a message. However, you should realize that when you create an
object such as the following (where HourlyEmployee is a subclass of Employee), both the
Employee() and HourlyEmployee() constructors execute.
HourlyEmployee clerk = new HourlyEmployee();

For example, Figure 10-8 shows three classes. The class named ASuperClass has a
constructor that displays a message. The class named ASubClass descends from
ASuperClass, and its constructor displays a different message. The DemoConstructors
class contains just one statement that instantiates one object of type ASubClass.

public class ASuperClass
{

public ASuperClass()
{

System.out.println("In superclass constructor");
}

}
public class ASubClass extends ASuperClass
{

public ASubClass()
{

System.out.println("In subclass constructor");
}

}
public class DemoConstructors
{

public static void main(String[] args)
{

ASubClass child = new ASubClass();
}

}

Figure 10-8 Three classes that demonstrate constructor calling when a subclass object is instantiated

Calling Constructors During Inheritance

507

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 10-9 shows the output when DemoConstructors executes. You can see that when
DemoConstructors instantiates the ASubClass object, the parent class constructor executes
first, displaying its message, and then the child class constructor executes. Even though only
one object is created, two constructors execute.

Of course, most constructors perform many more tasks than displaying a message to inform
you that they exist. When constructors initialize variables, you usually want the superclass
constructor to take care of initializing the data fields that originate in the superclass.
Usually, the subclass constructor only needs to initialize the data fields that are specific
to the subclass.

Using Superclass Constructors that Require Arguments
When you create a class and do not provide a constructor, Java automatically supplies you
with a default constructor—one that never requires arguments. When you write your own
constructor, you replace the automatically supplied version. Depending on your needs, a
constructor you create for a class might be a default constructor or might require arguments.
When you use a class as a superclass and the class has only constructors that require
arguments, you must be certain that any subclasses provide the superclass constructor
with the arguments it needs.

Don’t forget that a class can have many constructors. As soon as you create at least one constructor for a
class, you can no longer use the automatically supplied version.

When a superclass has a default constructor, you can create a subclass with or without its
own constructor. This is true whether the default superclass constructor is the automatically
supplied one or one you have written. However, when a superclass contains only constructors
that require arguments, you must include at least one constructor for each subclass you
create. Your subclass constructors can contain any number of statements, but if all superclass
constructors require arguments, the first statement within each subclass constructor must
call one of the superclass constructors. When a superclass requires constructor arguments
upon object instantiation, even if you have no other reason to create a subclass constructor,
you must write the subclass constructor so it can call its superclass’s constructor.

Figure 10-9 Output of the DemoConstructors application

C H A P T E R 1 0 Introduction to Inheritance

508

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If a superclass has multiple constructors but one is a default constructor, you do not have to
create a subclass constructor unless you want to. If the subclass contains no constructor, all
subclass objects use the superclass default constructor when they are instantiated.

The format of the statement that calls a superclass constructor from the subclass
constructor is:
super(list of arguments);

The keyword super always refers to the superclass of the class in which you use it.

If a superclass contains only constructors that require arguments, you must create a subclass
constructor, but the subclass constructor does not necessarily have to have parameters of its
own. For example, suppose that you create an Employee class with a constructor that requires
three arguments—a character, a double, and an integer—and you create an HourlyEmployee
class that is a subclass of Employee. The following code shows a valid constructor for
HourlyEmployee:

public HourlyEmployee()
{

super('P', 12.35, 40);
// Other statements can go here

}

This version of the HourlyEmployee constructor requires no arguments, but it passes three
constant arguments to its superclass constructor. A different, overloaded version of the
HourlyEmployee constructor can require arguments. It could then pass the appropriate
arguments to the superclass constructor. For example:
public HourlyEmployee(char dept, double rate, int hours)
{

super(dept, rate, hours);
// Other statements can go here

}

Except for any comments, the super() statement must be the first statement in any
subclass constructor that uses it. Not even data field definitions can precede it. Although it
seems that you should be able to use the superclass constructor name to call the superclass
constructor—for example, Employee()—Java does not allow this. You must use the
keyword super.

In Chapter 4, you learned that you can call one constructor from another using this(). In this chapter, you
learned that you can call a base class constructor from a derived class using super(). However, you
cannot use both this() and super() in the same constructor because each is required to be the first
statement in any constructor in which it appears.

Watch the video Constructors and Inheritance.

Calling Constructors During Inheritance

509

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Calling Constructors During Inheritance

1. When you create any subclass object, the subclass constructor executes
first, and then the superclass constructor executes.

2. When constructors initialize variables, you usually want the superclass
constructor to initialize the data fields that originate in the superclass and
the subclass constructor to initialize the data fields that are specific to the
subclass.

3. When a superclass contains only nondefault constructors, you must include
at least one constructor for each subclass you create.

. set ucexe r ot curt snoc ssal cbus eht neht dna,t srif et ucexet su mr ot curt snoc
ssal cr epus eht ,t cej bo ssal cbus yna et aer c uoy neh W. 1# si t ne met at s esl af ehT

You Do It

Understanding the Role of Constructors in Inheritance

Next, you add a constructor to the Party class. When you instantiate a subclass
object, the superclass constructor executes before the subclass constructor
executes.

1. Open the Party.java file, and save it as PartyWithConstructor.java.
Change the class name to PartyWithConstructor.

2. Following the statement that declares the guests data field, type a
constructor that does nothing other than display a message indicating
it is working:
public PartyWithConstructor()
{

System.out.println("Creating a Party");
}

3. Save the file and compile it.
(continues)

C H A P T E R 1 0 Introduction to Inheritance

510

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Open the DinnerParty2.java file, and change the class name to
DinnerPartyWithConstructor. Change the class in the extends clause to
PartyWithConstructor. Save the file as DinnerPartyWithConstructor.java,
and compile it.

5. Open a new file so you can write an application to demonstrate the use of
the base class constructor with an extended class object. This application
creates only one child class object:
public class UseDinnerPartyWithConstructor
{

public static void main(String[] args)
{

DinnerPartyWithConstructor aDinnerParty =
new DinnerPartyWithConstructor();

}
}

6. Save the application as UseDinnerPartyWithConstructor.java, then
compile and run it. The output is shown in Figure 10-10. Even though the
application creates only one subclass object (and no superclass objects) and
the subclass contains no constructor of its own, the superclass constructor
executes.

Inheritance When the Superclass Requires Constructor Arguments

Next, you modify the PartyWithConstructor class so that its constructor requires an
argument. Then, you observe that a subclass without a constructor cannot compile.

1. Open the PartyWithConstructor.java file, and then change the class name
to PartyWithConstructor2.

(continued)

Figure 10-10 Output of the UseDinnerPartyWithConstructor application

(continues)

Calling Constructors During Inheritance

511

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Replace the existing constructor with a new version using the new class
name. This constructor requires an argument, which it uses to set the number
of guests who will attend a party:
public PartyWithConstructor2(int numGuests)
{

guests = numGuests;
}

3. Save the file as PartyWithConstructor2.java, and then compile it.

4. Open the DinnerPartyWithConstructor.java file, and change the
class header as follows so that the name of the class is
DinnerPartyWithConstructor2, and inherits from PartyWithConstructor2:
public class DinnerPartyWithConstructor2 extends

PartyWithConstructor2

5. Save the file as DinnerPartyWithConstructor2.java, and then compile it.
An error message appears, as shown in Figure 10-11. When you attempt to
compile the subclass, no parameterless constructor can be found in the
superclass, so the compile fails.

6. To correct the error, open the DinnerPartyWithConstructor2.java file.
Following the dinnerChoice field declaration, insert a constructor for the
class as follows:
public DinnerPartyWithConstructor2(int numGuests)
{

super(numGuests);
}

(continued)

Figure 10-11 Error message generated when compiling the
DinnerPartyWithConstructor2 class

(continues)

C H A P T E R 1 0 Introduction to Inheritance

512

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Save the file, and compile it. This time, the compile is successful because
the subclass calls its parent’s constructor, passing along an integer value.
Note that you could have created the DinnerPartyWithConstructor2

subclass constructor without the integer argument to pass to the parent
constructor. For example, it would be acceptable to create a subclass
constructor that required no arguments but passed a constant (for example, 0)
to its parent. Similarly, the subclass constructor could require several
arguments, pass one of them to its parent, and use the others for different
purposes. The requirement is not that the subclass constructor must have
the same number or types of parameters as its parent; the only requirement
is that the subclass constructor calls super() and passes to the parent what
it needs to execute.

Accessing Superclass Methods
Earlier in this chapter, you learned that a subclass can contain a method with the same name
and arguments (the same signature) as a method in its parent class. When this happens and
you use the method name with a subclass object, the subclass method overrides the
superclass method. However, if a method has been overridden but you want to use the
superclass version within the subclass, you can use the keyword super to access the parent
class method.

For example, examine the Customer class in Figure 10-12 and the PreferredCustomer class
in Figure 10-13. A Customer has an idNumber and balanceOwed. In addition to these fields,
a PreferredCustomer receives a discountRate. In the PreferredCustomer display()
method, you want to display all three fields—idNumber, balanceOwed, and discountRate.
Because two-thirds of the code to accomplish the display has already been written for
the Customer class, it is convenient to have the PreferredCustomer display() method
use its parent’s version of the display() method before displaying its own discount
rate. Figure 10-14 shows a brief application that displays one object of each class, and
Figure 10-15 shows the output.

(continued)

Accessing Superclass Methods

513

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class Customer
{

private int idNumber;
private double balanceOwed;
public Customer(int id, double bal)
{

idNumber = id;
balanceOwed = bal;

}
public void display()
{

System.out.println("Customer #" + idNumber +
" Balance $" + balanceOwed);

}
}

Figure 10-12 The Customer class

public class PreferredCustomer extends Customer
{

double discountRate;
public PreferredCustomer(int id, double bal, double rate)
{

super(id, bal);
discountRate = rate;

}
@Override
public void display()
{

super.display();
System.out.println(" Discount rate is " + discountRate);

}
}

Figure 10-13 The PreferredCustomer class

public class TestCustomers
{

public static void main(String[] args)
{

Customer oneCust = new Customer(124, 123.45);
PreferredCustomer onePCust = new

PreferredCustomer(125, 3456.78, 0.15);
oneCust.display();
onePCust.display();

}
}

Figure 10-14 The TestCustomers application

C H A P T E R 1 0 Introduction to Inheritance

514

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you call a superclass constructor from a subclass constructor, the call must be the
first statement in the constructor. However, when you call an ordinary superclass method
within a subclass method, the call is not required to be the first statement in the method,
although it can be, as shown in the display() method in Figure 10-13.

Comparing this and super
In a subclass, the keywords this and super sometimes refer to the same method, but
sometimes they do not.

For example, if a subclass has overridden a superclass method named someMethod(), then
within the subclass, super.someMethod() refers to the superclass version of the method, and
both someMethod() and this.someMethod() refer to the subclass version.

On the other hand, if a subclass has not overridden a superclass method named someMethod(),
the child can use the method name with super (because the method is a member of the
superclass), with this (because the superclass method is a member of the subclass by virtue
of inheritance), or alone (again, because the superclass method is a member of the subclass).

TWO TRUTHS & A LIE

Accessing Superclass Methods

1. You can use the keyword this within a method in a derived class to access
an overridden method in a base class.

2. You can use the keyword super within a method in a derived class to
access an overridden method in a base class.

3. You can use the keyword super within a method in a derived class to access
a method in a base class that has not been overridden.

. ssal c devi r ed
eht ni denif ed doht e meht sseccalli wuoy , ssal c devi r ed eht ni doht e ma ni siht

dr owyek eht esu uoy fI . doht e mssal c esab neddi rr evo na ssecca ot ssal c devi r ed
a ni doht e ma ni hti wrepus dr owyek eht esu nac uoY. 1# si t ne met at s esl af ehT

Figure 10-15 Output of the TestCustomers application

Accessing Superclass Methods

515

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Employing Information Hiding
The Student class shown in Figure 10-16 is an example of a typical Java class. Within the
Student class, as with most Java classes, the keyword private precedes each data field,
and the keyword public precedes each method. In fact, the four get and set methods are
public within the Student class specifically because the data fields are private. Without the
public get and set methods, there would be no way to access the private data fields.

public class Student
{

private int idNum;
private double gpa;
public int getIdNum()
{

return idNum;
}
public double getGpa()
{

return gpa;
}
public void setIdNum(int num)
{

idNum = num;
}
public void setGpa(double gradePoint)
{

gpa = gradePoint;
}

}

Figure 10-16 The Student class

When an application is a client of the Student class (that is, it instantiates a Student object),
the client cannot directly alter the data in any private field. For example, suppose that you
write a main() method that creates a Student as:
Student someStudent = new Student();

Then you cannot change the Student’s idNum with a statement such as:

someStudent.idNum = 812;

The idNum of the someStudent object is not accessible in the main() method that uses the
Student object because idNum is private. Only methods that are part of the Student class
itself are allowed to alter private Student data. To alter a Student’s idNum, you must use
a public method, as in the following:
someStudent.setIdNum(812);

Don’t Do It
You cannot access a private
data member of an object.

C H A P T E R 1 0 Introduction to Inheritance

516

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The concept of keeping data private is known as information hiding. When you employ
information hiding, your data can be altered only by the methods you choose and only in
ways that you can control. For example, you might want the setIdNum() method to check
to make certain the idNum is within a specific range of values. If a class other than the
Student class could alter idNum, idNum could be assigned a value that the Student class
couldn’t control.

You first learned about information hiding and using the public and private keywords in Chapter 3. You
might want to review these concepts.

When a class serves as a superclass to other classes you create, your subclasses inherit all the
data and methods of the superclass. The methods in a subclass can use all of the data fields
and methods that belong to its parent, with one exception: private members of the parent
class are not accessible within a child class’s methods. If a new class could simply extend your
Student class and get to its data fields without going through the proper channels,
information hiding would not be operating.

If the members of a base class don’t have an explicit access specifier, their access is package by default.
Such base class members cannot be accessed within a child class unless the two classes are in the same
package. You will learn about packages in the next chapter.

Sometimes, you want to access parent class data within a subclass. For example, suppose that
you create two child classes—PartTimeStudent and FullTimeStudent—that extend the
Student class. If you want the subclass methods to be able to directly access idNum and gpa,
these data fields cannot be private. However, if you don’t want other, nonchild classes to
access these data fields, they cannot be public. To solve this problem, you can create the
fields using the specifier protected. Protected access provides you with an intermediate
level of security between public and private access. If you create a protected data field or
method, it can be used within its own class or in any classes extended from that class, but it
cannot be used by “outside” classes. In other words, protected members are those that can be
used by a class and its descendants.

You seldom are required to make parent class fields protected. A child class can access its
parent’s private data fields by using public methods defined in the parent class, just as any
other class can. You only need to make parent class fields protected if you want child classes
to be able to access parent data directly, but you still want to prohibit other classes from
accessing the fields. (For example, perhaps you do not want a parent class to have a public

get method for a field, but you do want a child class to be able to access the field. As another
example, perhaps a parent class set method enforces limits on a field’s value, but a child class
object should not have such limits.)

Using the protected access specifier for a field can be convenient, and it also improves
program performance because a child class can use an inherited field directly instead of
“going through” methods to access the data. However, protected data members should be
used sparingly. Whenever possible, the principle of information hiding should be observed, so
even child classes usually should have to go through public methods to “get to” their parent’s

Employing Information Hiding

517

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

private data. When child classes are allowed direct access to a parent’s fields, the likelihood of
future errors increases. Classes that directly use fields from parent classes are said to be
fragile because they are prone to errors—that is, they are easy to “break.”

TWO TRUTHS & A LIE

Employing Information Hiding

1. Information hiding describes the concept of keeping data private.

2. A subclass inherits all the data and methods of its superclass, except the
private ones.

3. If a data field is defined as protected, a method in a child class can use
it directly.

. yl t ceri d seno etavirp eht sseccat onnacti t ub, ssal cr epus
sti f o sdoht e mdna at ad eht ll a sti r ehni ssal cbus A. 2# si t ne met at s esl af ehT

Methods You Cannot Override
Sometimes when you create a class, you might choose not to allow subclasses to override
some of the superclass methods. For example, an Employee class might contain a method that
calculates each Employee’s ID number based on specific Employee attributes, and you might
not want any derived classes to be able to provide their own versions of this method. As
another example, perhaps a class contains a statement that displays legal restrictions to using
the class. You might decide that no derived class should be able to display a different version
of the statement.

The three types of methods that you cannot override in a subclass are:

static methods

final methods

Methods within final classes

A Subclass Cannot Override static Methods in Its Superclass
A subclass cannot override methods that are declared static in the superclass. In other
words, a subclass cannot override a class method—a method you use without instantiating an
object. A subclass can hide a static method in the superclass by declaring a static method
in the subclass with the same signature as the static method in the superclass. Then, you
can call the new static method within the subclass or in another class by using a subclass
object. However, this static method that hides the superclass static method cannot access
the parent method using the super object.

C H A P T E R 1 0 Introduction to Inheritance

518

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 10-17 shows a BaseballPlayer class that contains a single static method named
showOrigins(). Figure 10-18 shows a ProfessionalBaseballPlayer class that extends the
BaseballPlayer class to provide a salary. Within the ProfessionalBaseballPlayer class, an
attempt is made to create a nonstatic method that overrides the static showOrigins() method
to display the general Abner Doubleday message about baseball from the parent class as well as
the more specific message about professional baseball. However, the compiler returns the error
message shown in Figure 10-19—you cannot override a static method with a nonstatic method.

public class BaseballPlayer
{

private int jerseyNumber;
private double battingAvg;
public static void showOrigins()
{

System.out.println("Abner Doubleday is often " +
"credited with inventing baseball");

}
}

Figure 10-17 The BaseballPlayer class

public class ProfessionalBaseballPlayer extends BaseballPlayer
{

double salary;
@Override
public void showOrigins()
{

super.showOrigins();
System.out.println("The first professional " +

"major league baseball game was played in 1871");
}

}

Figure 10-18 The ProfessionalBaseballPlayer class attempting to override the parent’s
static method

Figure 10-19 Error message when compiling the ProfessionalBaseballPlayer class in
Figure 10-18

Don’t Do It
A nonstatic method cannot
override a static member
of a parent class.

Methods You Cannot Override

519

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 10-20 shows a second version of the ProfessionalBaseballPlayer class. In this
version, the showOrigins() method has been changed to static in an attempt to fix the
problem in Figure 10-19. Figure 10-21 shows the error message that appears when this class is
compiled. Because this method version is static, the method is not used with an object and
does not receive a this reference. The keyword super can be used in child class, nonstatic,
and instance methods and constructors, but not in child class static methods.

public class ProfessionalBaseballPlayer extends BaseballPlayer
{

double salary;
@Override
public static void showOrigins()
{

super.showOrigins();
System.out.println("The first professional " +

"major league baseball game was played in 1871");
}

}

Figure 10-20 The ProfessionalBaseballPlayer class with a static method that attempts to
reference super

Finally, Figure 10-22 shows a ProfessionalBaseballPlayer class that compiles
without error. The class extends BaseballPlayer, and its showOrigins() method is static.
Because this method has the same name as the parent class method, when you use the name with
a child class object, this method hides the original. However, it cannot use the super keyword
to access the Abner Doubleday method. If you want the ProfessionalBaseballPlayer class
to display information about baseball in general as well as professional baseball in particular,
you can do either of the following:

You can repeat the parent class message within the child class using a println()
statement.

You can use the parent class name, a dot, and the method name. Although a child class
cannot inherit its parent’s static methods, it can access its parent’s nonprivate static

Figure 10-21 Error message when compiling the ProfessionalBaseballPlayer class in
Figure 10-20

Don’t Do It
You cannot refer to super
in a static method.

C H A P T E R 1 0 Introduction to Inheritance

520

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

methods the same way any other class can. The shaded statement in Figure 10-22 uses
this approach.

Figure 10-23 shows a class that creates a ProfessionalBaseballPlayer and tests the
method; Figure 10-24 shows the output. Notice that the @Override tag is not used with the
showOrigins() method because the method does not override the static version in the
parent class—it only hides the parent class version.

public class ProfessionalBaseballPlayer extends BaseballPlayer
{

double salary;
public static void showOrigins()
{

BaseballPlayer.showOrigins();
System.out.println("The first professional " +

"major league baseball game was played in 1871");
}

}

Figure 10-22 The ProfessionalBaseballPlayer class

public class TestProPlayer
{

public static void main(String[] args)
{

ProfessionalBaseballPlayer aYankee =
new ProfessionalBaseballPlayer();

aYankee.showOrigins();
}

}

Figure 10-23 The TestProPlayer class

Figure 10-24 Output of the TestProPlayer application

Methods You Cannot Override

521

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Subclass Cannot Override final Methods in Its Superclass
A subclass cannot override methods that are declared final in the superclass. For example,
consider the BasketballPlayer and ProfessionalBasketballPlayer classes in Figures 10-25
and 10-26, respectively. When you attempt to compile the ProfessionalBasketballPlayer

class, you receive the error message in Figure 10-27, because the class cannot override the
final displayMessage() method in the parent class.

public class BasketballPlayer
{

private int jerseyNumber;
public final void displayMessage()
{

System.out.println("Michael Jordan is the " +
"greatest basketball player - and that is final");

}
}

Figure 10-25 The BasketballPlayer class

public class ProfessionalBasketballPlayer extends BasketballPlayer
{

double salary;
@Override
public void displayMessage()
{

System.out.println("I have nothing to say");
}

}

Figure 10-26 The ProfessionalBasketballPlayer class that attempts to override a
final method

Figure 10-27 Error message when compiling the ProfessionalBasketballPlayer class in
Figure 10-26

Don’t Do It
A child class method
cannot override a final
parent class method.

C H A P T E R 1 0 Introduction to Inheritance

522

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you make the displayMessage() method final in the ProfessionalBasketballPlayer
class in Figure 10-26, you receive the same compiler error message as shown in Figure 10-27. If you make
the displayMessage() method static in the ProfessionalBasketballPlayer class, the
class does not compile, but you do receive an additional error message.

In Chapter 2, you learned that you can use the keyword final when you want to create a
constant, as in final double TAXRATE = 0.065;. You can also use the final modifier with
methods when you don’t want the method to be overridden—that is, when you want every
child class to use the original parent class version of a method.

In Java, all instance method calls are virtual method calls by default—that is, the method used
is determined when the program runs because the type of the object used might not be
known until the method executes. For example, with the following method you can pass in a
BasketballPlayer object, or any object that is a child of BasketballPlayer, so the “actual”
type of the argument bbplayer, and which version of displayMessage() to use, is not known
until the method executes.
public void display(BasketballPlayer bbplayer)
{

bbplayer.displayMessage();
}

In other words, the version of the method used is not determined when the program is
compiled; it is determined when the method call is made. Determining the correct method
takes a small amount of time. An advantage to making a method final is that the compiler
knows there is only one version of the method—the parent class version. Therefore, the
compiler does know which method version to use—the only version—and the program is
more efficient.

Because a final method’s definition can never change—that is, can never be overridden
with a modified version—the compiler can optimize a program’s performance by removing
the calls to final methods and replacing them with the expanded code of their definitions
at each method call location. This process is called inlining the code. When a program
executes, you are never aware that inlining is taking place; the compiler chooses to use
this procedure to save the overhead of calling a method, and the program runs faster. The
compiler chooses to inline a final method only if it is a small method that contains just one
or two lines of code.

A Subclass Cannot Override Methods in a final Superclass
You can declare a class to be final. When you do, all of its methods are final, regardless
of which access specifier precedes the method name. A final class cannot be a parent.
Figure 10-28 shows two classes: a HideAndGoSeekPlayer class that is a final class because
of the word final in the class header, and a ProfessionalHideAndGoSeekPlayer class
that attempts to extend the final class, adding a salary field. Figure 10-29 shows the error
message generated when you try to compile the ProfessionalHideAndGoSeekPlayer class.

Methods You Cannot Override

523

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public final class HideAndGoSeekPlayer
{

private int count;
public void displayRules()
{

System.out.println("You have to count to " + count +
" before you start looking for hiders");

}
}
public final class ProfessionalHideAndGoSeekPlayer

extends HideAndGoSeekPlayer
{

private double salary;
}

Figure 10-28 The HideAndGoSeekPlayer and ProfessionalHideAndGoSeekPlayer classes

Java’s Math class, which you learned about in Chapter 4, is an example of a final class.

TWO TRUTHS & A LIE

Methods You Cannot Override

1. A subclass cannot override methods that are declared static in the superclass.

2. A subclass cannot override methods that are declared final in the superclass.

3. A subclass cannot override methods that are declared private in the
superclass.

. seno detcetorp r o cilbup

sall ewsa sdoht e metavirp edi rr evo nac ssal cbus A. 3# si t ne met at s esl af ehT

Figure 10-29 Error message when compiling the ProfessionalHideAndGoSeekPlayer class in
Figure 10-28

Notice the keyword
final in the method
header.

Don’t Do It
You cannot extend
a final class.

C H A P T E R 1 0 Introduction to Inheritance

524

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It
Don’t capitalize the o in the instanceof operator. Although the second word in
an identifier frequently is capitalized in Java, instanceof is an exception.

Don’t try to directly access private superclass members from a subclass.

Don’t forget to call a superclass constructor within a subclass constructor if the
superclass does not contain a default constructor.

Don’t try to override a final method in an extended class.

Don’t try to extend a final class.

Key Terms
Inheritance is a mechanism that enables one class to inherit, or assume, both the behavior
and the attributes of another class.

The Unified Modeling Language (UML) is a graphical language used by programmers and
analysts to describe classes and object-oriented processes.

A class diagram is a visual tool that provides you with an overview of a class. It consists of a
rectangle divided into three sections—the top section contains the name of the class, the
middle section contains the names and data types of the attributes, and the bottom section
contains the methods.

A base class is a class that is used as a basis for inheritance.

A derived class is a class that inherits from a base class.

Composition is the relationship in which one class contains one or more members of another
class that would not continue to exist without the object that contains them.

Aggregation is a type of composition in which a class contains one or more members of
another class that would continue to exist without the object that contains them.

Superclass and subclass are synonyms for base class and derived class.

Parent class and child class are synonyms for base class and derived class.

The keyword extends is used to achieve inheritance in Java.

To upcast an object is to change it to an object of a class higher in the object’s inheritance
hierarchy.

To override a field or method in a child class means to use the child’s version instead of the
parent’s version.

Key Terms

525

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Polymorphism is the technique of using the same method name to indicate different
implementations.

Subtype polymorphism is the ability of one method name to work appropriately for different
subclasses of a parent class.

An override annotation notifies the compiler of the programmer’s intent to override a parent
class method in a child class.

The keyword super refers to the parent or superclass of the class in which you use it.

Information hiding is the concept of keeping data private.

Protected access provides an intermediate level of security between public and private; a
class’s protected members can be used by a class and its descendants, but not by outside
classes.

Fragile classes are those that are prone to errors.

Virtual method calls are those in which the method used is determined when the program
runs, because the type of the object used might not be known until the method executes.

Inlining the code is an automatic process that optimizes performance by replacing calls to
methods with the implementations.

Chapter Summary
In Java, inheritance is a mechanism that enables one class to inherit both the behavior and
the attributes of another class. Using inheritance saves time because the original fields and
methods already exist, have been tested, and are familiar to users. A class that is used as a
basis for inheritance is a base class. A class you create that inherits from a base class is
called a derived class. You can use the terms superclass and subclass as synonyms for base
class and derived class; you can also use the terms parent class and child class.

You use the keyword extends to achieve inheritance in Java. A parent class object
does not have access to its child’s data and methods, but when you create a subclass by
extending an existing class, the new subclass contains data and methods that were defined
in the original superclass.

Polymorphism is the act of using the same method name to indicate different
implementations for methods based on the type of object. You use polymorphism when
you override a superclass method in a subclass by creating a method with the same name
and parameter list.

When you create any subclass object, the superclass constructor must execute first, and
then the subclass constructor executes. When a superclass contains only constructors
that require arguments, you must include at least one constructor for each subclass
you create. Subclass constructors can contain any number of statements, but the
first statement within each constructor must call the superclass constructor. When a
superclass requires parameters upon instantiation, even if you have no other reason to

C H A P T E R 1 0 Introduction to Inheritance

526

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

create a subclass constructor, you must write the subclass constructor so it can call its
superclass’s constructor.

A subclass can use any nonprivate methods of its superclass, but if the method is
overridden in the child class, you can use the keyword super to access the parent class
method.

Subclasses inherit all the data and methods of their superclasses, but private members of
the parent class are not accessible with a child class’s methods. However, if you create a
protected data field or method, it can be used within its own class or in any classes
extended from that class, but it cannot be used by “outside” classes. A subclass cannot
override methods that are declared static in the superclass. A subclass can hide a static

method in the superclass by declaring a static method in the subclass with the same
signature as the static method in the superclass. A subclass cannot override methods
that are declared final in the superclass or methods declared within a final class.

Review Questions
1. A way to discover which of two classes is the base class and which is the subclass is

to .

a. look at the class size
b. try saying the two class names together
c. use polymorphism
d. Both a and b are correct.

2. Employing inheritance reduces errors because .

a. the new classes have access to fewer data fields
b. the new classes have access to fewer methods
c. you can copy methods that you already created
d. many of the methods you need have already been used and tested

3. A base class can also be called a .

a. child class
b. subclass

c. derived class
d. superclass

4. Which of the following choices is the best example of a parent class/child class
relationship?

a. Rose/Flower
b. Present/Gift

c. Dog/Poodle
d. Sparrow/Bird

5. The Java keyword that creates inheritance is .

a. static

b. enlarge

c. extends

d. inherits

Review Questions

527

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. A class named Building has a public, nonstatic method named getFloors(). If
School is a child class of Building, and modelHigh is an object of type School, which
of the following statements is valid?

a. Building.getFloors();

b. School.getFloors();

c. modelHigh.getFloors();

d. All of the previous statements are valid.

7. Which of the following statements is true?

a. A child class inherits from a parent class.
b. A parent class inherits from a child class.
c. Both of the preceding statements are true.
d. Neither a nor b is true.

8. When a subclass method has the same name and argument types as a superclass
method, the subclass method the superclass method.

a. overrides
b. overuses

c. overloads
d. overcompensates

9. When you instantiate an object that is a member of a subclass, the
constructor executes first.

a. subclass
b. child class

c. extended class
d. parent class

10. The keyword super always refers to the of the class in which you
use it.

a. child class
b. derived class

c. subclass
d. parent class

11. If the only constructor in a superclass requires arguments, its
subclass .

a. must contain a constructor
b. must not contain a constructor
c. must contain a constructor that requires arguments
d. must not contain a constructor that requires arguments

12. If a superclass constructor requires arguments, any constructor of its subclasses must
call the superclass constructor .

a. as the first statement
b. as the last statement

C H A P T E R 1 0 Introduction to Inheritance

528

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

c. at some time
d. multiple times if multiple arguments are involved

13. A child class Motorcycle extends a parent class Vehicle. Each class constructor
requires one String argument. The Motorcycle class constructor can call the
Vehicle class constructor with the statement .

a. Vehicle("Honda");

b. Motorcycle("Harley");

c. super("Suzuki");

d. none of the above

14. In Java, the concept of keeping data private is known as .

a. polymorphism
b. information hiding

c. data deception
d. concealing fields

15. If you create a data field or method that is , it can be used within its
own class or in any classes extended from that class.

a. public

b. protected

c. private

d. both a and b

16. Within a subclass, you cannot override methods.

a. public

b. private

c. static

d. constructor

17. You call a static method using .

a. the name of its class, a dot, and the method name
b. the name of the class’s superclass, a dot, and the method name
c. the name of an object in the same class, a dot, and the method name
d. either a or b

18. You use a method access specifier when you create methods for
which you want to prevent overriding in extended classes.

a. public

b. protected

c. final

d. subclass

19. A compiler can decide to a final method—that is, determine the
code of the method call when the program is compiled.

a. duplicate
b. inline

c. redline
d. beeline

20. When a parent class contains a static method, child classes
override it.

a. frequently
b. seldom

c. must
d. cannot

Review Questions

529

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

Programming Exercises

1. Create a class named Horse that contains data fields for the name, color, and birth
year. Include get and set methods for these fields. Next, create a subclass named
RaceHorse, which contains an additional field that holds the number of races in
which the horse has competed and additional methods to get and set the new field.
Write an application that demonstrates using objects of each class. Save the files as
Horse.java, RaceHorse.java, and DemoHorses.java.

2. Mick’s Wicks makes candles in various sizes. Create a class for the business named
Candle that contains data fields for color, height, and price. Create get methods for
all three fields. Create set methods for color and height, but not for price. Instead,
when height is set, determine the price as $2 per inch. Create a child class named
ScentedCandle that contains an additional data field named scent and methods to
get and set it. In the child class, override the parent’s setHeight() method to set the
price of a ScentedCandle object at $3 per inch. Write an application that instantiates
an object of each type and displays the details. Save the files as Candle.java,
ScentedCandle.java, and DemoCandles.java.

3. Create an ItemSold class for Francis Pet Supply. Fields include an invoice
number, description, and price. Create get and set methods for each field.
Create a subclass named PetSold that descends from ItemSold and includes
three Boolean fields that indicate whether the pet has been vaccinated, neutered,
and housebroken, and include get and set methods for these fields. Write an
application that creates two objects of each class, and demonstrate that all the
methods work correctly. Save the files as ItemSold.java, PetSold.java, and
DemoItemsAndPets.java.

4. Create a class named Poem that contains fields for the name of the poem and the
number of lines in it. Include a constructor that requires values for both fields.
Also include get methods to retrieve field values. Create three subclasses: Couplet,
Limerick, and Haiku. The constructor for each subclass requires only a title; the lines
field is set using a constant value. A couplet has two lines, a limerick has five lines, and
a haiku has three lines. Create an application that demonstrates usage of an object of
each type. Save the files as Poem.java, Couplet.java, Limerick.java, Haiku.java,
and DemoPoems.java.

5. The developers of a free online game named Sugar Smash have asked you to develop
a class named SugarSmashPlayer that holds data about a single player. The class
contains the following fields: the player’s integer ID number, a String screen name,
and an array of integers that stores the highest score achieved in each of 10 game
levels. Include get and set methods for each field. The get and set methods for
the scores should each require two parameters—one that represents the score

C H A P T E R 1 0 Introduction to Inheritance

530

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

achieved and one that represents the game level to be retrieved or assigned. Display
an error message if the user attempts to assign or retrieve a score from a level that
is out of range for the array of scores. Additionally, no level except the first one
should be set unless the user has earned at least 100 points at each previous level.
If a user tries to set a score for a level that is not yet available, issue an error
message. Create a class named PremiumSugarSmashPlayer that descends from
SugarSmashPlayer. This class is instantiated when a user pays $2.99 to have access to
40 additional levels of play. As in the free version of the game, a user cannot set a score
for a level unless the user has earned at least 100 points at all previous levels. Create a
program that instantiates several objects of each type and demonstrates the methods.
Save the files as SugarSmashPlayer.java, PremiumSugarSmashPlayer.java, and
DemoSugarSmash.java.

6. Create a class named BaseballGame that contains data fields for two team names and
scores for each team in each of nine innings. Create get and set methods for each
field; the get and set methods for the scores should require a parameter that indicates
which inning’s score is being assigned or retrieved. Do not allow an inning score to be
set if all the previous innings have not already been set. If a user attempts to set an
inning that is not yet available, issue an error message. Also include a method that
determines the winner of the game after scores for the last inning have been entered.
(For this exercise, assume that a game might end in a tie.) Create two subclasses from
BaseballGame: HighSchoolBaseballGame and LittleLeagueBaseballGame. High
school baseball games have seven innings, and Little League games have six innings.
Ensure that scores for later innings cannot be accessed for objects of these subtypes.
Write three applications that each instantiate one of the object types and demonstrate
their methods. Save the files as BaseballGame.java, HighSchoolBaseballGame.java,
LittleLeagueBaseballGame.java, DemoBaseballGame.java,
DemoHSBaseballGame.java, and DemoLLBaseballGame.java.

7. Create a class named Package with data fields for weight in ounces, shipping method,
and shipping cost. The shipping method is a character: A for air, T for truck, or M for
mail. The Package class contains a constructor that requires arguments for weight and
shipping method. The constructor calls a calculateCost() method that determines
the shipping cost, based on the following table:

The Package class also contains a display() method that displays the values in all
four fields. Create a subclass named InsuredPackage that adds an insurance cost to
the shipping cost, based on the following table:

Weight (oz.) Air ($) Truck ($) Mail ($)

1 to 8 2.00 1.50 .50

9 to 16 3.00 2.35 1.50

17 and over 4.50 3.25 2.15

Exercises

531

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Write an application named UsePackage that instantiates at least three objects of
each type (Package and InsuredPackage) using a variety of weights and shipping
method codes. Display the results for each Package and InsuredPackage. Save the
files as Package.java, InsuredPackage.java, and UsePackage.java.

8. Create a class named CollegeCourse that includes data fields that hold the
department (for example, ENG), the course number (for example, 101), the credits
(for example, 3), and the fee for the course (for example, $360). All of the fields are
required as arguments to the constructor, except for the fee, which is calculated at
$120 per credit hour. Include a display() method that displays the course data.
Create a subclass named LabCourse that adds $50 to the course fee. Override the
parent class display() method to indicate that the course is a lab course and to
display all the data. Write an application named UseCourse that prompts the
user for course information. If the user enters a class in any of the following
departments, create a LabCourse: BIO, CHM, CIS, or PHY. If the user enters any
other department, create a CollegeCourse that does not include the lab fee. Then
display the course data. Save the files as CollegeCourse.java, LabCourse.java, and
UseCourse.java.

9. Create a class named Rock that acts as a superclass for rock samples collected and
catalogued by a natural history museum. The Rock class contains fields for a number
of samples, a description of the type of rock, and the weight of the rock in grams.
Include a constructor that accepts parameters for the sample number and weight.
The Rock constructor sets the description value to Unclassified. Include get methods
for each field. Create three child classes named IgneousRock, SedimentaryRock, and
MetamorphicRock. The constructors for these classes require parameters for the
sample number and weight. Search the Web for a brief description of each rock type
and assign it to the description field. Create an application that instantiates an object
of each type and demonstrate that the methods work appropriately. Save the files as
Rock.java, IgneousRock.java, SedimentaryRock.java, MetamorphicRock.java,
and DemoRocks.java.

10. Develop a set of classes for a college to use in various student service and personnel
applications. Classes you need to design include the following:

Person—A Person contains a first name, last name, street address, zip code, and
phone number. The class also includes a method that sets each data field, using a
series of dialog boxes and a display method that displays all of a Person’s
information on a single line at the command line on the screen.

Shipping Cost Before Insurance ($) Additional Cost ($)

0 to 1.00 2.45

1.01 to 3.00 3.95

3.01 and over 5.55

C H A P T E R 1 0 Introduction to Inheritance

532

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CollegeEmployee—CollegeEmployee descends from Person. A CollegeEmployee

also includes a Social Security number, an annual salary, and a department name,
as well as methods that override the Person methods to accept and display all
CollegeEmployee data.

Faculty—Faculty descends from CollegeEmployee. This class also includes a
Boolean field that indicates whether the Faculty member is tenured, as well as
methods that override the CollegeEmployee methods to accept and display this
additional piece of information.

Student—Student descends from Person. In addition to the fields available in
Person, a Student contains a major field of study and a grade point average as
well as methods that override the Person methods to accept and display these
additional facts.

Write an application named CollegeList that declares an array of four “regular”
CollegeEmployees, three Faculty, and seven Students. Prompt the user to specify
which type of person’s data will be entered (C, F, or S), or allow the user to quit (Q).
While the user chooses to continue (that is, does not quit), accept data entry for the
appropriate type of Person. If the user attempts to enter data for more than four
CollegeEmployees, three Faculty, or seven Students, display an error message.
When the user quits, display a report on the screen listing each group of Persons
under the appropriate heading of “College Employees,” “Faculty,” or “Students.” If
the user has not entered data for one or more types of Persons during a session,
display an appropriate message under the appropriate heading.

Save the files as Person.java, CollegeEmployee.java, Faculty.java, Student.java,
and CollegeList.java.

Debugging Exercises
1. Each of the following files in the Chapter10 folder of your downloadable

student files has syntax and/or logic errors. In each case, determine the problem
and fix the program. After you correct the errors, save each file using the same
filename preceded with Fix. For example, DebugTen1.java will become
FixDebugTen1.java.

a. DebugTen1.java

b. DebugTen2.java

c. DebugTen3.java

d. DebugTen4.java

e. Eight other Debug files are available in the Chapter10 folder; these files are
used by the DebugTen exercises.

Exercises

533

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Game Zone
1. a. Create an Alien class. Include at least three protected data members of your

choice, such as the number of eyes the Alien has. Include a constructor that
requires a value for each data field and a toString() method that returns a
String containing a complete description of the Alien. Save the file as
Alien.java.

b. Create two classes—Martian and Jupiterian—that descend from Alien. Supply
each with a constructor that sets the Alien data fields with values you choose.
For example, you can decide that a Martian has four eyes but a Jupiterian has
only two. Save the files as Martian.java and Jupiterian.java.

c. Create an application that instantiates one Martian and one Jupiterian. Call the
toString() method with each object and display the results. Save the application
as CreateAliens.java.

2. a. In Chapter 4, you created a Die class that you can use to instantiate objects that
hold one of six randomly selected values. Modify this class so its value field is
protected instead of private. This will allow a child class to access the value.
Save the file as Die.java.

b. Create a LoadedDie class that can be used to give a player a slight advantage over
the computer. A LoadedDie never rolls a 1; it only rolls values 2 through 6. Save
the file as LoadedDie.java.

c. Create a program that rolls two Die objects against each other 1,000 times and
counts the number of times the first Die has a higher value than the other Die.
Then roll a Die object against a LoadedDie object 1,000 times, and count the
number of times the Die wins. Display the results. Save the application as
TestLoadedDie.java. Figure 10-30 shows two typical executions.

Figure 10-30 Two typical executions of the TestLoadedDie application

C H A P T E R 1 0 Introduction to Inheritance

534

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Problems
1. a. In Chapter 8, you created an Event class for Carly’s Catering. Now extend the

class to create a DinnerEvent class. In the extended class, include four new
integer fields that represent numeric choices for an entrée, two side dishes, and
a dessert for each DinnerEvent object. Also include three final arrays that
contain String menu options for entrées, side dishes, and desserts, and store
at least three choices in each array. Create a DinnerEvent constructor that
requires arguments for an event number and number of guests, and integer
menu choices for one entrée, two side dishes, and one dessert. Pass the first
two parameters to the Event constructor, and assign the last four parameters
to the appropriate local fields. Also include a getMenu() method that builds
and returns a String including the Strings for the four menu choices. Save
the file as DinnerEvent.java.

b. In Chapter 9, you created an EventDemo program for Carly’s Catering. The
program uses an array of Event objects and allows the user to sort Events in
ascending order by event number, number of guests, or event type. Now
modify the program to use an array of four DinnerEvent objects. Prompt the
user for all values for each object, and then allow the user to continuously sort
the DinnerEvent descriptions by event number, number of guests, or event type.
Save the file as DinnerEventDemo.java.

2. a. In Chapter 8, you created a Rental class for Sammy’s Seashore Supplies.
Now extend the class to create a LessonWithRental class. In the extended
class, include a new Boolean field that indicates whether a lesson is required
or optional for the type of equipment rented. Also include a final array that
contains Strings representing the names of the instructors for each of the
eight equipment types, and store names that you choose in the array. Create a
LessonWithRental constructor that requires arguments for an event number,
minutes for the rental, and an integer equipment type. Pass the first two
parameters to the Rental constructor, and assign the last parameter to the
equipment type. For the first two equipment types (jet ski and pontoon boat),
set the Boolean lesson required field to true; otherwise, set it to false. Also
include a getInstructor() method that builds and returns a String including
the String for the equipment type, a message that indicates whether a lesson is
required, and the instructor’s name. Save the file as LessonWithRental.java.

b. In Chapter 9, you created a RentalDemo program for Sammy’s Seashore Supplies.
The program uses an array of Rental objects and allows the user to sort Rentals
in ascending order by contract number, equipment type, or price. Now modify
the program to use an array of four LessonWithRental objects. Prompt the user
for all values for each object, and then allow the user to continuously sort the
LessonWithRental descriptions by contract number, equipment type, or price.
Save the file as LessonWithRentalDemo.java.

Exercises

535

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 11
Advanced Inheritance
Concepts

In this chapter, you will:

Create and use abstract classes

Use dynamic method binding

Create arrays of subclass objects

Use the Object class and its methods

Use inheritance to achieve good software design

Create and use interfaces

Create and use packages

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating and Using Abstract Classes
Developing new classes is easier after you understand the concept of inheritance. When you
extend a class, the subclass inherits all the general attributes already defined in the base class;
thus, you must create only the new, more specific attributes for the subclass. For example,
a SalariedEmployee and an HourlyEmployee are more specific than an Employee. They can
inherit general Employee attributes, such as an employee number, but they add specific
attributes, such as unique pay-calculating methods.

A superclass contains the features that are shared by all of its subclasses. For example,
the attributes of the Dog class are shared by every Poodle and Spaniel. The subclasses are
more specific examples of the superclass type; they add more features to the shared, general
features. Conversely, when you examine a subclass, you see that its parent is more general and
less specific; for example, Animal is more general than Dog.

Recall from Chapter 10 that the terms base class, superclass, and parent are equivalent. Similarly, the terms
derived class, subclass, and child are equivalent. Also recall that a child class contains all the members of its
parent, whether those members are public, protected, or private. However, a child object cannot
directly access a private member inherited from a parent.

A concrete class is one from which you can instantiate objects. Sometimes, a class is so
general that you never intend to create any specific instances of the class. For example, you
might intend never to create an object that is “just” an Employee; each Employee is more
specifically a SalariedEmployee, HourlyEmployee, or ContractEmployee. A class such as
Employee that you create only to extend from is not a concrete class; it is an abstract class.
In the last chapter, you learned that you can create final classes if you do not want other
classes to be able to extend them. Classes that you declare to be abstract are the opposite;
your only purpose in creating them is to enable other classes to extend them. If you attempt
to instantiate an object from an abstract class, you receive an error message from the compiler
that you have committed an InstantiationError. You use the keyword abstract when you
declare an abstract class. (In other programming languages, such as C++, abstract classes are
known as virtual classes.)

In the last chapter, you learned to create class diagrams. By convention, when you show abstract classes
and methods in class diagrams, their names appear in italics.

Number is an abstract, built-in Java class. You cannot create a Number object, but you can create objects
from its subclasses, including Double, Float, and Integer.

Abstract classes can include two method types:

Nonabstract methods, like those you can create in any class, are implemented in the
abstract class and are simply inherited by its children.

Abstract methods have no body and must be implemented in child classes.

C H A P T E R 1 1 Advanced Inheritance Concepts

538

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Abstract classes usually contain at least one abstract method. When you create an abstract
method, you provide the keyword abstract and the rest of the method header, including
the method type, name, and parameters. However, the declaration ends there: you do not
provide curly braces or any statements within the method—just a semicolon at the end of
the declaration. If you create an empty method within an abstract class, the method is
abstract even if you do not explicitly use the keyword abstract when defining the method,
although programmers often include the keyword for clarity. When making abstract
declarations:

If you declare a class to be abstract, each of its methods can be abstract or not.

If you declare a method to be abstract, you must also declare its class to be abstract.

When you create a subclass that inherits an abstract method, you write a method with
the same signature. You are required to code a subclass method to override every
empty, abstract superclass method that is inherited. Either the child class method must
itself be abstract, or you must provide a body, or implementation, for the inherited
method.

Suppose that you want to create classes to represent different animals, such as Dog and Cow.
You can create a generic abstract class named Animal so you can provide generic data fields,
such as the animal’s name, only once. An Animal is generic, but all specific Animals make a
sound; the actual sound differs from Animal to Animal. If you code an empty speak() method
in the abstract Animal class, you require all future Animal subclasses to code a speak()

method that is specific to the subclass. Figure 11-1 shows an abstract Animal class containing
a data field for the name, getName() and setName() methods, and an abstract speak()
method.

public abstract class Animal
{

private String name;
public abstract void speak();
public String getName()
{

return name;
}
public void setName(String animalName)
{

name = animalName;
}

}

Figure 11-1 The abstract Animal class

The Animal class in Figure 11-1 is declared as abstract; the keyword is shaded. You
cannot create a class in which you declare an Animal object with a statement such as
Animal myPet = new Animal("Murphy");, because a class that attempts to instantiate an
Animal object does not compile. Animal is an abstract class, so no Animal objects can exist.

Creating and Using Abstract Classes

539

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You create an abstract class such as Animal only so you can extend it. For example, because a
dog is an animal, you can create a Dog class as a child class of Animal. Figure 11-2 shows a Dog
class that extends Animal.

public class Dog extends Animal
{

@Override
public void speak()
{

System.out.println("Woof!");
}

}

Figure 11-2 The Dog class

The speak() method within the Dog class is required because you want to create Dog
objects and the abstract, parent Animal class contains an abstract speak() method (shaded
in Figure 11-1). You can code any statements you want within the Dog speak() method, but
the speak() method must exist. If you do not want to create Dog objects but want the
Dog class to be a parent to further subclasses, then the Dog class must also be abstract. In
that case, you can write code for the speak() method within the subclasses of Dog. Recall
from Chapter 10 that the @Override annotation for the speak() method is not necessary,
but it provides error checking and documentation. Technically, speak() implements the
empty parent class method as well as overrides it.

If Animal is an abstract class, you cannot instantiate an Animal object; however, if Dog is a
concrete class, instantiating a Dog object is perfectly legal. When you code the following, you
create a Dog object:
Dog myPet = new Dog("Murphy");

Then, when you code myPet.speak();, the correct Dog speak() method executes.

The classes in Figures 11-3 and 11-4 also inherit from the Animal class and implement speak()
methods. Figure 11-5 contains a UseAnimals application.

public class Cow extends Animal
{

@Override
public void speak()
{

System.out.println("Moo!");
}

}

Figure 11-3 The Cow class

C H A P T E R 1 1 Advanced Inheritance Concepts

540

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class Snake extends Animal
{

@Override
public void speak()
{

System.out.println("Ssss!");
}

}

Figure 11-4 The Snake class

public class UseAnimals
{

public static void main(String[] args)
{

Dog myDog = new Dog();
Cow myCow = new Cow();
Snake mySnake = new Snake();
myDog.setName("My dog Murphy");
myCow.setName("My cow Elsie");
mySnake.setName("My snake Sammy");
System.out.print(myDog.getName() + " says ");
myDog.speak();
System.out.print(myCow.getName() + " says ");
myCow.speak();
System.out.print(mySnake.getName() + " says ");
mySnake.speak();

}
}

Figure 11-5 The UseAnimals application

The output in Figure 11-6 shows that when you create Dog, Cow, and Snake objects, each is an
Animal with access to the Animal class getName() and setName() methods, and each uses its
own speak() method appropriately.
In Figure 11-6, notice how the
myDog.getName() and myDog.speak()

method calls produce different output
from when the same method names are
used with myCow and mySnake.

Recall that using the same method name
to indicate different implementations is
polymorphism. Using polymorphism,
one method name causes different and
appropriate actions for diverse types of
objects. Figure 11-6 Output of the UseAnimals application

Creating and Using Abstract Classes

541

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Watch the video Abstract Classes.

TWO TRUTHS & A LIE

Creating and Using Abstract Classes

1. An abstract class is one from which you cannot inherit, but from which you can
create concrete objects.

2. Abstract classes usually have one or more empty abstract methods.

3. An abstract method has no body, curly braces, or statements.

.ti r ehni nac uoy hci h w morf t ub, st cej bo et er cnoc
yna et aer ct onnac uoy hci h w morf eno si ssal ct cart sba nA. 1#si t ne met at s esl af ehT

You Do It

Creating an Abstract Class

In this section, you create an abstract Vehicle class. The class includes fields for the
power source, the number of wheels, and the price. Vehicle is an abstract class;
there will never be a “plain” Vehicle object. Later, you will create two subclasses,
Sailboat and Bicycle; these more specific classes include price limits for the
vehicle type, as well as different methods for displaying data.

1. Open a new file, and enter the following first few lines to begin creating an
abstract Vehicle class:
public abstract class Vehicle
{

2. Declare the data fields that hold the power source, number of wheels, and
price. Declare price as protected rather than private, because you want
child classes to be able to access the field.
private String powerSource;
private int wheels;
protected int price;

3. The Vehicle constructor accepts three parameters and calls three methods.
The first method accepts the powerSource parameter, the second accepts

(continues)

C H A P T E R 1 1 Advanced Inheritance Concepts

542

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the wheels parameter, and the third method prompts the user
for a vehicle price.
public Vehicle(String powerSource, int wheels)
{

setPowerSource(powerSource);
setWheels(wheels);
setPrice();

}

4. Include the following three get methods that return the values for the data
fields:
public String getPowerSource()
{

return powerSource;
}
public int getWheels()
{

return wheels;
}
public int getPrice()
{

return price;
}

5. Enter the following set methods, which assign values to the powerSource and
wheels fields.
public void setPowerSource(String source)
{

powerSource = source;
}
public void setWheels(int wls)
{

wheels = wls;
}

6. The setPrice() method is an abstract method. Each subclass you eventually
create that represents different vehicle types will have a unique prompt for the
price and a different maximum allowed price. Type the abstract method
definition and the closing curly brace for the class:

public abstract void setPrice();
}

7. Save the file as Vehicle.java. At the command prompt, compile the file using
the javac command.

(continued)

(continues)

Creating and Using Abstract Classes

543

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Extending an Abstract Class

You just created an abstract class, but you cannot instantiate any objects from this
class. Rather, you must extend this class to be able to create any Vehicle-related
objects. Next, you create a Sailboat class that extends the Vehicle class. This new
class is concrete; that is, you can create actual Sailboat class objects.

1. Open a new file, and then type the following, including a header for a Sailboat

class that extends the Vehicle class:
import javax.swing.*;
public class Sailboat extends Vehicle
{

2. Add the declaration of a length field that is specific to a Sailboat by typing the
following code:
private int length;

3. The Sailboat constructor must call its parent’s constructor and send two
arguments to provide values for the powerSource and wheels values. It also
calls the setLength() method that prompts the user for and sets the length of
the Sailboat objects:
public Sailboat()
{

super("wind", 0);
setLength();

}

4. Enter the following setLength() and getLength() methods, which
respectively ask for and return the Sailboat’s length:
public void setLength()
{

String entry;
entry = JOptionPane.showInputDialog

(null, "Enter sailboat length in feet ");
length = Integer.parseInt(entry);

}
public int getLength()
{

return length;
}

5. The concrete Sailboat class must contain a setPrice() method because
the method is abstract in the parent class. Assume that a Sailboat has a
maximum price of $100,000. Add the following setPrice() method that

(continued)

(continues)

C H A P T E R 1 1 Advanced Inheritance Concepts

544

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

prompts the user for the price and forces it to the maximum value if the
entered value is too high. Include the @Override annotation because the
setPrice() method overrides the Vehicle version.
@Override
public void setPrice()
{

String entry;
final int MAX = 100000;
entry = JOptionPane.showInputDialog
(null, "Enter sailboat price ");

price = Integer.parseInt(entry);
if(price > MAX)

price = MAX;
}

6. In Chapter 7, you first used the automatically included Object class toString()

method that converts any object to a String. Now, you can override that
method for this class by writing your own version as follows. You can include
the @Override annotation to indicate that this version of toString() is intended
to override the Object class version. When you finish, add a closing curly brace
for the class.

@Override
public String toString()
{

return("The " + getLength() +
" foot sailboat is powered by " +
getPowerSource() + "; it has " + getWheels() +
" wheels and costs $" + getPrice());

}
}

7. Save the file as Sailboat.java, and then compile the class.

Extending an Abstract Class with a Second Subclass

The Bicycle class inherits from Vehicle, just as the Sailboat class does. Whereas
the Sailboat class requires a data field to hold the length of the boat, the Bicycle

class does not. Other differences lie in the content of the setPrice() and toString()

methods.

1. Open a new file, and then type the following first lines of the Bicycle class:
import javax.swing.*;
public class Bicycle extends Vehicle
{

(continued)

(continues)

Creating and Using Abstract Classes

545

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Enter the following Bicycle class constructor, which calls the parent
constructor, sending it power source and wheel values:
public Bicycle()
{

super("a person", 2);
}

3. Enter the following setPrice() method that forces a Bicycle’s price to be no
greater than $4,000:
@Override
public void setPrice()
{

String entry;
final int MAX = 4000;
entry = JOptionPane.showInputDialog
(null, "Enter bicycle price ");

price = Integer.parseInt(entry);
if(price > MAX)

price = MAX;
}

4. Enter the following toString() method, and add the closing curly brace for
the class:

@Override
public String toString()
{

return("The bicycle is powered by " + getPowerSource() +
"; it has " + getWheels() + " wheels and costs $" +
getPrice());

}
}

5. Save the file as Bicycle.java, and then compile the class.

Instantiating Objects from Subclasses

Next, you create a program that instantiates concrete objects from each of the two
child classes you just created.

1. Open a new file, and then enter the start of the DemoVehicles class as follows:
import javax.swing.*;
public class DemoVehicles
{

public static void main(String[] args)
{

(continued)

(continues)

C H A P T E R 1 1 Advanced Inheritance Concepts

546

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Enter the following statements that declare an object of each subclass type.
Sailboat aBoat = new Sailboat();
Bicycle aBike = new Bicycle();

3. Enter the following statement to display the contents of the two objects. Add
the closing curly braces for the main() method and the class:

JOptionPane.showMessageDialog(null,
"\nVehicle descriptions:\n" +
aBoat.toString() + "\n" + aBike.toString());

}
}

4. Save the file as DemoVehicles.java, and then compile it. After you compile
the class with no errors, run this application using the java DemoVehicles
command. When the application prompts you, enter the length and price for a
sailboat, and the price for a bicycle. Figure 11-7 shows output after typical
user input.

Using Dynamic Method Binding
When you create a superclass and one or more subclasses, each object of each subclass
“is a” superclass object. Every SalariedEmployee “is an” Employee; every Dog “is an” Animal.
(The opposite is not true. Superclass objects are not members of any of their subclasses. An
Employee is not a SalariedEmployee. An Animal is not a Dog.) Because every subclass object
“is a” superclass member, you can convert subclass objects to superclass objects.

As you are aware, when a superclass is abstract, you cannot instantiate objects of the
superclass; however, you can indirectly create a reference to a superclass abstract object.
A reference is not an object, but it points to a memory address. When you create a reference,
you do not use the keyword new to create a concrete object; instead, you create a variable

(continued)

Figure 11-7 Typical output of the DemoVehicles application

Using Dynamic Method Binding

547

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

name in which you can hold the memory address of a concrete object. So, although a
reference to an abstract superclass object is not concrete, you can store a concrete subclass
object reference there.

You learned how to create a reference in Chapter 4. When you code SomeClass someObject;, you are
creating a reference. If you later code the following statement, including the keyword new and the
constructor name, then you actually set aside memory for someObject:

someObject = new SomeClass();

For example, if you create an Animal class, as shown previously in Figure 11-1, and various
subclasses, such as Dog, Cow, and Snake, as shown in Figures 11-2 through 11-4, you can
create an application containing a generic Animal reference variable into which you can
assign any of the concrete Animal child objects. Figure 11-8 shows an AnimalReference
application, and Figure 11-9 shows its output. The variable animalRef is a type of Animal.
No superclass Animal object is created (none can be); instead, Dog and Cow objects are
created using the new keyword. When the Cow object is assigned to the Animal reference,
the animalRef.speak() method call results in “Moo!”; when the Dog object is assigned to
the Animal reference, the method call results in “Woof!” Recall that assigning a variable or
constant of one type to a variable of another type is called promotion, implicit conversion,
or upcasting.

public class AnimalReference
{

public static void main(String[] args)
{

Animal animalRef;
animalRef = new Cow();
animalRef.speak();
animalRef = new Dog();
animalRef.speak();

}
}

Figure 11-8 The AnimalReference application

Figure 11-9 Output of the AnimalReference application

C H A P T E R 1 1 Advanced Inheritance Concepts

548

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The application in Figure 11-8 shows that using a reference polymorphically allows you to
extend a base class and use extended objects when a base class type is expected. For example,
you could pass a Dog or a Cow to a method that expects an Animal. This means that all
methods written to accept a superclass argument can also be used with its children—a feature
that saves child-class creators a lot of work.

Recall from Chapter 10 that you can use the instanceof keyword to determine whether an object is an
instance of any class in its hierarchy. For example, both of the following expressions are true if myPoodle is
a Dog object and Dog is an Animal subclass:
myPoodle instanceof Animal
myPoodle instanceof Dog

The application in Figure 11-8 demonstrates polymorphic behavior. The same statement,
animalRef.speak();, repeats after animalRef is assigned each new animal type. Each call to
the speak() method results in different output. Each reference “chooses” the correct speak()
method, based on the type of animal referenced. This flexible behavior is most useful when
you pass references to methods; you will learn more about this in the next section. In the last
chapter, you learned that in Java all instance method calls are virtual method calls by
default—the method that is used is determined when the program runs, because the type of
the object used might not be known until the method executes. An application’s ability to
select the correct subclass method depending on the argument type is known as dynamic
method binding. When the application executes, the correct method is attached (or bound) to
the application based on the current, changing (dynamic) context. Dynamic method binding
is also called late method binding. The opposite of dynamic method binding is static (fixed)
method binding. In Java, instance methods (those that receive a this reference) use dynamic
binding; class methods use static method binding. Dynamic binding makes programs flexible;
however, static binding operates more quickly.

In the example in this section, the objects using speak() happen to be related (Cow and Dog are both
Animals). Be aware that polymorphic behavior can apply to nonrelated classes as well. For example, a
DebateStudent and a VentriloquistsDummy might also speak(). When polymorphic behavior
depends on method overloading, it is called ad-hoc polymorphism; when it depends on using a superclass
as a method parameter, it is called pure polymorphism or inclusion polymorphism.

Using a Superclass as a Method Parameter Type
Dynamic method binding is most useful when you want to create a method that has one
or more parameters that might be one of several types. For example, the shaded header for
the talkingAnimal() method in Figure 11-10 accepts any type of Animal argument. The
method can be used in programs that contain Dog objects, Cow objects, or objects of any other
class that descends from Animal. The application passes first a Dog and then a Cow to the
method. The output in Figure 11-11 shows that the method works correctly no matter which
type of Animal descendant it receives.

Using Dynamic Method Binding

549

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class TalkingAnimalDemo
{

public static void main(String[] args)
{

Dog dog = new Dog();
Cow cow = new Cow();
dog.setName("Ginger");
cow.setName("Molly");
talkingAnimal(dog);
talkingAnimal(cow);

}
public static void talkingAnimal(Animal animal)
{

System.out.println("Come one. Come all.");
System.out.println

("See the amazing talking animal!");
System.out.println(animal.getName() +

" says");
animal.speak();
System.out.println("***************");

}
}

Figure 11-10 The TalkingAnimalDemo class

Figure 11-11 Output of the TalkingAnimalDemo application

C H A P T E R 1 1 Advanced Inheritance Concepts

550

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using Dynamic Method Binding

1. If Parent is a parent class and Child is its child, then you can assign a Child

object to a Parent reference.

2. If Parent is a parent class and Child is its child, then you can assign a Parent

object to a Child reference.

3. Dynamic method binding refers to a program’s ability to select the correct
subclass method for a superclass reference while a program is running.

. ecner ef er tneraP a ot t cej bo dlihC

a r ot cej bo tneraP a ngi ssa nac uoy ,r eve woH. ecner ef er dlihC a ot t cej bo
dlihC a ngi ssa yl no nac uoy; ecner ef er dlihC a ot t cej bo tneraP a ngi ssat onnac uoy

neht , dli hc sti si dlihC dna ssal ct ner ap a si tneraPfI . 2# si t ne met at s esl af ehT

Creating Arrays of Subclass Objects
Recall that every array element must be the same data type, which can be a primitive, built-in
type or a type based on a more complex class. When you create an array in Java, you are not
constructing objects. Instead, you are creating space for references to objects. In other words,
although it is convenient to refer to “an array of objects,” every array of objects is really an
array of object references. When you create an array of superclass references, it can hold
subclass references. This is true whether the superclass in question is abstract or concrete.

For example, even though Employee is an abstract class, and every Employee object is either a
SalariedEmployee or an HourlyEmployee subclass object, it can be convenient to create an
array of generic Employee references. Likewise, an Animal array might contain individual
elements that are Dog, Cow, or Snake objects. As long as every Employee subclass has access to
a calculatePay() method, and every Animal subclass has access to a speak() method, you
can manipulate an array of superclass objects and invoke the appropriate method for each
subclass member.

The following statement creates an array of three Animal references:
Animal[] animalRef = new Animal[3];

The statement reserves enough computer memory for three Animal objects named
animalRef[0], animalRef[1], and animalRef[2]. The statement does not actually instantiate
Animals; Animal is an abstract class and cannot be instantiated. The Animal array declaration
simply reserves memory for three object references. If you instantiate objects from Animal
subclasses, you can place references to those objects in the Animal array, as Figure 11-12
illustrates. Figure 11-13 shows the output of the AnimalArrayDemo application. The array
of three references is used to access each appropriate speak() method.

Creating Arrays of Subclass Objects

551

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class AnimalArrayDemo
{

public static void main(String[] args)
{

Animal[] animalRef = new Animal[3];
animalRef[0] = new Dog();
animalRef[1] = new Cow();
animalRef[2] = new Snake();
for(int x = 0; x < animalRef.length; ++x)

animalRef[x].speak();
}

}

Figure 11-12 The AnimalArrayDemo application

In the AnimalArrayDemo application in Figure 11-12, a reference to an instance of the Dog
class is assigned to the first Animal reference, and then references to Cow and Snake objects
are assigned to the second and third array elements. After the object references are in the
array, you can manipulate them like any other array elements. The application in Figure 11-12
uses a for loop and a subscript to get each individual reference to speak().

TWO TRUTHS & A LIE

Creating Arrays of Subclass Objects

1. You can assign a superclass reference to an array of its subclass type.

2. The following statement creates an array of 10 Table references:

Table[] table = new Table[10];

3. You can assign subclass objects to an array that is their superclass type.

. dnuor a ya wr eht o eht t ont ub epyt ssal cr epus
sti f o yarr a na ot ecner ef er ssal cbus a ngi ssa nac uoY. 1# si t ne met at s esl af ehT

Figure 11-13 Output of the AnimalArrayDemo application

C H A P T E R 1 1 Advanced Inheritance Concepts

552

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Using Object References

Next, you write an application in which you create an array of Vehicle references.
Within the application, you assign Sailboat objects and Bicycle objects to the same
array. Then, because the different object types are stored in the same array, you can
easily manipulate them by using a for loop.

1. Open a new file, and then enter the following first few lines of the
VehicleDatabase program:
import javax.swing.*;
public class VehicleDatabase
{

public static void main(String[] args)
{

2. Create the following array of five Vehicle references and an integer subscript
to use with the array:
Vehicle[] vehicles = new Vehicle[5];
int x;

3. Enter the following for loop that prompts you to select whether to enter
a sailboat or a bicycle in the array. Based on user input, instantiate the
appropriate object type.
for(x = 0; x < vehicles.length; ++x)
{

String userEntry;
int vehicleType;
userEntry = JOptionPane.showInputDialog(null,

"Please select the type of\n " +
"vehicle you want to enter: \n1 - Sailboat\n" +
" 2 - Bicycle");

vehicleType = Integer.parseInt(userEntry);
if(vehicleType == 1)

vehicles[x] = new Sailboat();
else

vehicles[x] = new Bicycle();
}

(continues)

Creating Arrays of Subclass Objects

553

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. After entering the information for each vehicle, display the array contents by
typing the following code. First create a StringBuffer to hold the list of
vehicles. Then, in a for loop, build an output String by repeatedly adding a
newline character, a counter, and a vehicle from the array to the StringBuffer

object. Display the constructed StringBuffer in a dialog box. Then type the
closing curly braces for the main() method and the class:

StringBuffer outString = new StringBuffer();
for(x = 0; x < vehicles.length; ++x)
{

outString.append("\n#" + (x + 1) + " ");
outString.append(vehicles[x].toString());

}
JOptionPane.showMessageDialog(null,

"Our available Vehicles include:\n" +
outString);

}
}

5. Save the file as VehicleDatabase.java, and then compile it. Run the appli-
cation, entering five objects of your choice. Figure 11-14 shows typical output
after the user has entered data.

Using the Object Class and Its Methods
Every class in Java is actually a subclass, except one. When you define a class, if you do not
explicitly extend another class, your class implicitly is an extension of the Object class. The
Object class is defined in the java.lang package, which is imported automatically every

(continued)

Figure 11-14 Typical output of the VehicleDatabase application

C H A P T E R 1 1 Advanced Inheritance Concepts

554

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

time you write a program; in other words, the following two class declarations have
identical outcomes:
public class Animal
{
}
public class Animal extends Object
{
}

The Object class includes methods that descendant classes can use, overload, or override.
Table 11-1 describes the methods built into the Object class; every class you create has access
to these methods. This chapter describes the toString() and equals() methods in detail;
you will learn about the other methods as you continue to study Java.

Method Description

Object clone() Creates and returns a copy of this object

boolean equals

(Object obj)
Indicates whether some object is equal to the parameter object (this
method is described in detail below)

void finalize() Called by the garbage collector on an object when there are no more
references to the object

Class<?> getClass() Returns the class to which this object belongs at run time

int hashCode() Returns a hash code value for the object (this method is described
briefly below)

void notify() Wakes up a single thread that is waiting on this object’s monitor

void notifyAll() Wakes up all threads that are waiting on this object’s monitor

String toString() Returns a string representation of the object (this method is described in
detail below)

void wait() Causes the current thread to wait until another thread invokes either the
notify() method or the notifyAll() method for this object

void wait

(long timeout)
Causes the current thread to wait until either another thread invokes the
notify() method or the notifyAll() method for this object, or a
specified amount of time has elapsed

void wait
(long timeout,

int nanos)

Causes the current thread to wait until another thread invokes the
notify() or notifyAll() method for this object, or some other
thread interrupts the current thread, or a certain amount of real time
has elapsed

Table 11-1 Object class methods

Using the Object Class and Its Methods

555

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table 11-1 refers to threads in several locations. In Chapter 7, you learned about threads in reference to the
StringBuffer class. Threads of execution are units of processing that are scheduled by an operating
system and that can be used to create multiple paths of control during program execution.

Using the toString() Method
The Object class toString() method converts an Object into a String that contains
information about the Object. Within a class, if you do not create a toString() method that
overrides the version in the Object class, you can use the superclass version of the method.
For example, examine the Animal and Dog classes originally shown in Figures 11-1 and 11-2
and repeated in Figure 11-15. Notice that neither the Animal class nor the Dog class in
Figure 11-15 defines a toString() method. Yet, when you write the DisplayDog application
in Figure 11-15, it can use a toString() method with a Dog object in the shaded statement.
The output is shown in Figure 11-16. The Dog object can use the toString() method
because Dog inherits toString() from Object.

public abstract class Animal
{

private String name;
public abstract void speak();
public String getName()
{

return name;
}
public void setName(String animalName)
{

name = animalName;
}

}
public class Dog extends Animal
{

public void speak()
{

System.out.println("Woof!");
}

}
public class DisplayDog
{

public static void main(String[] args)
{

Dog myDog = new Dog();
String dogString = myDog.toString();
System.out.println(dogString);

}
}

Figure 11-15 The Animal and Dog classes and the DisplayDog application

C H A P T E R 1 1 Advanced Inheritance Concepts

556

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The output of the DisplayDog application in Figure 11-16 is not very useful. It consists of the
class name of which the object is an instance (Dog), the at sign (@), and a hexadecimal (base
16) identifier. The identifier (6d06d69c in Figure 11-16) is an example of a hash code—a
calculated number used to uniquely identify an object. Even if two objects in an application
have the same Java identifier (as might be the case if the same identifier is used in different
methods), each will have a unique hash code. Later in this chapter, you learn about the
equals() method, which also uses a hash code.

Instead of using the automatic toString() method with your classes, it is usually more
useful to write your own overloaded version that displays some or all of the data field values
for the object with which you use it. A good toString() method can be very useful in
debugging a program; if you do not understand why a class is behaving as it is, you can
display the toString() value and examine its contents. For example, Figure 11-17 shows
a BankAccount class that contains a mistake in the shaded line—the BankAccount balance

value is set to the account number instead of the balance amount. Of course, if you made
such a mistake within one of your own classes, there would be no shading or comment to
help you find the mistake. In addition, a useful BankAccount class would be much larger, so
the mistake would be more difficult to locate. However, when you run programs containing
BankAccount objects, you would notice that the balances of your BankAccounts are incorrect.
To help you discover why, you could create a short application like the TestBankAccount class
in Figure 11-18. This application uses the BankAccount class toString() method to display the
relevant details of a BankAccount object. The output of the TestBankAccount application
appears in Figure 11-19.

Figure 11-16 Output of the DisplayDog application

Using the Object Class and Its Methods

557

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class BankAccount
{

private int acctNum;
private double balance;
public BankAccount(int num, double bal)
{

acctNum = num;
balance = num;

}
@Override
public String toString()
{

String info = "BankAccount acctNum = " + acctNum +
" Balance = $" + balance;

return info;
}

}

Figure 11-17 The BankAccount class

public class TestBankAccount
{

public static void main(String[] args)
{

BankAccount myAccount = new BankAccount(123, 4567.89);
System.out.println(myAccount.toString());

}
}

Figure 11-18 The TestBankAccount application

From the output in Figure 11-19, you can see that the account number and balance have the
same value, and this knowledge might help you to pin down the location of the incorrect
statement in the BankAccount class. Of course, you do not have to use a method named
toString() to discover a BankAccount’s attributes. If the class had methods such as
getAcctNum() and getBalance(), you could use them to create a similar application. The
advantage of creating a toString() method for your classes is that toString() is Java’s

Figure 11-19 Output of the TestBankAccount application

Don’t Do It
The bal parameter should be
assigned to balance.

C H A P T E R 1 1 Advanced Inheritance Concepts

558

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

conventional name for a method that converts an object’s relevant details into String format.
Because toString() originates in the Object class, you can be assured that toString()
compiles with any object whose details you want to see, even if the method has not been
rewritten for the subclass in question. In addition, as you write your own applications and use
classes written by others, you can hope that those programmers have overridden toString()
to provide useful information. You don’t have to search documentation to discover a useful
method—instead you can rely on the likely usefulness of toString(). In Chapter 7, you
learned that you can use the toString() method to convert any object to a String. Now
you understand why this works—the String class overloads the Object class toString()

method.

Using the equals() Method
The Object class also contains an equals() method with the following header:
public boolean equals(Object obj)

The method is not static, and it takes a single argument that is compared to the calling object.
For example, you might write a statement such as the following:
if(someObject.equals(someOtherObject))

System.out.println("The objects are equal");

Other classes, such as the String class, also have their own equals() methods that overload the
Object class method. You first used the equals() method to compare String objects in Chapter 7.
Two String objects are considered equal only if their String contents are identical.

The Object class equals() method returns a boolean value indicating whether the objects
are equal. This equals() method considers two objects to be equal only if they have the same
hash code; in other words, they are equal only if one is a reference to the other. For example,
two BankAccount objects named myAccount and yourAccount are not automatically equal,
even if they have the same account numbers and balances; the inherited equals() method
returns true only if they have the same memory address. If you want to consider two objects
to be equal only when one is a reference to the other, you can use the built-in Object class
equals() method. However, if you want to consider objects to be equal based on their
contents, you must write your own equals() method for your classes.

Java’s Object class contains a public method named hashCode() that returns an integer repre-
senting the hash code. (Discovering this number usually is of little use to you. The default hash code is the
internal JVM memory address of the object.)

When you want to create a method that compares two objects based on the values they hold,
you have three choices:

Create a method similar to those you have created for many classes and give it an
identifier like areTheyEqual().

Using the Object Class and Its Methods

559

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Overload the Object class equals() method.

Override the Object class equals() method.

The advantage to creating a method with an identifier other than equals() is that
programmers will not mistake it for an overridden version of the Object class method.
The advantage to using the equals() identifier is that programmers expect it to be used to
compare objects. It is easier to overload the equals() method than to override it, so you learn
how to overload it in the next section. Then you will read about how to override it.

Overloading equals()

The application shown in Figure 11-20 instantiates two BankAccount objects using the
BankAccount class in Figure 11-17. The BankAccount class does not include its own equals()

method, so it neither overloads nor overrides the Object equals() method. Thus, the
application in Figure 11-20 produces the output in Figure 11-21. Even though the two
BankAccount objects have the same account numbers and balances, the BankAccounts are
not considered equal because they do not have the same hash code. No two objects you
declare in a program will ever have the same hash code unless you change one of them.

public class CompareAccounts
{

public static void main(String[] args)
{

BankAccount acct1 = new BankAccount(1234, 500.00);
BankAccount acct2 = new BankAccount(1234, 500.00);
if(acct1.equals(acct2))

System.out.println("Accounts are equal");
else

System.out.println("Accounts are not equal");
}

}

Figure 11-20 The CompareAccounts application

If your intention is that within applications, two BankAccount objects with different hash
codes but the same account number and balance should be considered equal, and you want to
use the equals() method to make the comparison, you must write your own comparison

Figure 11-21 Output of the CompareAccounts application

C H A P T E R 1 1 Advanced Inheritance Concepts

560

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

method within the BankAccount class. For example, Figure 11-22 shows a new version of
the BankAccount class containing a shaded equals() method. When you reexecute the
CompareAccounts application in Figure 11-20, the result appears as in Figure 11-23.

public class BankAccount
{

private int acctNum;
private double balance;
public BankAccount(int num, double bal)
{

acctNum = num;
balance = bal;

}
@Override
public String toString()
{

String info = "BankAccount acctNum = " + acctNum +
" Balance = $" + balance;

return info;
}
public boolean equals(BankAccount secondAcct)
{

boolean result;
if(acctNum == secondAcct.acctNum && balance == secondAcct.balance)

result = true;
else

result = false;
return result;

}
}

Figure 11-22 The BankAccount class containing its own equals() method

The two BankAccount objects described in the output in Figure 11-23 are equal because
their account numbers and balances match. Because the equals() method in Figure 11-22 is
part of the BankAccount class, and because equals() is a nonstatic method, the object that calls
the method is held by the this reference within the method. That is, in the application in
Figure 11-22, acct1 becomes the this reference in the equals() method. That means the

Figure 11-23 Output of the CompareAccounts application after adding an overloaded equals()
method to the BankAccount class

Using the Object Class and Its Methods

561

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

fields acctNum and balance refer to acct1 object values. In the CompareAccounts application,
acct2 is the argument to the equals()method, so within the equals()method, acct2 becomes
secondAcct, and secondAcct.acctNum and secondAcct.balance refer to acct2’s values.

Your organization might consider two BankAccount objects equal if their account numbers
match, disregarding their balances. If so, you simply change the if clause in the equals()

method. Or, you might decide accounts are equal based on some other criteria. You can
implement the equals() method in any way that suits your needs.

The equals() method in the BankAccount class overloads the Object class equals()
method. You first learned the term overload in Chapter 4; recall that a method overloads
another when their parameter lists differ. The BankAccount equals() method has a
BankAccount parameter, but the Object equals() method has an Object parameter.
Therefore, this equals() method overloads its parent’s version, and a BankAccount object
has access to two equals() methods—one that takes a BankAccount parameter and one
that takes an Object parameter.

If you change a class (such as changing BankAccount by adding a new method), not only must you
recompile the class, you must also recompile any client applications (such as CompareAccounts) so the
newly updated class can be relinked to the application and so the clients include the new features of the
altered class. If you execute the CompareAccounts application but do not recompile BankAccount,
the application continues to use the previously compiled version of the class.

Overriding equals()

When a subclass method overrides a parent’s method, the signatures must be the same,
as you learned in Chapter 10. Therefore, if you want a BankAccount equals() method to
override the parent version, the method header must be written as follows with any identifier
you choose for the Object parameter:
public boolean equals(Object obj)

Within an equals() method with this signature, you must cast the Object parameter to a
BankAccount object before comparisons can be made. Figure 11-24 shows the method with
the casting statement shaded.

@Override
public boolean equals(Object obj)
{

BankAccount secondAcct = (BankAccount)obj;
boolean result;
if(acctNum == secondAcct.acctNum && balance == secondAcct.balance)

result = true;
else

result = false;
return result;

}

Figure 11-24 BankAccount equals() method that overrides Object class version

C H A P T E R 1 1 Advanced Inheritance Concepts

562

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The method in Figure 11-24 works correctly to compare BankAccount objects in most
programs you will write. However, as you start to use more sophisticated Java techniques, you
will run into strange errors unless you follow all the recommendations Java’s creators have
made for overriding equals(). These include the following:

Determine if the equals() argument is the same object as the calling object by using a
comparison such as obj == this, and return true if it is.

Return false if the Object argument is null.

Return false if the calling and argument objects are not the same class.

Cast the Object argument to the same type as the calling object only if they are the
same class.

Figure 11-25 shows an equals() method for the BankAccount class that includes all these
recommendations.

public boolean equals(Object obj)
{

boolean result;
if(obj == this)

result = true;
else

if(obj == null)
result = false;

else
if(obj.getClass() != this.getClass())

result = false;
BankAccount secondAcct = (BankAccount)obj;
if(acctNum == secondAcct.acctNum && balance == secondAcct.balance)

result = true;
else

result = false;
return result;

}

Figure 11-25 Improved BankAccount equals() method that overrides Object class version

Java’s creators have one additional recommendation to follow whenever you override the
equals() method in a professional class:

You should override the hashCode() method as well, because equal objects should have
equal hash codes.

If you fail to take this step, you won’t notice the difference in many programs, but if more
complicated programs that use hash-based methods use your class, you will encounter
problems. When you override the hashCode() method, you compute a code using a
combination of prime numbers and the values of any fields used in the class’s equals()
method. See the documentation at the Java Web site for more details.

Using the Object Class and Its Methods

563

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Watch the video The Object Class.

TWO TRUTHS & A LIE

Using the Object Class and Its Methods

1. When you define a class, if you do not explicitly extend another class, your class
is an extension of the Object class.

2. The Object class is defined in the java.lang package that is imported
automatically every time you write a program.

3. The Object class toString() and equals() methods are abstract.

. ssal cbus a ni meht edi rr evo ot deri uqer t on er a uoy —t cart sba
t on er a sdoht e m)(slauqe dna)(gnirtSot ehT. 3# si t ne met at s esl af ehT

Using Inheritance to Achieve Good Software Design
When an automobile company designs a new car model, the company does not build every
component of the new car from scratch. The company might design a new feature completely
from scratch; for example, at some point someone designed the first air bag. However,
many of a new car’s features are simply modifications of existing features. The manufacturer
might create a larger gas tank or more comfortable seats, but even these new features still
possess many properties of their predecessors in the older models. Most features of new
car models are not even modified; instead, existing components, such as air filters and
windshield wipers, are included in the new model without any changes.

Similarly, you can create powerful computer programs more easily if many of their components
are used either “as is” or with slight modifications. Inheritance does not give you the ability to
write programs that you could not write otherwise. If Java did not allow you to extend classes,
you could create every part of a program from scratch. Inheritance simply makes your job easier.
Professional programmers constantly create new class libraries for use with Java programs.
Having these classes available makes programming large systems more manageable.

You have already used many “as is” classes, such as System and String. In these cases, your
programs were easier to write than if you had to write these classes yourself. Now that you have
learned about inheritance, you have gained the ability to modify existing classes. When you create
a useful, extendable superclass, you and other future programmers gain several advantages:

Subclass creators save development time because much of the code needed for the class
has already been written.

Subclass creators save testing time because the superclass code has already been tested
and probably used in a variety of situations. In other words, the superclass code is reliable.

C H A P T E R 1 1 Advanced Inheritance Concepts

564

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Programmers who create or use new subclasses already understand how the superclass
works, so the time it takes to learn the new class features is reduced.

When you create a new subclass in Java, neither the superclass source code nor the
superclass bytecode is changed. The superclass maintains its integrity.

When you consider classes, you must think about the commonalities among them; then you
can create superclasses from which to inherit. You might be rewarded professionally when
you see your own superclasses extended by others in the future.

TWO TRUTHS & A LIE

Using Inheritance to Achieve Good Software Design

1. If object-oriented programs did not support inheritance, programs could still be
written, but they would be harder to write.

2. When you create a useful, extendable superclass, you save development and
testing time.

3. When you create a new subclass in Java, you must remember to revise and
recompile the superclass code.

. degnahc si edocet yb ssal cr epus eht r on edoc ecr uos ssal cr epus
eht r ehti en, avaJ ni ssal cbus wen a et aer c uoy neh W. 3# si t ne met at s esl af ehT

Creating and Using Interfaces
Some object-oriented programming languages, such as C++, allow a subclass to inherit
from more than one parent class. For example, you might create an InsuredItem class that
contains data fields pertaining to each possession for which you have insurance. Data fields
might include the name of the item, its value, the insurance policy type, and so on. You might
also create an Automobile class that contains data fields such as vehicle identification
number, make, model, and year. When you create an InsuredAutomobile class for a car
rental agency, you might want to include InsuredItem information and methods, as well
as Automobile information and methods. It would be convenient to inherit from both the
InsuredItem and Automobile classes. The capability to inherit from more than one class
is called multiple inheritance.

Many programmers consider multiple inheritance to be a difficult concept, and when
inexperienced programmers use it they encounter many problems. Programmers have to
deal with the possibility that variables and methods in the parent classes might have
identical names, which creates conflict when the child class uses one of the names.
Also, you have already learned that a child class constructor must call its parent class

Creating and Using Interfaces

565

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

constructor. When there are two or more parents, this task becomes more complicated—to
which class should super() refer when a child class has multiple parents? For all
of these reasons, multiple inheritance is prohibited in Java. A class can inherit from a
superclass that has inherited from another superclass—this represents single inheritance
with multiple generations. However, Java does not allow a class to inherit directly from
two or more parents.

Java, however, does provide an alternative to multiple inheritance—an interface. An interface
looks much like a class, except that all of its methods (if any) are implicitly public and
abstract, and all of its data items (if any) are implicitly public, static, and final. An
interface is a description of what a class does, but not how it is done; it declares method
headers, but not the instructions within those methods. When you create a class that uses an
interface, you include the keyword implements and the interface name in the class header.
This notation requires class objects to include code for every method in the interface that has
been implemented. Whereas using extends allows a subclass to use nonprivate,
nonoverridden members of its parent’s class, implements requires the subclass to
implement its own version of each method.

In English, an interface is a device or a system that unrelated entities use to interact. Within Java, an interface
provides a way for unrelated objects to interact with each other. An interface is analogous to a protocol,
which is an agreed-on behavior. In some respects, an Automobile can behave like an InsuredItem,
and so can a House, a TelevisionSet, and a JewelryPiece.

As an example, recall the Animal and Dog classes from earlier in this chapter. Figure 11-26
shows these classes, with Dog inheriting from Animal.

public abstract class Animal
{

private String name;
public abstract void speak();
public String getName()
{

return name;
}
public void setName(String animalName)
{

name = animalName;
}

}
public class Dog extends Animal
{

public void speak()
{

System.out.println("Woof!");
}

}

Figure 11-26 The Animal and Dog classes

C H A P T E R 1 1 Advanced Inheritance Concepts

566

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can create a Worker interface, as shown in Figure 11-27. For simplicity, this example gives
the Worker interface a single method named work(). When any class implements Worker, it
must either include a work() method or the new class must be declared abstract, and then its
descendants must implement the method.

public interface Worker
{

public void work();
}

Figure 11-27 The Worker interface

The WorkingDog class in Figure 11-28 extends Dog and implements Worker. A WorkingDog

contains a data field that a “regular” Dog does not—an integer that holds hours of training
received. The WorkingDog class also contains get and set methods for this field. Because the
WorkingDog class implements the Worker interface, it also must contain a work() method. In
this example, the work() method calls the Dog speak() method, and then produces two more
lines of output—a statement about working and the number of training hours.

public class WorkingDog extends Dog implements Worker
{

private int hoursOfTraining;
public void setHoursOfTraining(int hrs)
{

hoursOfTraining = hrs;
}
public int getHoursOfTraining()
{

return hoursOfTraining;
}
public void work()
{

speak();
System.out.println("I am a dog who works");
System.out.println("I have " + hoursOfTraining +

" hours of professional training!");
}

}

Figure 11-28 The WorkingDog class

As you know from other classes you have seen, a class can extend another class without implementing any
interfaces. A class can also implement an interface even though it does not extend any other class. When a
class both extends and implements, like the WorkingDog class, by convention the implements clause
follows the extends clause in the class header.

Creating and Using Interfaces

567

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The DemoWorkingDogs application in Figure 11-29 instantiates two WorkingDog objects. Each
object can use the following methods:

The setName() and getName() methods that WorkingDog inherits from the Animal class

The speak() method that WorkingDog inherits from the Dog class

The setHoursOfTraining() and getHoursOfTraining() methods contained within the
WorkingDog class

The work() method that the WorkingDog class was required to contain when it used the
phrase implements Worker

public class DemoWorkingDogs
{

public static void main(String[] args)
{

WorkingDog aSheepHerder = new WorkingDog();
WorkingDog aSeeingEyeDog = new WorkingDog();
aSheepHerder.setName("Simon, the Border Collie");
aSeeingEyeDog.setName("Sophie, the German Shepherd");
aSheepHerder.setHoursOfTraining(40);
aSeeingEyeDog.setHoursOfTraining(300);

System.out.println(aSheepHerder.getName() + " says ");
aSheepHerder.speak();
aSheepHerder.work();
System.out.println(); // outputs a blank line for readability

System.out.println(aSeeingEyeDog.getName() + " says ");
aSeeingEyeDog.speak();
aSeeingEyeDog.work();

}
}

Figure 11-29 The DemoWorkingDogs application

Figure 11-30 shows the output when the DemoWorkingDogs application executes. Each animal is
introduced, then it “speaks,” and then each animal “works,” which includes speaking a second
time. Each Animal can execute the speak() method implemented in its own class, and each can
execute the work() method contained in the implemented interface. Of course, the WorkingDog
class was not required to implement the Worker interface; instead, it could have just contained
a work() method that all WorkingDog objects could use. If WorkingDog was the only class that
would ever use work(), such an approach would probably be the best course of action. However,
if many classes will be Workers—that is, require a work() method—they all can implement
work(). If you are already familiar with the Worker interface and its method, when you glance
at a class definition for a WorkingHorse, WorkingBird, Employee, or Machine and see that it
implements Worker, you do not have to guess at the name of the method that shows the work the
class objects perform. Notice that when a class implements an interface, it represents a situation
similar to inheritance. Just as a WorkingDog “is a” Dog and “is an” Animal, so too it “is a” Worker.

C H A P T E R 1 1 Advanced Inheritance Concepts

568

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can compare abstract classes and interfaces as follows:

Abstract classes and interfaces are similar in that you cannot instantiate concrete objects
from either one.

Abstract classes differ from interfaces because abstract classes can contain nonabstract
methods, but all methods within an interface must be abstract.

A class can inherit from only one abstract superclass, but it can implement any number of
interfaces.

Beginning programmers sometimes find it difficult to decide when to create an abstract
superclass and when to create an interface. Remember, you create an abstract class when you
want to provide data or methods that subclasses can inherit, but at the same time these
subclasses maintain the ability to override the inherited methods.

Suppose that you create a CardGame class to use as a base class for different card games. It
contains four methods named shuffle(), deal(), displayRules(), and keepScore(). The
shuffle() method works the same way for every CardGame, so you write the statements for
shuffle() within the superclass, and any CardGame objects you create later inherit shuffle().
The methods deal(), displayRules(), and keepScore() operate differently for every subclass
(for example, for TwoPlayerCardGames, FourPlayerCardGames, BettingCardGames, and so on),
so you force CardGame children to contain instructions for those methods by leaving them
empty in the superclass. The CardGame class, therefore, should be an abstract superclass.
When you write classes that extend the CardGame parent class, you inherit the shuffle()

method, and write code within the deal(), displayRules(), and keepScore() methods for
each specific child.

You create an interface when you know what actions you want to include, but you also want
every user to separately define the behavior that must occur when the method executes.
Suppose that you create a MusicalInstrument class to use as a base for different musical

Figure 11-30 Output of the DemoWorkingDogs application

Creating and Using Interfaces

569

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

instrument object classes such as Piano, Violin, and Drum. The parent MusicalInstrument
class contains methods such as playNote() and outputSound() that apply to every
instrument, but you want to implement these methods differently for each type of
instrument. By making MusicalInstrument an interface, you require every nonabstract
subclass to code all the methods.

An interface specifies only the messages to which an object can respond; an abstract class can include
methods that contain the actual behavior the object performs when those messages are received.

You also create an interface when you want a class to implement behavior from more than
one parent. For example, suppose that you want to create an interactive NameThatInstrument

card game in which you play an instrument sound from the computer speaker, and ask
players to identify the instrument they hear by clicking one of several cards that display
instrument images. This game class could not extend from two classes, but it could extend
from CardGame and implement MusicalInstrument.

When you create a class and use the implements clause to implement an interface, but fail to code one
of the interface’s methods, the compiler error generated indicates that you must declare your class to be
abstract. If you want your class to be used only for extending, you can make it abstract. However,
if your intention is to create a class from which you can instantiate objects, do not make it abstract.
Instead, find out which methods from the interface you have failed to implement within your class and code
those methods.

Java has many built-in interfaces with names such as Serializable, Runnable, Externalizable,
and Cloneable. See the documentation at the Java Web site for more details.

Creating Interfaces to Store Related Constants
Interfaces can contain data fields, but they must be public, static, and final. It makes sense
that interface data must not be private because interface methods cannot contain method
bodies; without public method bodies, you have no way to retrieve private data. It also
makes sense that the data fields in an interface are static because you cannot create interface
objects. Finally, it makes sense that interface data fields are final because, without methods
containing bodies, you have no way, other than at declaration, to set the data fields’ values,
and you have no way to change them.

Your purpose in creating an interface containing constants is to provide a set of data
that a number of classes can use without having to redeclare the values. For example,
the interface class in Figure 11-31 provides a number of constants for a pizzeria. Any
class written for the pizzeria can implement this interface and use the permanent values.
Figure 11-32 shows an example of one application that uses each value, and Figure 11-33
shows the output. The application in Figure 11-32 only needs a declaration for the
current special price; all the constants, such as the name of the pizzeria, are retrieved
from the interface.

C H A P T E R 1 1 Advanced Inheritance Concepts

570

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public interface PizzaConstants
{

public static final int SMALL_DIAMETER = 12;
public static final int LARGE_DIAMETER = 16;
public static final double TAX_RATE = 0.07;
public static final String COMPANY = "Antonio’s Pizzeria";

}

Figure 11-31 The PizzaConstants interface

public class PizzaDemo implements PizzaConstants
{

public static void main(String[] args)
{

double specialPrice = 11.25;
System.out.println("Welcome to " + COMPANY);
System.out.println("We are having a special offer:\na " +

SMALL_DIAMETER + " inch pizza with four toppings\nor a " +
LARGE_DIAMETER +
" inch pizza with one topping\nfor only $" + specialPrice);

System.out.println("With tax, that is only $" +
(specialPrice + specialPrice * TAX_RATE));

}
}

Figure 11-32 The PizzaDemo application

Watch the video Interfaces.

Figure 11-33 Output of the PizzaDemo application

Creating and Using Interfaces

571

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Creating and Using Interfaces

1. Java’s capability to inherit from more than one class is called multiple inheritance.

2. All of the methods in an interface are implicitly public and abstract, and all of
its data items (if any) are implicitly public, static, and final.

3. When a class inherits from another, the child class can use the nonprivate,
nonoverridden members of its parent’s class, but when a class uses an
interface, it must implement its own version of each method.

. ytili bat aht evaht on seod avaJ t ub, ecnati r ehni el pi tl u m
dell ac si ssal c eno naht er o m morf ti r ehni ot ytili ba ehT. 1# si t ne met at s esl af ehT

You Do It

Using an Interface

In this section, you create an Insured interface for use with classes that represent
objects that can be insured. For example, you might use this interface with classes
such as Jewelry or House. Also in this section, you extend Vehicle to create an
InsuredCar class that implements the Insured interface, and then you write a short
program that instantiates an InsuredCar object.

1. Open a new file, and type the following Insured interface. A concrete class
that implements Insured will be required to contain setCoverage() and
getCoverage() methods.
public interface Insured
{

public void setCoverage();
public int getCoverage();

}

2. Save the file as Insured.java and compile it.

3. Open a new file, and start the InsuredCar class that extends Vehicle and
implements Insured:
import javax.swing.*;
public class InsuredCar extends Vehicle implements Insured
{

(continues)

C H A P T E R 1 1 Advanced Inheritance Concepts

572

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Add a variable to hold the amount covered by the insurance:
private int coverage;

5. Add a constructor that calls the Vehicle superclass constructor, passing
arguments for the InsuredCar’s power source and number of wheels.
public InsuredCar()
{

super("gas", 4);
setCoverage();

}

6. Implement the setPrice() method required by the Vehicle class. The method
accepts the car’s price from the user and enforces a maximum value of
$60,000.
public void setPrice()
{

String entry;
final int MAX = 60000;
entry = JOptionPane.showInputDialog
(null, "Enter car price ");

price = Integer.parseInt(entry);
if(price > MAX)

price = MAX;
}

7. Implement the setCoverage() and getCoverage() methods required by the
Insured class. The setCoverage() method sets the coverage value for an
insured car to 90 percent of the car’s price:
public void setCoverage()
{

coverage = (int)(price * 0.9);
}
public int getCoverage()
{

return coverage;
}

8. Create a toString() method, followed by a closing brace for the class:
public String toString()
{

return("The insured car is powered by " + getPowerSource() +
"; it has " + getWheels() + " wheels, costs $" +
getPrice() + " and is insured for $" + getCoverage());

}
}

(continued)

(continues)

Creating and Using Interfaces

573

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Save the file as InsuredCar.java and compile it.

10. Create a demonstration program that instantiates an InsuredCar object and
displays its values as follows:
import javax.swing.*;
public class InsuredCarDemo
{

public static void main(String[] args)
{

InsuredCar myCar = new InsuredCar();
JOptionPane.showMessageDialog(null,

myCar.toString());
}

}

11. Save the file as InsuredCarDemo.java. Compile and execute it. You will
be prompted to enter the car’s price. Figure 11-34 shows the output during
a typical execution.

Creating and Using Packages
Throughout most of this book, you have imported packages into your programs. As you
learned in Chapter 4, a package is a named collection of classes; for example, the java.lang

package contains fundamental classes and is automatically imported into every program you
write. You also have created classes into which you explicitly imported optional packages
such as java.util and javax.swing. When you create classes, you can place them in
packages so that you or other programmers can easily import your related classes into new
programs. Placing classes in packages for other programmers increases the classes’ reusability.
When you create a number of classes that inherit from each other, as well as multiple
interfaces that you want to implement with these classes, you often will find it convenient to
place these related classes in a package.

(continued)

Figure 11-34 Typical output of the InsuredCarDemo program

C H A P T E R 1 1 Advanced Inheritance Concepts

574

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating packages encourages others to reuse software because it makes it convenient to import many
related classes at once. In Chapter 3, you learned that if you do not use one of the three access specifiers
public, private, or protected for a class, then it has default access, which means that the
unmodified class is accessible to any other class in the same package.

When you create professional classes for others to use, you most often do not want to
provide the users with your source code in the files that have .java extensions. You expend
significant effort developing workable code for your programs, and you do not want
other programmers to be able to copy your programs, make minor changes, and market
the new product themselves. Rather, you want to provide users with the compiled
files that have .class extensions. These are the files the user needs to run the program
you have developed. Likewise, when other programmers use the classes you have developed,
they need only the completed compiled code to import into their programs. The .class files
are the files you place in a package so other programmers can import them.

In the Java programming language, a package or class library is often delivered to users as a Java ARchive
(JAR) file. JAR files compress the data they store, which reduces the size of archived class files. The JAR
format is based on the popular Zip file format.

If you do not specify a package for a class, it is placed in an unnamed default package. A class
that will be placed in a nondefault package for others to use must be public. If a class is not
public, it can be used only by other classes within the same package. To place a class in a
package, you include a package declaration at the beginning of the source code file that
indicates the folder into which the compiled code will be placed. When a file contains a
package declaration, it must be the first statement in the file (excluding comments). If
there are import declarations, they follow the package declaration. Within the file, the
package statement must appear outside the class definition. The package statement, import
statements, and comments are the only statements that appear outside class definitions in
Java program files.

For example, the following statement indicates that the compiled file should be placed in a
folder named com.course.animals:
package com.course.animals;

That is, the compiled file should be stored in the animals subfolder inside the course subfolder
inside the com subfolder (or com\course\animals). The pathname can contain as many levels
as you want.

When you compile a file that you want to place in a package, you can copy or move the
compiled .class file to the appropriate folder. Alternatively, you can use a compiler option
with the javac command. The -d (for directory) option indicates that you want to place the
generated .class file in a folder. For example, the following command indicates that the
compiled Animal.java file should be placed in the directory indicated by the import statement
within the Animal.java file:
javac -d . Animal.java

Creating and Using Packages

575

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The dot (period) in the compiler command indicates that the path shown in the package

statement in the file should be created within the current directory.

If the Animal class file contains the statement package com.course.animals;, the Animal.
class file is placed in C:\com\course\animals. If any of these subfolders do not exist, Java
creates them. Similarly, if you package the compiled files for Dog.java, Cow.java, and so on,
future programs need only use the following statements to be able to use all the related
classes:
import com.course.animals.Dog;
import com.course.animals.Cow;

Because Java is used extensively on the Internet, it is important to give every package a unique
name. The creators of Java have defined a package-naming convention that uses your Internet
domain name in reverse order. For example, if your domain name is course.com, you begin all
of your package names with com.course. Subsequently, you organize your packages into
reasonable subfolders.

Creating packages using Java’s naming convention helps avoid naming conflicts—different
programmers might create classes with the same name, but they are contained in different
packages. Class naming conflicts are sometimes called collisions. Because of packages, you can
create a class without worrying that its name already exists in Java or in packages distributed
by another organization. For example, if your domain name is course.com, then you might
want to create a class named Scanner and place it in a package named com.course.input. The
fully qualified name of your Scanner class is com.course.input.Scanner, and the fully
qualified name of the built-in Scanner class is java.util.Scanner.

TWO TRUTHS & A LIE

Creating and Using Packages

1. Typically, you place .class files in a package so other programmers can import
them into their programs.

2. A class that will be placed in a package for others to use must be protected so
that others cannot read your source code.

3. Java’s creators have defined a package-naming convention in which you use
your Internet domain name in reverse order.

. segakcap det ubi rt si d ni selif ssal c. deli p moc
ecal p uoy , edoc ecr uos r uoy gni wei v morf sr eht ot never p oT. egakcap e mas eht

ni hti wsessal cr eht o yb yl no desu eb nacti , cilbupt on si ssal c afI . cilbup ebt su m
esu ot sr eht or of egakcap a ni decal p eblli wt aht ssal c A. 2# si t ne met at s esl af ehT

C H A P T E R 1 1 Advanced Inheritance Concepts

576

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Creating a Package

Next, you place the Vehicle family of classes into a package. Assume you work for
an organization that sponsors a Web site at vehicleswesell.com, so you name the
package com.vehicleswesell. First, you must create a folder named VehiclePackage
in which to store your project. You can use any technique that is familiar to you.
For example, in Windows, you can double-click Computer, navigate to the device
or folder where you want to store the package, right-click, click New, click
Folder, replace “New Folder” with the new folder name (VehiclePackage), and press
the Enter key. Alternatively, from the command prompt, you can navigate to the
drive and folder where you want the new folder to reside by using the following
commands:

If the command prompt does not indicate the storage device you want, type the
name of the drive and a colon to change the command prompt to a different
device. For example, to change the command prompt to the F drive on your
system, type F:.

If the directory is not the one you want, type cd\ to navigate to the root directory.
The cd command stands for “change directory,” and the backslash indicates the
root directory. Then type cd followed by the name of the subdirectory you want.
You can repeat this command as many times as necessary to get to the correct
subdirectory if it resides many levels down the directory hierarchy.

Next, you can place three classes into a package.

1. Open the Vehicle.java file. As the first line in the file, insert the following
statement:
package com.vehicleswesell.vehicle;

2. Save the file as Vehicle.java in the VehiclePackage folder.

3. At the command line, at the prompt for the VehiclePackage folder, compile
the file using the following command:
javac -d . Vehicle.java

Be certain that you type a space between each element in the
command, including surrounding the dot. Java creates a folder named
com\vehicleswesell\vehicle within the directory from which you compiled
the program, and the compiled Vehicle.class file is placed in this folder.

(continues)

Creating and Using Packages

577

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you see a list of compile options when you try to compile the file, you did not type the spaces
within the command correctly. Repeat Step 3 to compile again.

The development tool GRASP generates software visualizations to make programs easier to
understand. A copy of this tool is included with your downloadable student files. If you are using
jGRASP to compile your Java programs, you also can use it to set compiler options. To set a
compiler option to –d, do the following:

Open a jGRASP project workspace. Click the Settings menu, point to Compiler Settings, and
then click Workspace. The Settings for workspace dialog box appears.

Under the FLAGS or ARGS section of the dialog box, click the dot inside the square next to the
Compile option and enter the compiler option (-d). Then click the Apply button.

Click the OK button to close the dialog box, and then compile your program as usual.

4. Examine the folders on your storage device, using any operating system
program with which you are familiar. For example, if you are compiling at the
DOS command line, type dir at the command-line prompt to view the folders
stored in the current directory. You can see that Java created a folder named
com. (If you have too many files and folders stored, it might be difficult to
locate the com folder. If so, type dir com*.* to see all files and folders in
the current folder that begin with “com”.) Figure 11-35 shows the command
to compile the Vehicle class and the results of the dir command, including the
com folder.

Figure 11-35 Compiling the Vehicle.java file in a package and viewing the results

(continued)

(continues)

C H A P T E R 1 1 Advanced Inheritance Concepts

578

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Alternatively, to view the created folders in a Windows 8.1 operating system,
you can swipe from the right edge of the screen, tap Search, start to type
File Explorer, and tap File Explorer. Then search for the folder. Within the
com folder is a vehicleswesell folder, and within vehicleswesell is a vehicle
folder. The Vehicle.class file is within the vehicle subfolder and not in the
same folder as the .java source file where it ordinarily would be placed.

If you cannot find the com folder on your storage device, you probably are not looking in the same
folder where you compiled the class. Repeat Steps 4 and 5, but be certain that you first change to
the command prompt for the directory where your source code file resides.

5. You could now delete the copy of the Vehicle.java file from the VehiclePackage
folder (although you most likely want to retain a copy elsewhere). There is no
further need for this source file in the folder you will distribute to users because
the compiled .class file is stored in the com\vehicleswesell\vehicle folder. Don’t
delete the copy of your code from its original storage location; you might want
to retain a copy of the code for modification later.

6. Open the Sailboat.java file in your text editor. For the first line in the file,
insert the following statement:
package com.vehicleswesell.vehicle;

7. Save the file in the same directory as you saved Vehicle.java. At the
command line, compile the file using the following command:
javac -d . Sailboat.java

Then you can delete the Sailboat.java source file from the VehiclePackage folder
(not from its original location—you want to retain a copy of your original code).

8. Repeat Steps 6 and7 to perform thesame operations using theBicycle.java file.

9. Open the VehicleDatabase.java file in your text editor. Insert the following
statements at the top of the file:
import com.vehicleswesell.vehicle.Vehicle;
import com.vehicleswesell.vehicle.Sailboat;
import com.vehicleswesell.vehicle.Bicycle;

10. Save the file as VehiclePackage\VehicleDatabase.java. Compile the file,
and then run the program. The program’s output should be the same as it was
before you added the import statements. Placing the Vehicle-related class
files in a package is not required for the VehicleDatabase program to
execute correctly; you ran it in exactly the same manner before you learned
about creating packages.

Placing classes in packages gives you the ability to more easily isolate and
distribute files.

(continued)

Creating and Using Packages

579

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It
Don’t write a body for an abstract method.

Don’t forget to end an abstract method header with a semicolon.

Don’t forget to override any abstract methods in any subclasses you derive.

Don’t mistakenly overload an abstract method instead of overriding it; the subclass
method must have the same parameter list as the parent’s abstract method.

Don’t try to instantiate an abstract class object.

Don’t forget to override all the methods in an interface that you implement.

When you create your own packages, don’t try to use the wildcard format to import
multiple classes. This technique works only with built-in packages.

Key Terms
Concrete classes are nonabstract classes from which objects can be instantiated.

An abstract class is one from which you cannot create any concrete objects, but from which
you can inherit.

Virtual classes is the name given to abstract classes in other programming languages, such as
C++.

A nonabstract method is a method that is inherited.

An abstract method is declared with the keyword abstract, and has no body; a subclass
must override a base class abstract method.

Dynamic method binding is the ability of an application to select the correct method during
program execution.

Late method binding is another term for dynamic method binding.

Static or fixed method binding is the opposite of dynamic method binding; it occurs when a
method is selected when the program compiles rather than while it is running.

Ad-hoc polymorphism occurs when a single method name can be used with a variety of data
types because various implementations exist; it is another name for method overloading.

Pure polymorphism or inclusion polymorphism occurs when a single method
implementation can be used with a variety of related objects because they are objects of
subclasses of the parameter type.

The Object class is defined in the java.lang package that is imported automatically every
time you write a program; every Java class descends from the Object class.

C H A P T E R 1 1 Advanced Inheritance Concepts

580

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A hash code is a calculated number used to identify an object.

Multiple inheritance is the capability to inherit from more than one class.

An interface looks much like a class, except that all of its methods must be abstract and all of
its data (if any) must be static final; it declares method headers, but not the instructions
within those methods.

A Java ARchive (JAR) file compresses the stored data.

A default package is the unnamed one in which a class is placed if you do not specify a
package for the class.

Collision is a term that describes a class naming conflict.

Chapter Summary
A class that you create only to extend from, but not to instantiate from, is an abstract
class. Usually, abstract classes contain one or more abstract methods—methods with no
method statements. A subclass method overrides any inherited abstract superclass
method.

Every subclass object “is an” instance of its superclass, so you can convert subclass
objects to superclass objects. The ability of a program to select the correct method during
execution based on argument type is known as dynamic method binding. You can create
an array of superclass object references but store subclass instances in it.

Every class in Java is an extension of the Object class, whether or not you explicitly
extend it. Every class inherits several methods from Object, including toString(),
which converts an Object into a String, and equals(), which returns a boolean value
indicating whether one object is a reference to another. You can override or overload
these methods to make them more useful for your classes.

When you create a useful, extendable superclass, you save development time because
much of the code needed for the class has already been written. In addition, you save
testing time and, because the superclass code is reliable, you reduce the time it takes
to learn the new class features. You also maintain superclass integrity.

An interface is similar to a class, but all of its methods are implicitly public and abstract,
and all of its data (if any) is implicitly public, static, and final. When you create a class
that uses an interface, you include the keyword implements and the interface name in the
class header. This notation serves to require class objects to include code for all the
methods in the interface.

Abstract classes and interfaces are similar in that you cannot instantiate concrete
objects from either. Abstract classes differ from interfaces because abstract classes
can contain nonabstract methods, but all methods within an interface must be abstract.
A class can inherit from only one abstract superclass, but it can implement any number
of interfaces.

Chapter Summary

581

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can place classes in packages so you or other programmers can easily import related
classes into new classes. The convention for naming packages uses Internet domain
names in reverse order to ensure that your package names do not conflict with those of
any other Internet users.

Review Questions
1. Parent classes are than their child classes.

a. less specific
b. more specific

c. easier to understand
d. more cryptic

2. Abstract classes differ from other classes in that you .

a. must not code any methods within them
b. must instantiate objects from them
c. cannot instantiate objects from them
d. cannot have data fields within them

3. Abstract classes can contain .

a. abstract methods
b. nonabstract methods

c. both of the above
d. none of the above

4. An abstract class Product has two subclasses, Perishable and NonPerishable. None
of the constructors for these classes requires any arguments. Which of the following
statements is legal?

a. Product myProduct = new Product();

b. Perishable myProduct = new Product();

c. NonPerishable myProduct = new NonPerishable();

d. none of the above

5. An abstract class Employee has two subclasses, Permanent and Temporary. The
Employee class contains an abstract method named setType(). Before you can
instantiate Permanent and Temporary objects, which of the following statements
must be true?

a. You must code statements for the setType() method within the
Permanent class.

b. You must code statements for the setType() method within both the Permanent
and Temporary classes.

c. You must not code statements for the setType() method within either the
Permanent or Temporary class.

d. You can code statements for the setType() method within the Permanent class
or the Temporary class, but not both.

C H A P T E R 1 1 Advanced Inheritance Concepts

582

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. When you create a superclass and one or more subclasses, each object of the
subclass superclass object.

a. overrides the
b. “is a”

c. “is not a”
d. is a new

7. Which of the following statements is true?

a. Superclass objects are members of their subclass.
b. Superclasses can contain abstract methods.
c. You can create an abstract class object using the new operator.
d. An abstract class cannot contain an abstract method.

8. When you create a in Java, you create a variable name in which
you can hold the memory address of an object.

a. field
b. pointer

c. recommendation
d. reference

9. An application’s ability to select the correct subclass method to execute is known
as method binding.

a. polymorphic
b. dynamic

c. early
d. intelligent

10. Which statement creates an array of five references to an abstract class named
Currency?

a. Currency[] = new Currency[5];

b. Currency[] currencyref = new Currency[5];

c. Currency[5] currencyref = new Currency[5];

d. Currency[5] = new Currency[5];

11. You override the toString() method in any class you create.

a. cannot
b. can

c. must
d. must implement StringListener to

12. The Object class equals() method takes .

a. no arguments
b. one argument

c. two arguments
d. as many arguments as you need

Review Questions

583

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13. Assume the following statement appears in a working Java program and that the
equals() method has been correctly overridden in thing’s class:
if(thing.equals(anotherThing)) x = 1;

You know that .

a. thing is an object of the Object class
b. anotherThing is the same type as thing

c. Every field in thing has the same value as its counterpart in anotherThing.
d. All of the above are correct.

14. The Object class equals() method considers two object references to be equal if
they have the same .

a. value in all data fields
b. value in any data field

c. data type
d. memory address

15. Java subclasses have the ability to inherit from parent class(es).

a. one
b. two

c. multiple
d. no

16. The alternative to multiple inheritance in Java is known as a(n) .

a. superobject
b. abstract class

c. interface
d. none of the above

17. When you create a class that uses an interface, you include the
keyword and the interface’s name in the class header.

a. interface

b. implements

c. accoutrements

d. listener

18. You can instantiate concrete objects from a(n) .

a. abstract class
b. interface

c. either a or b
d. neither a nor b

19. In Java, a class can .

a. inherit from one abstract superclass at most
b. implement one interface at most
c. both a and b
d. neither a nor b

20. When you want to provide some data or methods that subclasses can inherit,
but you want the subclasses to override some specific methods, you should write
a(n) .

a. abstract class
b. interface

c. final superclass
d. concrete object

C H A P T E R 1 1 Advanced Inheritance Concepts

584

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

Programming Exercises

1. a. Create an abstract class named Book. Include a String field for the book’s title and
a double field for the book’s price. Within the class, include a constructor that
requires the book title, and add two get methods—one that returns the title and
one that returns the price. Include an abstract method named setPrice().
Create two child classes of Book: Fiction and NonFiction. Each must include a
setPrice() method that sets the price for all Fiction Books to $24.99 and for all
NonFiction Books to $37.99. Write a constructor for each subclass, and include a
call to setPrice() within each. Write an application demonstrating that you can
create both a Fiction and a NonFiction Book, and display their fields. Save the
files as Book.java, Fiction.java, NonFiction.java, and UseBook.java.

b. Write an application named BookArray in which you create an array that holds
10 Books, some Fiction and some NonFiction. Using a for loop, display details
about all 10 books. Save the file as BookArray.java.

2. a. The Talk-A-Lot Cell Phone Company provides phone services for its customers.
Create an abstract class named PhoneCall that includes a String field for a
phone number and a double field for the price of the call. Also include a
constructor that requires a phone number parameter and that sets the price to 0.0.
Include a set method for the price. Also include three abstract get methods—one
that returns the phone number, another that returns the price of the call, and
a third that displays information about the call. Create two child classes of
PhoneCall: IncomingPhoneCall and OutgoingPhoneCall. The IncomingPhoneCall
constructor passes its phone number parameter to its parent’s constructor and sets the
price of the call to 0.02. The method that displays the phone call information displays
the phone number, the rate, and the price of the call (which is the same as the rate).
The OutgoingPhoneCall class includes an additional field that holds the time of the
call in minutes. The constructor requires both a phone number and the time. The
price is 0.04 per minute, and the display method shows the details of the call,
including the phone number, the rate per minute, the number of minutes, and
the total price. Write an application that demonstrates you can instantiate and
display both IncomingPhoneCall and OutgoingPhoneCall objects. Save the files
as PhoneCall.java, IncomingPhoneCall.java, OutgoingPhoneCall.java, and
DemoPhoneCalls.java.

b. Write an application in which you assign data to a mix of 10 IncomingPhoneCall
and OutgoingPhoneCall objects into an array. Use a for loop to display the data.
Save the file as PhoneCallArray.java.

3. Create an abstract NewspaperSubscription class with fields for the subscriber
name, address, and rate. Include get and set methods for the name field and get
methods for the address and subscription rate; the setAddress() method is
abstract. Create two subclasses named PhysicalNewspaperSubscription and

Exercises

585

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

OnlineNewspaperSubscription. The parameter for the setAddress() method of the
PhysicalNewspaperSubscription class must contain at least one digit; otherwise, an
error message is displayed and the subscription rate is set to 0. If the address is
valid, the subscription rate is assigned $15. The parameter for the setAddress()

method of the OnlineNewspaperSubscription class must contain an at sign (@) or
an error message is displayed. If the address is valid, the subscription rate is assigned
$9. Finally, write an application that declares several objects of both subscription
subtypes and displays their data fields. Save the files as NewspaperSubscription.java,
PhysicalNewspaperSubscription.java, OnlineNewspaperSubscription.java,
and DemoSubscriptions.java.

4. Create an abstract Division class with fields for a company’s division name and
account number, and an abstract display() method. Use a constructor in the
superclass that requires values for both fields. Create two subclasses named
InternationalDivision and DomesticDivision. The InternationalDivision includes
a field for the country in which the division is located and a field for the language spoken;
its constructor requires both. The DomesticDivision includes a field for the state in
which the division is located; a value for this field is required by the constructor.
Write an application named UseDivision that creates InternationalDivision and
DomesticDivision objects for two different companies and displays information
about them. Save the files as Division.java, InternationalDivision.java,
DomesticDivision.java, and UseDivision.java.

5. Create an abstract class named Element that holds properties of elements, including
their symbol, atomic number, and atomic weight. Include a constructor that requires
values for all three properties and a get method for each value. (For example, the
symbol for carbon is C, its atomic number is 6, and its atomic weight is 12.01. You
can find these values by reading a periodic table in a chemistry reference or by
searching the Web.) Also include an abstract method named describeElement().

Create two extended classes named MetalElement and NonMetalElement. Each
contains a describeElement() method that displays the details of the element and
a brief explanation of the properties of the element type. For example, metals are
good conductors of electricity, while nonmetals are poor conductors. Write an
application named ElementArray that creates and displays an array that holds at
least two elements of each type. Save the files as Element.java, MetalElement.java,
NonMetalElement.java, and ElementArray.java.

6. a. Create a class named Blanket with fields for a blanket’s size, color, material, and
price. Include a constructor that sets default values for the fields as Twin, white,
cotton, and $30.00. Include a set method for each of the first three fields. The
method that sets size adds $10 to the base price for a double blanket, $25 for a
queen blanket, and $40 for a king. The method that sets the material adds $20 to
the price for wool and $45 to the price for cashmere. In other words, the price for
a king-sized cashmere blanket is $115. Whenever the size or material is invalid,
reset the blanket to the default values. Include a toString() method that returns a
description of the blanket. Save the file as Blanket.java.

C H A P T E R 1 1 Advanced Inheritance Concepts

586

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. Create a child class named ElectricBlanket that extends Blanket and includes
two additional fields: one for the number of heat settings and one for whether the
electric blanket has an automatic shutoff feature. Default values are one heat
setting and no automatic shutoff. Include get and set methods for the fields. Do
not allow the number of settings to be fewer than one or more than five; if it is, use
the default setting of 1. Add a $5.75 premium to the price if the blanket has the
automatic shutoff feature. Also include a toString() method that calls the
parent class toString() method and combines the returned value with data
about the new fields to return a complete description of features. Save the file
as ElectricBlanket.java.

c. Create an application that declares a blanket of each type and demonstrates how
the methods work. Save the file as DemoBlankets.java.

7. The Cullerton Park District holds a mini-Olympics each summer. Create a class
named Participant with fields for a name, age, and street address. Include a
constructor that assigns parameter values to each field and a toString() method that
returns a String containing all the values. Also include an equals() method that
determines two Participants are equal if they have the same values in all three fields.
Create an application with two arrays of at least eight Participants each—one holds
Participants in the mini-marathon, and the other holds Participants in the
diving competition. Prompt the user for participant values. After the data values
are entered, display values for Participants who are in both events. Save the files
as Participant.java and TwoEventParticipants.java.

8. Create an abstract Student class for Parker University. The class contains fields for
student ID number, last name, and annual tuition. Include a constructor that requires
parameters for the ID number and name. Include get and set methods for each field;
the setTuition() method is abstract. Create three Student subclasses named
UndergraduateStudent, GraduateStudent, and StudentAtLarge, each with a
unique setTuition() method. Tuition for an UndergraduateStudent is $4,000 per
semester, tuition for a GraduateStudent is $6,000 per semester, and tuition for a
StudentAtLarge is $2,000 per semester. Write an application that creates an array
of at least six objects to demonstrate how the methods work for objects for each
Student type. Save the files as Student.java, UndergraduateStudent.java,
GraduateStudent.java, StudentAtLarge.java, and StudentDemo.java.

9. a. Create an interface named Turner, with a single method named turn(). Create
a class named Leaf that implements turn() to display “Changing colors”. Create
a class named Page that implements turn() to display “Going to the next page”.
Create a class named Pancake that implements turn() to display “Flipping”. Write
an application named DemoTurners that creates one object of each of these class
types and demonstrates the turn() method for each class. Save the files as
Turner.java, Leaf.java, Page.java, Pancake.java, and DemoTurners.java.

b. Think of two more objects that use turn(), create classes for them, and then add
objects to the DemoTurners application, renaming it DemoTurners2.java. Save
the files, using the names of new objects that use turn().

Exercises

587

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Write an application named UseInsurance that uses an abstract Insurance class
and Health and Life subclasses to display different types of insurance policies and
the cost per month. The Insurance class contains a String representing the type
of insurance and a double that holds the monthly price. The Insurance class
constructor requires a String argument indicating the type of insurance, but the
Life and Health class constructors require no arguments. The Insurance class
contains a get method for each field; it also contains two abstract methods named
setCost() and display(). The Life class setCost() method sets the monthly fee
to $36, and the Health class sets the monthly fee to $196. Write an application
named UseInsurance that prompts the user for the type of insurance to be
displayed, and then create the appropriate object. Save the files as Life.java,
Health.java, Insurance.java, and UseInsurance.java.

11. Create an abstract class called GeometricFigure. Each figure includes a height, a
width, a figure type, and an area. Include an abstract method to determine the area
of the figure. Create two subclasses called Square and Triangle. Create an appli-
cation that demonstrates creating objects of both subclasses, and store them in an
array. Save the files as GeometricFigure.java, Square.java, Triangle.java, and
UseGeometric.java.

12. Modify Exercise 11, adding an interface called SidedObject that contains a method
called displaySides(); this method displays the number of sides the object possesses.
Modify the GeometricFigure subclasses to include the use of the interface to display
the number of sides of the figure. Create an application that demonstrates the use
of both subclasses. Save the files as GeometricFigure2.java, Square2.java,
Triangle2.java, SidedObject.java, and UseGeometric2.java.

13. Create an interface called Runner. The interface has an abstract method called
run() that displays a message describing the meaning of “run” to the class. Create
classes called Machine, Athlete, and PoliticalCandidate that all implement
Runner. Create an application that demonstrates the use of the classes. Save the
files as Runner.java, Machine.java, Athlete.java, PoliticalCandidate.java, and
DemoRunners.java.

14. Create a Building class and two subclasses, House and School. The Building class
contains fields for square footage and stories. The House class contains additional
fields for number of bedrooms and baths. The School class contains additional
fields for number of classrooms and grade level (for example, elementary or
junior high). All the classes contain appropriate get and set methods. Place the
Building, House, and School classes in a package named com.course.buildings.
Create an application that declares objects of each type and uses the package.
Save the necessary files as Building.java, House.java, School.java, and
CreateBuildings.java.

15. Sanchez Construction Loan Co. makes loans of up to $100,000 for construction
projects. There are two categories of Loans—those to businesses and those to
individual applicants.

C H A P T E R 1 1 Advanced Inheritance Concepts

588

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Write an application that tracks all new construction loans. The application must also
calculate the total amount owed at the due date (original loan amount + loan fee).
The application should include the following classes:

Loan—A public abstract class that implements the LoanConstants interface. A
Loan includes a loan number, customer last name, amount of loan, interest rate,
and term. The constructor requires data for each of the fields except interest
rate. Do not allow loan amounts over $100,000. Force any loan term that is not
one of the three defined in the LoanConstants class to a short-term, 1-year loan.
Create a toString() method that displays all the loan data.

LoanConstants—A public interface class. LoanConstants includes constant
values for short-term (1 year), medium-term (3 years), and long-term (5 years)
loans. It also contains constants for the company name and the maximum loan
amount.

BusinessLoan—A public class that extends Loan. The BusinessLoan constructor
sets the interest rate to 1 percent over the current prime interest rate.

PersonalLoan—A public class that extends Loan. The PersonalLoan constructor
sets the interest rate to 2 percent over the current prime interest rate.

CreateLoans—An application that creates an array of five Loans. Prompt the
user for the current prime interest rate. Then, in a loop, prompt the user for
a loan type and all relevant information for that loan. Store the created Loan
objects in the array. When data entry is complete, display all the loans.

Save the files as Loan.java, LoanConstants.java, BusinessLoan.java,
PersonalLoan.java, and CreateLoans.java.

Debugging Exercises

1. Each of the following files in the Chapter11 folder of your downloadable
student files has syntax and/or logic errors. In each case, determine the problem
and fix the program. After you correct the errors, save each file using the same
filename preceded with Fix. For example, DebugEleven1.java will become
FixDebugEleven1.java.

a. DebugEleven1.java

b. DebugEleven2.java

c. DebugEleven3.java

d. DebugEleven4.java

e. Three other Debug files in the Chapter11 folder

Exercises

589

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Game Zone
1. In Chapter 10, you created an Alien class as well as two descendant classes, Martian

and Jupiterian. Because you never create any “plain” Alien objects, alter the Alien

class so it is abstract. Verify that the Martian and Jupiterian classes can still inherit
from Alien and that the CreateAliens program still works correctly. Save the
altered Alien file as Alien.java.

2. a. Create an abstract CardGame class similar to the one described in this chapter. The
class contains a “deck” of 52 playing cards that uses a Card class that holds a suit and
value for each Card object. It also contains an integer field that holds the number of
cards dealt to a player in a particular game. The class contains a constructor that
initializes the deck of cards with appropriate values (e.g., “King of Hearts”), and a
shuffle() method that randomly arranges the positions of the Cards in the array.
The class also contains two abstract methods: displayDescription(), which
displays a brief description of the game in each of the child classes, and deal(),
which deals the appropriate number of Card objects to one player of a game.
Save the file as CardGame.java.

b. Create two child classes that extend CardGame. You can choose any games you
prefer. For example, you might create a Poker class or a Bridge class. Create a
constructor for each child class that initializes the field that holds the number
of cards dealt to the correct value. (For example, in standard poker, a player
receives five cards, but in bridge, a player receives 13.) Create an appropriate
displayDescription() and deal() method for each child class. Save each file
using an appropriate name—for example, Poker.java or Bridge.java.

c. Create an application that instantiates one object of each game type and
demonstrates that the methods work correctly. Save the application as
PlayCardGames.java.

Case Problems
1. a. In previous chapters, you have created several classes for Carly’s Catering. Now,

create a new abstract class named Employee. The class contains data fields for an
employee’s ID number, last name, first name, pay rate, and job title. The class
contains get and set methods for each field; the set methods for pay rate and job
title are abstract. Save the file as Employee.java.

b. Create three classes that extend Employee named Waitstaff, Bartender, and
Coordinator. The method that sets the pay rate in each class accepts a para-
meter and assigns it to the pay rate, but no Waitstaff employee can have a rate
higher than 10.00, no Bartender can have a rate higher than 14.00, and no
Coordinator can have a rate higher than 20.00. The method that sets the job title
accepts no parameters—it simply assigns the string “waitstaff”, “bartender”, or
“coordinator” to the object appropriately. Save the files as Waitstaff.java,
Bartender.java, and Coordinator.java.

C H A P T E R 1 1 Advanced Inheritance Concepts

590

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

c. In Chapter 10, you created a DinnerEvent class that holds event information,
including menu choices. Modify the class to include an array of 15 Employee
objects representing employees who might be assigned to work at a DinnerEvent.
Include a method that accepts an Employee array parameter and assigns it to
the Employee array field, and include a method that returns the Employee array.
The filename is DinnerEvent.java.

d. Write an application that declares a DinnerEvent object, prompts the user for an
event number, number of guests, menu options, and contact phone number, and
then assigns them to the object. Also prompt the user to enter data for as many
Employees as needed based on the number of guests. A DinnerEvent needs one
Waitstaff Employee for every event, two if an event has 10 guests or more, three
if an event has 20 guests or more, and so on. A DinnerEvent also needs one
Bartender for every 25 guests and one Coordinator no matter how many
guests attend. All of these Employees should be stored in the Employee array
in the DinnerEvent object. (For many events, you will have empty Employee

array positions.) After all the data values are entered, pass the DinnerEvent
object to a method that displays all of the details for the event, including all
the details about the Employees assigned to work. Save the program as
StaffDinnerEvent.java.

2. a. In previous chapters, you have created several classes for Sammy’s Seashore
Supplies. Now, Sammy has decided to restructure his rates to include different
fees for equipment types in addition to the fees based on rental length, and to
charge for required lessons for using certain equipment. Create an abstract class
named Equipment that holds fields for a numeric equipment type, a String

equipment name, and a fee for renting the equipment. Include a final array
that holds the equipment names—jet ski, pontoon boat, rowboat, canoe, kayak,
beach chair, umbrella, and other. Also include a final array that includes the
surcharges for each equipment type—$50, $40, $15, $12, $10, $2, $1, and $0,
respectively. Include a constructor that requires an equipment type and sets
the field to the type unless it is out of range, in which case the type is set to the
“other” code. Include get and set methods for each field and include an abstract
method that returns a String explaining the lesson policy for the type of
equipment. Save the file as Equipment.java.

b. Create two classes that extend Equipment—EquipmentWithoutLesson and
EquipmentWithLesson. The constructor for each class requires that the equipment
type be in range—that is, jet skis, pontoon boats, rowboats, canoes, and kayaks
are EquipmentWithLesson objects, but other equipment types are not. In both
subclasses, the constructors set the equipment type to “other” if it is not in range.
The constructors also set the equipment fee, as described in part 2a. Each subclass
also includes a method that returns a message indicating whether a lesson is
required, and the cost ($27) if it is. Save the files as EquipmentWithoutLesson.java
and EquipmentWithLesson.java.

Exercises

591

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

c. In Chapter 8, you created a Rental class. Now, modify it to contain an Equipment

data field and an additional price field that holds a base price before equipment
fees are added. Remove the array of equipment Strings from the Rental class
as well as the method that returns an equipment string. Modify the Rental

constructor so that it requires three parameters: contract number, minutes for
the rental, and an equipment type. The method that sets the hours and minutes
now sets a base price before equipment fees are included. Within the constructor,
set the contract number and time as before, but add statements to create either an
EquipmentWithLesson object or an EquipmentWithoutLesson object, and assign
it to the Equipment data field. Assign the sum of the base price (based on time) and
the equipment fee (based on the type of equipment) to the price field. Save the file as
Rental.java.

d. In Chapter 8, you created a RentalDemo class that displays details for four Rental
objects. Modify the class as necessary to use the revised Rental class that contains
an Equipment field. Be sure to modify the method that displays details for the
Rental to include all the pertinent data for the equipment. Figure 11-36 shows the
last part of the output from a typical execution. Save the file as RentalDemo.java.

Figure 11-36 End of output of typical execution of RentalDemo application

C H A P T E R 1 1 Advanced Inheritance Concepts

592

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 12
Exception Handling

In this chapter, you will:

Learn about exceptions

Try code and catch exceptions

Throw and catch multiple exceptions

Use the finally block

Understand the advantages of exception handling

Specify the exceptions that a method can throw

Trace exceptions through the call stack

Create your own Exception classes

Use an assertion

Learn how to display a virtual keyboard

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning About Exceptions
An exception is an unexpected or error condition. The programs you write can generate
many types of potential exceptions:

A program might issue a command to read a file from a disk, but the file does not exist there.

A program might attempt to write data to a disk, but the disk is full or unformatted.

A program might ask for user input, but the user enters an invalid data type.

A program might attempt to divide a value by 0.

A program might try to access an array with a subscript that is too large or too small.

These errors are called exceptions because, presumably, they are not usual occurrences; they
are “exceptional.” Exception handling is the name for the object-oriented techniques that
manage or resolve such errors. Unplanned exceptions that occur during a program’s
execution are also called runtime exceptions, in contrast with syntax errors that are
discovered during program compilation.

Java includes two basic classes of errors: Error and Exception. Both of these classes descend
from the Throwable class, as shown in Figure 12-1. Like all other classes in Java, Error and
Exception originally descend from the Object class, which is defined in the automatically
imported java.lang package.

Figure 12-1 The Exception and Error class inheritance hierarchy (continues)

C H A P T E R 1 2 Exception Handling

594

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Error class represents more serious errors from which your program usually cannot
recover. For example, there might be insufficient memory to execute a program. Usually, you
do not use or implement Error objects in your programs. A program cannot recover from
Error conditions on its own.

The Exception class comprises less serious errors that represent unusual conditions that
arise while a program is running and from which the program can recover. For example, one
type of Exception class error occurs if a program uses an invalid array subscript value, and
the program could recover by assigning a valid value to the subscript variable.

Java displays an Exception message when the program code could have prevented an error.
For example, Figure 12-2 shows a class named Division that contains a single, small main()
method. The method declares three integers, prompts the user for values for two of them, and
calculates the value of the third integer by dividing the first two values.

import java.util.Scanner;
public class Division
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
int numerator, denominator, result;
System.out.print("Enter numerator >> ");
numerator = input.nextInt();
System.out.print("Enter denominator >> ");
denominator = input.nextInt();
result = numerator / denominator;
System.out.println(numerator + " / " + denominator +

" = " + result);
}

}

Figure 12-2 The Division class

Figure 12-1 The Exception and Error class inheritance hierarchy

(continued)

Learning About Exceptions

595

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 12-3 shows two typical executions of the Division program. In the first execution, the
user enters two usable values and the program executes normally. In the second execution,
the user enters 0 as the value for the denominator and an Exception message is displayed.
(Java does not allow integer division by 0, but floating-point division by 0 is allowed—the
result is displayed as Infinity.) In the second execution in Figure 12-3, most programmers
would say that the program experienced a crash, meaning that it ended prematurely with an
error. The term crash probably evolved from the hardware error that occurs when a read/
write head abruptly comes into contact with a hard disk, but the term has evolved to include
software errors that cause program failure.

In Figure 12-3, the Exception is a java.lang.ArithmeticException. ArithmeticException
is one of many subclasses of Exception. Java acknowledges more than 75 categories of
Exceptions with unusual names such as ActivationException, AlreadyBoundException,
AWTException, CloneNotSupportedException, PropertyVetoException, and
UnsupportedFlavorException.

Besides the type of Exception, Figure 12-3 also shows some information about the error
(“/ by zero”), the method that generated the error (Division.main), and the file and
line number for the error (Division.java, line 12).

Figure 12-4 shows two more executions of the Division class. In each execution, the user
has entered noninteger data for the denominator—first a string of characters, and second,
a floating-point value. In each case, a different type of Exception occurs. You can see from
either set of error messages that the Exception is an InputMismatchException. The last line of
the messages indicates that the problem occurred in line 11 of the Division program, and the
second-to-last error message shows that the problem occurred within the call to nextInt().
Because the user did not enter an integer, the nextInt() method failed. The second-to-last
message also shows that the error occurred in line 2076 of the nextInt() method, but clearly
you do not want to alter the nextInt() method that resides in the Scanner class—you either
want to rerun the program and enter an integer or alter the program so that these errors cannot
occur in subsequent executions.

Figure 12-3 Two typical executions of the Division application

C H A P T E R 1 2 Exception Handling

596

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The list of error messages after each attempted execution in Figure 12-4 is called a stack
trace history list, or more simply, a stack trace. (You might also hear the terms stack
backtrace or stack traceback.) The list shows each method that was called as the program ran.
You will learn more about tracing the stack later in this chapter.

Just because an exception occurs, you don’t necessarily have to deal with it. In the
Division class, you can simply let the offending program terminate as it did in
Figure 12-4. However, the program termination is abrupt and unforgiving. When a
program divides two numbers, the user might be annoyed if the program ends abruptly.
However, if the program is used for a mission critical task such as air-traffic control or to
monitor a patient’s vital statistics during surgery, an abrupt conclusion could be disastrous.
(The term mission critical describes any process that is crucial to an organization.)
Object-oriented exception-handling techniques provide more elegant and safer solutions
for handling errors.

Of course, you can write programs without using exception-handling techniques—you
have already written many such programs as you have worked through this book.
Programmers had to deal with error conditions long before object-oriented methods
were conceived. Probably the most common error-handling solution has been to use a
decision to avoid an error. For example, you can change the main() method of the
Division class to avoid dividing by 0 by adding the decision shown in the shaded
portion of Figure 12-5:

Figure 12-4 Two executions of the Division application in which the user enters
noninteger values

Learning About Exceptions

597

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.Scanner;
public class Division2
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
int numerator, denominator, result;
System.out.print("Enter numerator >> ");
numerator = input.nextInt();
System.out.print("Enter denominator >> ");
denominator = input.nextInt();
if(denominator == 0)

System.out.println("Cannot divide by 0");
else
{

result = numerator / denominator;
System.out.println(numerator + " / " + denominator +

" = " + result);
}

}
}

Figure 12-5 The Division2 application using a traditional error-handling technique

The application in Figure 12-5 displays a message to the user when 0 is entered for a
denominator value, but it is not able to recover when noninteger data such as a string or
floating-point value is entered. Object-oriented exception handling enables such error
recovery.

Programs that can handle exceptions appropriately are said to be more fault tolerant and
robust. Fault-tolerant applications are designed so that they continue to operate, possibly at a
reduced level, when some part of the system fails. Robustness represents the degree to which
a system is resilient to stress and able to continue functioning.

Even if you choose never to use object-oriented exception-handling techniques in your
own programs, you must understand them because built-in Java methods will throw
exceptions.

C H A P T E R 1 2 Exception Handling

598

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Learning About Exceptions

1. Exception handling is the name for the object-oriented techniques used to manage
runtime errors.

2. The Error class represents serious errors from which your program usually cannot
recover, but the Exception class comprises less serious errors from which the
program can recover.

3. When exceptions occur, object-oriented programs must handle them.

. esi r at aht snoi t pecxe
el dnaht on odt aht s mar gor p yna mnetti r wydaerl a evah uoY.ti hti wl aed ot evah

yli r assecent’ nod uoy , sr ucco noi t pecxe na esuacebt suJ . 3# si t ne met at s esl af ehT

Trying Code and Catching Exceptions
In object-oriented terminology, you “try” a procedure that might cause an error. A method
that detects an error condition “throws an exception,” and if you write a block of code that
processes the error, that block is said to “catch the exception.”

When you create a segment of code in which something might go wrong, you place the code
in a try block, which is a block of code you attempt to execute while acknowledging that an
exception might occur. A try block consists of the following elements:

The keyword try followed by a pair of curly braces

Executable statements lie between the curly braces, including some statements that might
cause exceptions

To handle a thrown exception, you can code one or more catch blocks immediately
following a try block. A catch block is a segment of code that can handle an exception that
might be thrown by the try block that precedes it. The exception might be one that is thrown
automatically, or you might explicitly write a throw statement. A throw statement is one that
sends an Exception object out of a block or a method so that it can be handled elsewhere. A
thrown Exception can be caught by a catch block. Each catch block can “catch” one type
of exception—that is, one object that is an object of type Exception or one of its child
classes. You create a catch block by typing the following elements:

The keyword catch followed by a pair of parentheses

Between the parentheses, an Exception type and an identifier for an instance

A pair of curly braces that contain statements that take the actions you want to use to
handle the error condition

Trying Code and Catching Exceptions

599

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 12-6 shows the general format of a method that includes a shaded try…catch pair. A
catch block looks a lot like a method named catch() that takes an argument that is some
type of Exception. However, it is not a method; it has no return type, and you can’t call it
directly. Some programmers refer to a catch block as a catch clause.

returnType methodName(optional arguments)
{

// optional statements prior to code that is tried
try
{

// statement or statements that might generate an exception
}
catch(Exception someException)
{

// actions to take if exception occurs
}
// optional statements that occur after try,
// whether catch block executes or not

}

Figure 12-6 Format of try…catch pair

In Figure 12-6, someException represents an object of the Exception class or any of its
subclasses; the name can be any legal Java identifier that the programmer chooses. If an
exception occurs during the execution of the try block, the exception is thrown and the
statements in the catch block execute. If no exception occurs within the try block, the catch

block does not execute. Either way, any statements following the catch block execute normally.

Figure 12-7 shows an application named DivisionMistakeCaught that improves on the
Division class. The main() method in the class contains a try block with code that attempts
division. When illegal integer division is attempted, an ArithmeticException is automatically
created and the catch block executes. Figure 12-8 shows two typical executions, one with
a generated Exception and one without.

import java.util.Scanner;
public class DivisionMistakeCaught
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
int numerator, denominator, result;
System.out.print("Enter numerator >> ");
numerator = input.nextInt();
System.out.print("Enter denominator >> ");
denominator = input.nextInt();

Figure 12-7 The DivisionMistakeCaught application (continues)

C H A P T E R 1 2 Exception Handling

600

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

try
{

result = numerator / denominator;
System.out.println(numerator + " / " + denominator +

" = " + result);
}
catch(ArithmeticException mistake)
{

System.out.println("Arithmetic exception was thrown and caught");
}
System.out.println("End of program");

}
}

Figure 12-7 The DivisionMistakeCaught application

In the application in Figure 12-7, the throw and catch operations reside in the same method. Later in this
chapter, you will learn that throws and their corresponding catch blocks frequently reside in separate
methods.

If you want to send error messages to a location other than “normal” output, you can use System.err
instead of System.out. For example, if an application writes a report to a specific disk file, you might want
errors to write to a different location—perhaps to a different disk file or to the screen.

(continued)

Figure 12-8 Two executions of the DivisionMistakeCaught application

Trying Code and Catching Exceptions

601

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The output in Figure 12-8 shows two executions of the DivisionMistakeCaught application.

When the user enters a valid denominator, the complete try block executes, including the
statement that displays the result, and the catch block is bypassed.

When the user enters 0 for the denominator, the try block is abandoned without
displaying the division result, and the catch block executes, displaying the error message.

Whether the denominator is valid or not, the “End of program” message is displayed.

Instead of writing your own message in a catch block, you can use the getMessage()

method that ArithmeticException inherits from the Throwable class to retrieve Java’s built-in
message about an exception. For example, Figure 12-9 shows a DivisionMistakeCaught2
class that uses the getMessage() method (see the shaded statement) to generate the
message that “comes with” the caught ArithmeticException argument to the catch block.
Figure 12-10 shows the output; the message is “/ by zero”.

import java.util.Scanner;
public class DivisionMistakeCaught2
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
int numerator, denominator, result;
System.out.print("Enter numerator >> ");
numerator = input.nextInt();
System.out.print("Enter denominator >> ");
denominator = input.nextInt();
try
{

result = numerator / denominator;
System.out.println(numerator + " / " + denominator +

" = " + result);
}
catch(ArithmeticException mistake)
{

System.out.println(mistake.getMessage());
}
System.out.println("End of program");

}
}

Figure 12-9 The DivisionMistakeCaught2 application

C H A P T E R 1 2 Exception Handling

602

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

It should be no surprise that the automatically generated error message in Figure 12-10
is “/ by zero”; you saw the same message in Figure 12-3 when the programmer provided no
exception handling, the exception was automatically thrown, and its message was
automatically supplied.

As an example of another condition that could generate an ArithmeticException, if you create an
object using Java’s BigDecimal class and then perform a division that results in a nonterminating decimal
division such as 1/3, but specify that an exact result is needed, an ArithmeticException is thrown.
As another example, you could create your own class containing a method that creates a new instance of the
ArithmeticException class and throws it under any conditions you specify.

Of course, you might want to do more in a catch block than display an error message; after
all, Java did that for you without requiring you to write the code to catch any exceptions. You
also might want to add code to correct the error; for example, such code could force the
arithmetic to divide by 1 rather than by 0. Figure 12-11 shows try…catch code in which the
catch block computes the result by dividing by 1 instead of by the denominator value. After
the catch block, the application could continue with a guarantee that result holds a valid
value—either the division worked in the try block and the catch block did not execute, or the
catch block remedied the error.

try
{

result = numerator / denominator;
}
catch(ArithmeticException mistake)
{

result = numerator / 1;
}
// program continues here; result is guaranteed to have a valid value

Figure 12-11 A try…catch block in which the catch block corrects the error

Figure 12-10 Output of the DivisionMistakeCaught2 application

Trying Code and Catching Exceptions

603

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the code in Figure 12-11, you can achieve the same result in the catch block by coding
result = numerator; instead ofresult = numerator / 1;. Explicitly dividing by 1 simply makes the
code’s intention clearer, but it does require a small amount of time to execute the instruction. As an alternative,
you could make the program more efficient by omitting the division by 1 and adding clarity with a comment.

Using a try Block to Make Programs “Foolproof”
One of the most common uses for a try block is to circumvent user data entry errors.
When testing your own programs throughout this book, you might have entered the wrong
data type accidentally in response to a prompt. For example, if the user enters a character or
floating-point number in response to a nextInt() method call, the program crashes. Using
a try block can allow you to handle potential data conversion exceptions caused by careless
users. You can place conversion attempts, such as calling nextInt() or nextDouble(), in
a try block and then handle any generated errors.

In Chapter 2, you learned to add a nextLine() call after any next(), nextInt(), or
nextDouble() call to absorb the Enter key remaining in the input buffer before subsequent
nextLine() calls. When you attempt to convert numeric data in a try block and the effort
is followed by another attempted conversion, you also must remember to account for the
potential remaining characters left in the input buffer. For example, Figure 12-12 shows a
program that accepts and displays an array of six integers. The shaded and commented line
is not part of the program when it is executed twice in Figure 12-13.

import java.util.Scanner;
public class EnteringIntegers
{

public static void main(String[] args)
{

int[] numberList = {0, 0, 0, 0, 0, 0};
int x;
Scanner input = new Scanner(System.in);
for(x = 0; x < numberList.length; ++x)
{

try
{

System.out.print("Enter an integer >> ");
numberList[x] = input.nextInt();

}
catch(Exception e)
{

System.out.println("Exception occurred");
}

// input.nextLine();
}

Figure 12-12 The EnteringIntegers program without the extra nextLine() call (continues)

C H A P T E R 1 2 Exception Handling

604

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

System.out.print("The numbers are: ");
for(x = 0; x < numberList.length; ++x)

System.out.print(numberList[x] + " ");
System.out.println();

}
}

Figure 12-12 The EnteringIntegers program without the extra nextLine() call

In Figure 12-13, you can see that when a user enters valid data in the first execution,
the program runs smoothly. However, in the second execution, the user enters some letters
instead of numbers. The program correctly displays Exception occurred, but the user is not
allowed to enter data for any of the remaining numbers. The problem can be corrected by
uncommenting the shaded nextLine() call in the program in Figure 12-12. After the program
is recompiled, it executes as shown in Figure 12-14. Now, each data entry exception is noted,
but the user can continue entering data for the remaining array elements.

(continued)

Figure 12-13 Two typical executions of the EnteringIntegers program without the extra
nextLine() call

Figure 12-14 A typical execution of the EnteringIntegers program with the extra nextLine() call

Trying Code and Catching Exceptions

605

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Declaring and Initializing Variables in try…catch Blocks
You can include any legal Java statements within a try block or catch block, including
variable declarations. However, you must remember that a variable declared within a block is
local to that block. In other words, the variable goes out of scope when the try or catch block
ends, so any variable declared within one of the blocks should serve only a temporary purpose.

If you want to use a variable both with a try or catch block and afterward, then you must
declare the variable before the try block begins. However, if you declare a variable before a
try block but wait to assign its initial usable value within the try…catch block, you must be
careful that the variable receives a useful value; otherwise, when you use the variable after the
try…catch pair ends, the program will not compile.

Figure 12-15 illustrates this scenario. In the UninitializedVariableTest program, x is
declared and its value is received from the user in a try block. Because the user might not
enter an integer, the conversion to an integer might fail, and an exception might be thrown.
In this example, the catch block only displays a message and does not assign a useful value
to x. When the program attempts to display x after the catch block, an error message is
generated, as shown in Figure 12-16. You have three easy options for fixing this error:

You can assign a value to x before the try block starts. That way, even if an exception is
thrown, x will have a usable value to display in the last statement.

You can assign a usable value to x within the catch block. That way, if an exception is
thrown, x will again hold a usable value.

You can move the output statement within the try block. If the conversion of the user’s
entry to an integer is successful, the try block finishes execution and the value of x is
displayed. However, if the conversion fails, the try block is abandoned, the catch block
executes, the error message is displayed, and x is not used.

import java.util.Scanner;
public class UninitializedVariableTest
{

public static void main(String[] args)
{

int x;
Scanner input = new Scanner(System.in);
try
{

System.out.print("Enter an integer >> ");
x = input.nextInt();

}
catch(Exception e)
{

System.out.println("Exception occurred");
}
System.out.println("x is " + x);

}
}

Figure 12-15 The UninitializedVariableTest program

C H A P T E R 1 2 Exception Handling

606

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Watch the video Exceptions.

TWO TRUTHS & A LIE

Trying Code and Catching Exceptions

1. A try block is a block of code you attempt to execute while acknowledging that
an exception might occur.

2. You usually code at least one catch block immediately following a try block to
handle an exception that might be thrown by the try block.

3. A throw statement is one that sends an Exception object to a try block so it
can be handled.

. kcol b hctac a ot
t cej bo noitpecxE na sdnes t ne met at s worht A. 3# si t ne met at s esl af ehT

You Do It

Throwing and Catching an Exception

In this section, you create an application in which the user enters two values to be
divided. The application catches an exception if either of the entered values is not an
integer.

Figure 12-16 The error message generated when compiling the UninitializedVariableTest
program

(continues)

Trying Code and Catching Exceptions

607

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Open a new file, and type the first few lines of an interactive application named
ExceptionDemo.
import javax.swing.*;
public class ExceptionDemo
{

public static void main(String[] args)
{

2. Declare three integers—two to be input by the user and a third to hold the
result after dividing the first two. The numerator and denominator variables
must be assigned starting values because their values will be entered within a
try block. The compiler understands that a try block might not complete;
that is, it might throw an exception before it is through. Also declare an input
String to hold the return value of the JOptionPane showInputDialog()

method.
int numerator = 0, denominator = 0, result;
String inputString;

3. Add a try block that prompts the user for two values, converts each entered
String to an integer, and divides the values, producing result.
try
{

inputString = JOptionPane.showInputDialog(null,
"Enter a number to be divided");

numerator = Integer.parseInt(inputString);
inputString = JOptionPane.showInputDialog(null,

"Enter a number to divide into the first number");
denominator = Integer.parseInt(inputString);
result = numerator / denominator;

}

4. Add a catch block that catches an ArithmeticException object if division
by 0 is attempted. If this block executes, display an error message, and force
result to 0.
catch(ArithmeticException exception)
{

JOptionPane.showMessageDialog(null, exception.getMessage());
result = 0;

}

5. Whether the try block succeeds or not, display the result (which might have
been set to 0). Include closing curly braces for the main() method and for
the class.

(continued)

(continues)

C H A P T E R 1 2 Exception Handling

608

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

JOptionPane.showMessageDialog(null, numerator + " / " +
denominator + "\nResult is " + result);

}
}

6. Save the file as ExceptionDemo.java, and then compile and execute the
application. Enter two nonzero integer values. For example, the first execution
in Figure 12-17 shows the output when the user enters 12 and 4 as the two
input values. The application completes successfully. Click OK to end the
application, and execute the ExceptionDemo application again. This time,
enter 0 for the second value; the output looks like the second part of
Figure 12-17. Click OK to end the application.

Throwing and Catching Multiple Exceptions
You can place as many statements as you need within a try block, and you can catch
as many exceptions as you want. If you try more than one statement, only the first
error-generating statement throws an exception. As soon as the exception occurs, the
logic transfers to the catch block, which leaves the rest of the statements in the try
block unexecuted.

When a program contains multiple catch blocks, they are examined in sequence until a
match is found for the type of exception that occurred. Then, the matching catch block
executes, and each remaining catch block is bypassed.

For example, consider the application in Figure 12-18. The main() method in
the DivisionMistakeCaught3 class throws two types of Exception objects: an
ArithmeticException and an InputMismatchException. The try block in the
application surrounds all the statements in which the exceptions might occur.

(continued)

Figure 12-17 Output of two executions of the ExceptionDemo application

Throwing and Catching Multiple Exceptions

609

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.*;
public class DivisionMistakeCaught3
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
int numerator, denominator, result;
try
{

System.out.print("Enter numerator >> ");
numerator = input.nextInt();
System.out.print("Enter denominator >> ");
denominator = input.nextInt();
result = numerator / denominator;
System.out.println(numerator + " / " + denominator +

" = " + result);
}
catch(ArithmeticException mistake)
{

System.out.println(mistake.getMessage());
}
catch(InputMismatchException mistake)
{

System.out.println("Wrong data type");
}
System.out.println("End of program");

}
}

Figure 12-18 The DivisionMistakeCaught3 class

The program in Figure 12-18 must import the java.util.InputMismatchException class to be
able to use an InputMismatchException object. The java.util package is also needed for
the Scanner class, so it’s easiest to import the whole package.

If you use the getMessage() method with the InputMismatchException object, you see that the
message is null, because null is the default message value for an InputMismatchException
object.

In the main() method of the program in Figure 12-18, the try block executes. Several
outcomes are possible:

If the user enters two usable integers, result is calculated, normal output is displayed,
and neither catch block executes.

If the user enters an invalid (noninteger) value at either the first or second shaded
statement, an InputMismatchException object is created and thrown. When the program
encounters the first catch block (that catches an ArithmeticException), the block is

C H A P T E R 1 2 Exception Handling

610

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

bypassed because the Exception types do not match. When the program encounters the
second catch block, the types match, and the “Wrong data type” message is displayed.

If the user enters 0 for denominator, the division statement throws an
ArithmeticException, and the try block is abandoned. When the program encounters
the first catch block, the Exception types match, the value of the getMessage() method
is displayed, and then the second catch block is bypassed.

Figure 12-19 shows the output of four typical program executions.

When you list multiple catch blocks following a try block, you must be careful
that some catch blocks don’t become unreachable. Unreachable statements are program
statements that can never execute under any circumstances. For example, if two successive
catch blocks catch an ArithmeticException and an ordinary Exception, respectively, the
ArithmeticException errors cause the first catch to execute and other types that derive
from Exception “fall through” to the more general Exception catch block. However, if you
reverse the sequence of the catch blocks so that the one that catches general Exception
objects is first, even ArithmeticExceptions would be caught by the Exception catch. The
ArithmeticException catch block therefore is unreachable because the Exception catch

block is in its way, and the class does not compile. Think of arranging your catch blocks so
that the “bigger basket” is always below a smaller one. That is, each Exception should “fall
through” as many catch blocks as necessary to reach the one that will hold it.

You first learned about unreachable statements in Chapter 3. For example, statements that follow a method’s
return statement are unreachable. Creating an unreachable catch block causes a compiler error that
generates a message indicating that the exception “has already been caught.”

Figure 12-19 Four executions of the DivisionMistakeCaught3 application

Throwing and Catching Multiple Exceptions

611

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sometimes, you want to execute the same code no matter which Exception type occurs. For
example, within the DivisionMistakeCaught3 application in Figure 12-18, each of the two
catch blocks displays a unique message. Instead, you might want both catch blocks to display
the same message. Because ArithmeticExceptions and InputMismatchExceptions are both
subclasses of Exception, you can rewrite the program as shown in Figure 12-20, using a single
generic catch block (shaded) that can catch any type of Exception object.

import java.util.*;
public class DivisionMistakeCaught4
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
int numerator, denominator, result;
try
{

System.out.print("Enter numerator >> ");
numerator = input.nextInt();
System.out.print("Enter denominator >> ");
denominator = input.nextInt();
result = numerator / denominator;
System.out.println(numerator + " / " + denominator +

" = " + result);
}
catch(Exception mistake)
{

System.out.println("Operation unsuccessful");
}
System.out.println("End of program");

}
}

Figure 12-20 The DivisionMistakeCaught4 application

The catch block in Figure 12-20 accepts a more generic Exception argument type than
that thrown by either of the potentially error-causing try statements, so the generic catch

block can act as a “catch-all” block. When either an arithmetic error or incorrect input type
error occurs, the thrown exception is “promoted” to an Exception error in the catch block.
Figure 12-21 shows several executions of the DivisionMistakeCaught4 application. Notice
that no matter which type of mistake occurs during execution, the general “Operation
unsuccessful” message is displayed by the generic catch block.

C H A P T E R 1 2 Exception Handling

612

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Java 7 and Java 8, a catch block can also be written to catch specific multiple exception
types. For example, the following catch block catches two Exception types. When either is
caught, its local identifier is e.
catch(ArithmeticException, InputMismatchException e)
{
}

Although a method can throw any number of Exception types, many developers believe that
it is poor style for a method to throw and catch more than three or four types. If it does, one
of the following conditions might be true:

Perhaps the method is trying to accomplish too many diverse tasks and should be broken
up into smaller methods.

Perhaps the Exception types thrown are too specific and should be generalized, as they
are in the DivisionMistakeCaught4 application in Figure 12-20.

Watch the video Catching Multiple Exceptions.

Figure 12-21 Several executions of the DivisionMistakeCaught4 application

Throwing and Catching Multiple Exceptions

613

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Throwing and Catching Multiple Exceptions

1. When multiple try block statements throw exceptions, multiple catch blocks
might execute.

2. As soon as an exception occurs, the try block that contains it is abandoned and
the rest of its statements are unexecuted.

3. When a program contains multiple catch blocks, the first one that matches the
thrown Exception type is the one that executes.

. denodnaba si kcol b yrt

eht f ot ser eht neht dna, noi t pecxe na s wor ht t ne met at s gni t ar eneg- r orr e
t srif eht yl no,t ne met at s eno naht er o myrt uoy fI . 1# si t ne met at s esl af ehT

You Do It

Using Multiple catch Blocks

In this section, you add a second catch block to the ExceptionDemo application.

1. Open the ExceptionDemo.java file. Change the class name to
ExceptionDemo2, and save the file as ExceptionDemo2.java.

2. Execute the program, and enter a noninteger value at one of the prompts.
Program execution fails. For example, Figure 12-22 shows the error generated
when the user types the string “four hundred and seventeen” at the first prompt.

Figure 12-22 Error message generated by the current version of the ExceptionDemo2

application when a user enters a noninteger value

(continues)

C H A P T E R 1 2 Exception Handling

614

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. After the existing catch block that catches an ArithmeticException object,
add a catch block that catches a NumberFormatException object if neither
user entry can be converted to an integer. If this block executes, display an
error message, set numerator and denominator to a default value of 999,
and force result to 1.
catch(NumberFormatException exception)
{

JOptionPane.showMessageDialog(null,
"This application accepts digits only!");

numerator = 999;
denominator = 999;
result = 1;

}

4. Save, compile, and execute the program. This time, if you enter a noninteger
value, the output appears as shown in Figure 12-23. Click OK to end the
application.

5. Execute the application a few more times by entering a variety of valid and
invalid data. Confirm that the program works appropriately whether you type
two usable integers, an unusable 0 for the second integer, or noninteger data
such as strings containing alphabetic characters or punctuation.

Using the finally Block
When you have actions you must perform at the end of a try…catch sequence, you can use a
finally block. The code within a finally block executes regardless of whether the
preceding try block identifies an exception. Usually, you use a finally block to perform
cleanup tasks that must happen regardless of whether any exceptions occurred and whether
any exceptions that occurred were caught. Figure 12-24 shows the format of a try…catch

sequence that uses a finally block.

(continued)

Figure 12-23 Error message generated by the improved version of the
ExceptionDemo2 application when a user enters a noninteger value

Using the finally Block

615

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

try
{

// statements to try
}
catch(Exception e)
{

// actions that occur if exception was thrown
}
finally
{

// actions that occur whether catch block executed or not
}

Figure 12-24 Format of try…catch…finally sequence

Compare Figure 12-24 to Figure 12-6 shown earlier in this chapter. When the try code
works without error in Figure 12-6, control passes to the statements at the end of the
method. Also, when the try code fails and throws an exception, and the Exception object is
caught, the catch block executes and control again passes to the statements at the end of
the method. At first glance, it seems as though the statements at the end of the method in
Figure 12-6 always execute. However, the final set of statements might never execute for at
least two reasons:

Any try block might throw an Exception object for which you did not provide a catch
block. After all, exceptions occur all the time without your handling them, as one did in
the first Division application in Figure 12-2 earlier in this chapter. In the case of an
unhandled exception, program execution stops immediately, the exception is sent to
the operating system for handling, and the current method is abandoned.

The try or catch block might contain a System.exit(); statement, which stops
execution immediately.

When you include a finally block, you are assured that the finally statements will execute
before the method is abandoned, even if the method concludes prematurely. For example,
programmers often use a finally block when the program uses data files that must be closed.
You will learn more about writing to and reading from data files in the next chapter. For now,
however, consider the format shown in Figure 12-25, which represents part of the logic for a
typical file-handling program:

C H A P T E R 1 2 Exception Handling

616

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

try
{

// Open the file
// Read the file
// Place the file data in an array
// Calculate an average from the data
// Display the average

}
catch(IOException e)
{

// Issue an error message
// System exit

}
finally
{

// If the file is open, close it
}

Figure 12-25 Pseudocode that tries reading a file and handles an IOException

The pseudocode in Figure 12-25 represents an application that opens a file; in Java, if a file
does not exist when you open it, an input/output exception, or IOException, is thrown and a
catch block can handle the error. However, because the application in Figure 12-25 uses an
array, an uncaught IndexOutOfBoundsException might occur even though the file opened
successfully. (An IndexOutOfBoundsException occurs, as its name implies, when a subscript
is not in the range of valid subscripts for an array.) The IndexOutOfBoundsException would
not be caught by the existing catch block. Also, because the application calculates an average,
it might divide by 0 and an ArithmeticException might occur; it also would not be caught.
In any of these events, you might want to close the file before proceeding. By using the
finally block, you ensure that the file is closed because the code in the finally block
executes before control returns to the operating system. The code in the finally block
executes no matter which of the following outcomes of the try block occurs:

The try ends normally.

The catch executes.

An uncaught exception causes the method to abandon prematurely. An uncaught
exception does not allow the try block to finish, nor does it cause the catch block to
execute.

If an application might throw several types of exceptions, you can try some code, catch
the possible exception, try some more code and catch the possible exception, and so on.
Usually, however, the superior approach is to try all the statements that might throw
exceptions, and then include all the needed catch blocks and an optional finally block.
This is the approach shown in Figure 12-25, and it usually results in logic that is easier to
follow.

Using the finally Block

617

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can avoid using a finally block, but you would need repetitious code. For example,
instead of using the finally block in the pseudocode in Figure 12-25, you could insert the
statement “If the file is open, close it” as both the last statement in the try block and the
second-to-last statement in the catch block, just before System exit. However, writing code
just once in a finally block is clearer and less prone to error.

If a try block calls the System.exit() method and the finally block calls the same method,
the exit() method in the finally block executes. The try block’s exit() method call is
abandoned.

C++ programmers are familiar with try and catch blocks, but C++ does not provide a finally block.
C# and Visual Basic contain the keywords try, catch, and finally.

TWO TRUTHS & A LIE

Using the finally Block

1. The code within a finally block executes when a try block identifies an
exception that is not caught.

2. Usually, you use a finally block to perform cleanup tasks that must happen
regardless of whether any exceptions occurred and whether any exceptions that
occurred were caught.

3. It’s possible that the code that follows a try…catch…finally sequence might
never execute—for example, if a try block throws an unhandled exception.

.t on r ot hguac si noi t pecxe na
r eht eh w dna,t on r o noi t pecxe na seifi t nedi kcol b yrt gni decer p eht

r eht eh wset ucexe kcol b yllanif a ni hti wedoc ehT. 1# si t ne met at s esl af ehT

Understanding the Advantages of Exception Handling
Before the inception of object-oriented programming languages, potential program
errors were handled using somewhat confusing, error-prone methods. For example, a
traditional, non-object-oriented procedural program might perform three methods that
depend on each other using code that provides error checking similar to the pseudocode
in Figure 12-26.

C H A P T E R 1 2 Exception Handling

618

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

call methodA()
if methodA() worked
{

call methodB()
if methodB() worked
{

call methodC()
if methodC() worked

everything's okay, so display finalResult
else

set errorCode to 'C'
}
else

set errorCode to 'B'
}
else

set errorCode to 'A'

Figure 12-26 Pseudocode representing traditional error checking

Figure 12-26 represents an application in which the logic must pass three tests before
finalResult can be displayed. The program executes methodA(); it then calls methodB()

only if methodA() is successful. Similarly, methodC() executes only when methodA() and
methodB() are both successful. When any method fails, the program sets an appropriate
errorCode to ‘A’, ‘B’, or ‘C’. (Presumably, the errorCode is used later in the application.) The
logic is difficult to follow, and the application’s purpose and intended usual outcome—to
display finalResult—is lost in the maze of if statements. Also, you can easily make coding
mistakes within such a program because of the complicated nesting, indenting, and opening
and closing of curly braces.

Compare the same program logic using Java’s object-oriented, error-handling technique
shown in Figure 12-27. Using the try…catch object-oriented technique provides the same
results as the traditional method, but the statements of the program that do the “real” work
(calling methods A, B, and C and displaying finalResult) are placed together, where their
logic is easy to follow. The try steps should usually work without generating errors; after all,
the errors are “exceptions.” It is convenient to see these business-as-usual steps in one
location. The unusual, exceptional events are grouped and moved out of the way of the
primary action.

Understanding the Advantages of Exception Handling

619

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

try
{

call methodA() and maybe throw an exception
call methodB() and maybe throw an exception
call methodC() and maybe throw an exception
everything's okay, so display finalResult

}
catch(methodA()'s error)
{

set errorCode to "A"
}
catch(methodB()'s error)
{

set errorCode to "B"
}
catch(methodC()'s error)
{

set errorCode to "C"
}

Figure 12-27 Pseudocode representing object-oriented exception handling

Besides clarity, an advantage to object-oriented exception handling is the flexibility it allows
in the handling of error situations. When a method you write throws an exception, the
same method can catch the exception, although it is not required to do so, and in most
object-oriented programs it does not. Often, you don’t want a method to handle its own
exception. In many cases, you want the method to check for errors, but you do not want to
require a method to handle an error if it finds one. Another advantage to object-oriented
exception handling is that you gain the ability to appropriately deal with exceptions as you
decide how to handle them. When you write a method, it can call another, catch a thrown
exception, and you can decide what you want to do. Just as a police officer has leeway to deal
with a speeding driver differently depending on circumstances, programs can react to
exceptions specifically for their current purposes.

Methods are flexible partly because they are reusable—that is, a well-written method might
be used by any number of applications. Each calling application might need to handle a
thrown error differently, depending on its purpose. For example, an application that uses a
method that divides values might need to terminate if division by 0 occurs. A different
program simply might want the user to reenter the data to be used, and a third program
might want to force division by 1. The method that contains the division statement can throw
the error, but each calling program can assume responsibility for handling the error detected
by the method in an appropriate way.

C H A P T E R 1 2 Exception Handling

620

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Understanding the Advantages of Exception Handling

1. An advantage to using object-oriented error-handling techniques is that programs
are clearer and more flexible.

2. An advantage to using object-oriented error-handling techniques is that when a
method throws an exception, it will always be handled in the same, consistent way.

3. In many cases, you want a method to check for errors, but you do not want to
require the method to handle an error if it finds one.

. esopr up sti no gni dneped
, yl t ner effi d sr orr e n worht el dnah nac noi t acil ppa gnill ac hcaet aht si

seuqi nhcet gnil dnah- noi t pecxe det nei r o- t cej bof o egat navda nA. snoi t acil ppaf o
r eb mun yna yb desu ebt hgi mdoht e mnetti r w-ll e w A. 2# si t ne met at s esl af ehT

Specifying the Exceptions that a Method Can Throw
If a method throws an exception that it will not catch but that will be caught by a different
method, you must create a throws clause by using the keyword throws followed by an
Exception type in the method header. This practice is known as exception specification.

For example, Figure 12-28 shows a PriceList class used by a company to hold a list of prices
for items it sells. For simplicity, there are only four prices and a single method that displays
the price of a single item. The displayPrice() method accepts a parameter to use as the
array subscript, but because the subscript could be out of bounds, the method contains a
shaded throws clause, acknowledging it could throw an exception.

public class PriceList
{

private static final double[] price = {15.99, 27.88, 34.56, 45.89};
public static void displayPrice(int item) throws IndexOutOfBoundsException
{

System.out.println("The price is $" + price[item]);
}

}

Figure 12-28 The PriceList class

Figures 12-29 and 12-30 show two applications in which programmers have chosen to
handle the potential exception differently. In the first class, PriceListApplication1,
the programmer has chosen to handle the exception in the shaded catch block by
displaying a price of $0. In the second class, PriceListApplication2, the programmer

Specifying the Exceptions that a Method Can Throw

621

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

has chosen to handle the exception by using the highest price in the array. Figure 12-31
shows several executions of each program. Other programmers writing other applications
that use the PriceList class could choose still different actions, but they all can use the
flexible displayPrice() method because it doesn’t limit the calling method’s choice of
recourse.

import java.util.*;
public class PriceListApplication1
{

public static void main(String[] args)
{

int item;
Scanner input = new Scanner(System.in);
System.out.print("Enter item number >> ");
item = input.nextInt();
try
{

PriceList.displayPrice(item);
}
catch(IndexOutOfBoundsException e)
{

System.out.println("Price is $0");
}

}
}

Figure 12-29 The PriceListApplication1 class

import java.util.*;
public class PriceListApplication2
{

public static void main(String[] args)
{

int item;
Scanner input = new Scanner(System.in);
final int MAXITEM = 3;
System.out.print("Enter item number >> ");
item = input.nextInt();
try
{

PriceList.displayPrice(item);
}
catch(IndexOutOfBoundsException e)
{

PriceList.displayPrice(MAXITEM);
}

}
}

Figure 12-30 The PriceListApplication2 class

C H A P T E R 1 2 Exception Handling

622

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For most Java methods that you write, you do not use a throws clause. For example, you
have not needed to use a throws clause in any of the many programs you have written while
working through this book; however, in those methods, if you divided by 0 or went beyond an
array’s bounds, an exception was thrown nevertheless. Most of the time, you let Java
handle any exception by shutting down the program. Imagine how unwieldy your programs
would become if you were required to provide instructions for handling every possible
error, including equipment failures and memory problems. Most exceptions never have to
be explicitly thrown or caught, nor do you have to include a throws clause in the headers
of methods that automatically throw these exceptions. The only exceptions that must be
caught or named in a throws clause are the type known as checked exceptions.

Java’s exceptions can be categorized into two types:

Unchecked exceptions—These exceptions inherit from the Error class or the
RuntimeException class. Although you can handle these exceptions in your
programs, you are not required to do so. For example, dividing by zero is a type of
RuntimeException, and you are not required to handle this exception—you can simply
let the program terminate.

Checked exceptions—These exceptions are the type that programmers should anticipate
and from which programs should be able to recover. All exceptions that you explicitly
throw and that descend from the Exception class are checked exceptions.

Java programmers say that checked exceptions are subject to the catch or specify
requirement, which means if you throw a checked exception from a method, you must do
one of the following:

Catch it within the method.

Specify the exception in your method header’s throws clause.

Figure 12-31 Several executions of PriceListApplication1 and PriceListApplication2

Specifying the Exceptions that a Method Can Throw

623

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Code that uses a checked exception will not compile if the catch or specify rule is not followed.

If you write a method with a throws clause in the header, then any method that uses your
method must do one of the following:

Catch and handle the possible exception.

Declare the exception in its throws clause. The called method can then rethrow the
exception to yet another method that might either catch it or throw it yet again.

In other words, when an exception is a checked exception, client programmers are forced to
deal with the possibility that an exception will be thrown.

Some programmers feel that using checked exceptions is an example of “syntactic salt.” Syntactic sugar is
a term coined by Peter J. Landin to describe aspects of a computer language that make it “sweeter,” or
easier, for programmers to use. For example, you learned in Chapter 1 that you do not have to write
import java.lang; at the top of every Java program file because the package is automatically
imported for you. The metaphor has been extended by the term syntactic salt, which is a language
feature designed to make it harder to write bad code.

If you write a method that explicitly throws a checked exception that is not caught within
the method, Java requires that you use the throws clause in the header of the method. Using
the throws clause does not mean that the method will throw an exception—everything might
go smoothly. Instead, it means the method might throw an exception. You include the throws
clause in the method header so applications that use your methods are notified of the
potential for an exception.

A method that overrides another cannot throw an exception unless it throws the same type as its parent or a
subclass of its parent’s thrown type. These rules do not apply to overloaded methods. Any exceptions may
(or may not) be thrown from one version of an overloaded method without considering what exceptions are
thrown by other versions of an overloaded method.

In Chapter 3, you learned that a method’s signature is the combination of the method name
and the number, types, and order of arguments. Some programmers argue that any throws
clause is also part of the signature, but most authorities disagree. You cannot create a class
that contains multiple methods that differ only in their return types; such methods are not
overloaded. The same is true for methods with the same signatures that differ only in their
throws clauses; the compiler considers the methods to have an identical signature. Instead
of saying that the throws clause is part of the method’s signature, you might prefer to say that
it is part of the method’s interface. Whether you consider the throws clause part of a
method’s signature or not, it is one of the characteristics you should know about every
method you use. To be able to use a method to its full potential, you must know the method’s
name and three additional pieces of information:

The method’s return type

The type and number of arguments the method requires

The type and number of exceptions the method throws

You can’t call a method without knowing what types of arguments are required, but you can
call a method without knowing its return type if you don’t want to use the value it returns.

C H A P T E R 1 2 Exception Handling

624

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Also, if you use a method without knowing its return type, you probably don’t understand the
purpose of the method. Likewise, you can’t make sound decisions about what to do in case of
an error if you don’t know what types of exceptions a method might throw.

When a method might throw more than one exception type, you can specify a list of
potential exceptions in the method header by separating them with commas. As an alternative,
if all the exceptions descend from the same parent, you can specify the more general parent
class. For example, if your method might throw either an ArithmeticException or an
ArrayIndexOutOfBoundsException, you can just specify that your method throws a
RuntimeException. One advantage to this technique is that when your method is modified
to include more specific RuntimeExceptions in the future, the method header will not
change. This saves time and money for users of your methods, who will not have to modify
their own methods to accommodate new RuntimeException types.

An extreme alternative is simply to specify that your method throws a general Exception object,
so that all exceptions are included in one clause. Doing this simplifies the exception specification
you write. However, using this technique disguises information about the specific types of
exceptions that might occur, and such information usually has value to users of your methods.

Usually, you declare only checked exceptions. Remember that runtime exceptions can occur anywhere in a
program, and they can be numerous. Programs would be less clear and more cumbersome if you had to
account for runtime exceptions in every method declaration. Therefore, the Java compiler does not require
that you catch or specify runtime exceptions.

Watch the video Specifying Exceptions.

TWO TRUTHS & A LIE

Specifying the Exceptions that a Method Can Throw

1. Exception specification is the practice of listing possible exceptions in a throws

clause in a method header.

2. Many exceptions never have to be explicitly thrown or caught, nor do you have to
include a throws clause in the headers of methods that automatically throw these
exceptions.

3. If you write a method with a throws clause for a checked exception in the header,
then any method that uses your method must catch and handle the possible
exception.

. n worht er eb nac noi t pecxe eht os esual c
sworht sti ni noi t pecxe eht er al ced ro noi t pecxe el bi ssop eht el dnah dna

hct act su mdoht e mruoy sesut aht doht e myna neht ,r edaeh eht ni noi t pecxe
dekcehc ar of esual c sworht a hti wdoht e ma eti r wuoyfI . 3# si t ne met at s esl af ehT

Specifying the Exceptions that a Method Can Throw

625

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tracing Exceptions Through the Call Stack
When one method calls another, the computer’s operating system must keep track of where
the method call came from, and program control must return to the calling method when the
called method is completed. For example, if methodA() calls methodB(), the operating system
has to “remember” to return to methodA() when methodB() ends. Likewise, if methodB() calls
methodC(), the computer must “remember” while methodC() executes to return to methodB()
and eventually to methodA(). The memory location known as the call stack is where
the computer stores the list of memory locations to which the system must return when
methods end. Programmers sometimes refer to the call stack as the execution stack, the memory
stack, or just the stack.

When a method throws an exception and the method does not catch it, the exception is thrown
to the next method up the call stack, or in other words, to the method that called the offending
method. Figure 12-32 shows how the call stack works. If methodA() calls methodB(), and
methodB() calls methodC(), and methodC() throws an exception, Java first looks for a catch

block in methodC(). If none exists, Java looks for the same thing in methodB(). If methodB() does
not have a catch block, Java looks to methodA(). If methodA() cannot catch the exception, it is
thrown to the Java Virtual Machine, which displays a message at the command prompt.

For example, examine the application in Figure 12-33. The main() method of the application
calls methodA(), which displays a message and calls methodB(). Within methodB(), another
message is displayed and methodC() is called. In methodC(), yet another message is displayed.
Then, a three-integer array is declared, and the program attempts to display the fourth
element in the array. This program compiles correctly—no error is detected until methodC()
attempts to access the out-of-range array element. In Figure 12-33, the comments indicate
line numbers so you can more easily follow the sequence of generated error messages. You

methodA()
 calls methodB()

Operating system

methodB()
 calls methodC()

methodC()
 throws exception

Can it be caught here? No?

Can it be caught here? No?

Can it be caught here? No?

Figure 12-32 Cycling through the call stack

C H A P T E R 1 2 Exception Handling

626

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

probably would not add such comments to a working application. Figure 12-34 shows the
output when the application executes.

public class DemoStackTrace
{

public static void main(String[] args)
{

methodA(); // line 5
}
public static void methodA()
{

System.out.println("In methodA()");
methodB(); // line 10

}
public static void methodB()
{

System.out.println("In methodB()");
methodC(); // line 15

}
public static void methodC()
{

System.out.println("In methodC()");
int [] array = {0, 1, 2};
System.out.println(array[3]); // line 21

}
}

Figure 12-33 The DemoStackTrace class

As you can see in Figure 12-34, three messages are displayed, indicating that methodA(),
methodB(), and methodC() were called in order. However, when methodC() attempts to
access the out-of-range element in the array, an ArrayIndexOutOfBoundsException is
automatically thrown. The error message generated shows that the exception occurred at line
21 of the file in methodC(), which was called in line 15 of the file by methodB(), which was
called in line 10 of the file by methodA(), which was called by the main() method in line 5 of

Figure 12-34 Error messages generated by the DemoStackTrace application

Don’t Do It
You never would purposely
use an out-of-range subscript
in a professional program.

Tracing Exceptions Through the Call Stack

627

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the file. Using this list of error messages, you could track down the location where the error
was generated. Of course, in a larger application that contains thousands of lines of code, the
stack trace history list would be even more useful.

The technique of cycling through the methods in the stack has great advantages because it
allows methods to handle exceptions wherever the programmer has decided it is most
appropriate—including allowing the operating system to handle the error. However, when a
program uses several classes, the disadvantage is that the programmer finds it difficult to
locate the original source of an exception.

You have already used the Throwable method getMessage() to obtain information about an
Exception object. Another useful Exception method is the printStackTrace() method.
When you catch an Exception object, you can call printStackTrace() to display a list of
methods in the call stack so you can determine the location of the statement that caused the
exception.

For example, Figure 12-35 shows a DemoStackTrace2 application in which the
printStackTrace() method produces a trace of the trail taken by a thrown exception. The
differences in the executable statements from the DemoStackTrace application are shaded.
The call to methodB() has been placed in a try block so that the exception can be caught.
Instead of throwing the exception to the operating system, this application catches the
exception, displays a stack trace history list, and continues to execute. The output of the list of
methods in Figure 12-36 is similar to the one shown in Figure 12-34, but the application does
not end abruptly.

public class DemoStackTrace2
{

public static void main(String[] args)
{

methodA(); // line 5
}
public static void methodA()
{

System.out.println("In methodA()");
try
{

methodB(); // line 12
}
catch(ArrayIndexOutOfBoundsException error)
{

System.out.println("In methodA() - The stack trace:");
error.printStackTrace();

}
System.out.println("methodA() ends normally.");
System.out.println("Application could continue " +

"from this point.");
}

Figure 12-35 The DemoStackTrace2 class (continues)

C H A P T E R 1 2 Exception Handling

628

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public static void methodB()
{

System.out.println("In methodB()");
methodC(); // line 26

}
public static void methodC()
{

System.out.println("In methodC()");
int[] array = {0, 1, 2};
System.out.println(array[3]); // line 32

}
}

Figure 12-35 The DemoStackTrace2 class

Usually, you do not want to place a printStackTrace() method call in a finished program.
The typical application user has no interest in the cryptic messages that are displayed.
However, while you are developing an application, printStackTrace() can be a useful
tool for diagnosing your class’s problems.

(continued)

Figure 12-36 Output of the DemoStackTrace2 application

Tracing Exceptions Through the Call Stack

629

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Tracing Exceptions Through the Call Stack

1. The call stack is where the computer stores the list of locations to which the
system must return after each method call.

2. When a method throws an exception and the method does not catch it, the
exception is thrown to the next method down the call stack, or in other words,
to the next method that the offending method calls.

3. When you catch an exception, you can call printStackTrace() to display a list
of methods in the call stack so you can determine the location of the statement
that caused the exception. However, usually you do not want to place a
printStackTrace() method call in a finished program.

. doht e mgni dneff o eht dell ac t aht doht e meht ot , sdr owr eht o ni r o, kcat s
ll ac eht pu doht e mt xen eht ot n worht si noi t pecxe eht ,ti hct act on seod

doht e meht dna noi t pecxe na s worht doht e ma neh W. 2# si t ne met at s esl af ehT
Creating Your Own Exception Classes
Java provides over 40 categories of Exceptions that you can use in your programs.
However, Java’s creators could not predict every condition that might be an exception in
your applications. For example, you might want to declare an Exception when your bank
balance is negative or when an outside party attempts to access your e-mail account. Most
organizations have specific rules for exceptional data; for example, an employee number must
not exceed three digits, or an hourly salary must not be less than the legal minimum wage.
Of course, you can handle these potential error situations with if statements, but Java also
allows you to create your own Exception classes.

To create your own throwable Exception class, you must extend a subclass of Throwable.
Recall from Figure 12-1 that Throwable has two subclasses, Exception and Error, which are
used to distinguish between recoverable and nonrecoverable errors. Because you always want to
create your own exceptions for recoverable errors, your classes should extend the Exception

class. You can extend any existing Exception subclass, such as ArithmeticException or
NullPointerException, but usually you want to inherit directly from Exception. It is
conventional to end each Exception subclass name with Exception.

The Exception class contains four constructors as follows:

Exception()—Constructs a new Exception object with null as its detail message

Exception(String message)—Constructs a new Exception object with the specified
detail message

C H A P T E R 1 2 Exception Handling

630

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exception(String message, Throwable cause)—Constructs a new Exception object
with the specified detail message and cause

Exception(Throwable cause)—Constructs a new Exception object with the specified
cause and a detail message of cause.toString(), which typically contains the class and
the detail message of cause, or null if the cause argument is null

For example, Figure 12-37 shows a HighBalanceException class. Its constructor contains a
single statement that passes a description of an error to the parent Exception constructor.
This String would be retrieved if you called the getMessage() method with a
HighBalanceException object.

public class HighBalanceException extends Exception
{

public HighBalanceException()
{

super("Customer balance is high");
}

}

Figure 12-37 The HighBalanceException class

Figure 12-38 shows a CustomerAccount class that uses a HighBalanceException. The
CustomerAccount constructor header indicates that it might throw a HighBalanceException

(see the first shaded statement); if the balance used as an argument to the constructor exceeds
a set limit, a new, unnamed instance of the HighBalanceException class is thrown (see the
second shaded statement).

public class CustomerAccount
{

private int acctNum;
private double balance;
public static double HIGH_CREDIT_LIMIT = 20000.00;
public CustomerAccount(int num, double bal) throws HighBalanceException
{

acctNum = num;
balance = bal;
if(balance > HIGH_CREDIT_LIMIT)

throw(new HighBalanceException());
}

}

Figure 12-38 The CustomerAccount class

Creating Your Own Exception Classes

631

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the CustomerAccount class in Figure 12-38, you could choose to instantiate a named
HighBalanceException and throw it when the balance exceeds the credit limit. By waiting and
instantiating an unnamed object only when it is needed, you improve program performance.

Figure 12-39 shows an application that instantiates a CustomerAccount. In this application, a
user is prompted for an account number and balance. After the values are entered, an attempt
is made to construct a CustomerAccount in a try block (as shown in the first shaded section).
If the attempt is successful—that is, if the CustomerAccount constructor does not throw an
Exception—the CustomerAccount information is displayed in a dialog box. However, if the
CustomerAccount constructor does throw a HighBalanceException, the catch block receives
it (as shown in the second shaded section) and displays a message. A different application
could take any number of different actions; for example, it could display the return value
of the getMessage() method, construct a CustomerAccount object with a lower balance,
or construct a different type of object—perhaps a child of CustomerAccount called
PreferredCustomerAccount that allows a higher balance. Figure 12-40 shows typical
output of the application in a case in which a customer’s balance is too high.

import javax.swing.*;
public class UseCustomerAccount
{

public static void main(String[] args)
{

int num;
double balance;
String input;
input = JOptionPane.showInputDialog(null,

"Enter account number");
num = Integer.parseInt(input);
input = JOptionPane.showInputDialog(null, "Enter balance due");
balance = Double.parseDouble(input);
try
{

CustomerAccount ca = new CustomerAccount(num, balance);
JOptionPane.showMessageDialog(null, "Customer #" +

num + " has a balance of $" + balance);
}
catch(HighBalanceException hbe)
{

JOptionPane.showMessageDialog(null, "Customer #" +
num + " has a balance of $" + balance +

" which is higher than the credit limit");
}

}
}

Figure 12-39 The UseCustomerAccount class

C H A P T E R 1 2 Exception Handling

632

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Instead of hard coding error messages into your exception classes, as shown in Figure 12-39,
you might consider creating a catalog of possible messages to use. This approach provides
several advantages:

All the messages are stored in one location instead of being scattered throughout the
program, making them easier to see and modify.

The list of possible errors serves as a source of documentation, listing potential problems
when running the application.

Other applications might want to use the same catalog of messages.

If your application will be used internationally, you can provide messages in multiple
languages, and other programmers can use the version that is appropriate for their
country.

You can throw any type of exception at any time, not just exceptions of your own creation. For example,
within any program you can code throw(new RuntimeException());. Of course, you would want
to do so only with good reason because Java handles RuntimeExceptions for you by stopping the
program. Because you cannot anticipate every possible error, Java’s automatic response is often the best
course of action.

You should not create an excessive number of special Exception types for your classes,
especially if the Java development environment already contains an Exception class that will
catch the error. Extra Exception types add complexity for other programmers who use your
classes. However, when appropriate, specialized Exception classes provide an elegant way for
you to handle error situations. They enable you to separate your error code from the usual,
nonexceptional sequence of events; they allow errors to be passed up the stack and traced;
and they allow clients of your classes to handle exceptional situations in the manner most
suitable for their application.

Figure 12-40 Typical output of the UseCustomerAccount application

Creating Your Own Exception Classes

633

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Creating Your Own Exception Classes

1. You must create your own Exception classes for your programs to be considered
truly object oriented.

2. To create your own throwable Exception class, you should extend the Exception

class.

3. The Exception class contains four constructors, including a default constructor
and one that requires a String that contains the message that can be returned by
the getMessage() method.

. sessal c noitpecxE n woruoy et aer c nac osl a uoy dna, esu nac uoyt aht snoitpecxE
f o sei r oget ac ni- tli ub yna medi vor p seod avaJ ,r evewoH. s mar gor p det nei r o- t cej bo ni

snoi t pecxe wor ht ot deri uqer t on er a uoY. 1# si t ne met at s esl af ehT

Using Assertions
In Chapter 1, you learned that you might inadvertently create syntax or logic errors when you
write a program. Syntax errors are mistakes using the Java language; they are compile-time
errors that prevent a program from compiling and creating an executable file with a .class
extension.

In Chapter 1, you also learned that a program might contain logic errors even though it is free
of syntax errors. Some logic errors cause runtime errors, or errors that cause a program to
terminate. In this chapter, you learned how to use exceptions to handle many of these kinds
of errors.

Some logic errors do not cause a program to terminate, but nevertheless produce incorrect
results. For example, if a payroll program should determine gross pay by multiplying hours
worked by hourly pay rate, but you inadvertently divide the numbers, no runtime error
occurs and no exception is thrown, but the output is wrong. An assertion is a Java language
feature that can help you detect such logic errors and debug a program. You use an assert
statement to create an assertion; when you use an assert statement, you state a condition
that should be true, and Java throws an AssertionError when it is not.

The syntax of an assert statement is:
assert booleanExpression : optionalErrorMessage

The Boolean expression in the assert statement should always be true if the program is
working correctly. The optionalErrorMessage is displayed if the booleanExpression is
false.

C H A P T E R 1 2 Exception Handling

634

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 12-41 contains an application that prompts a user for a number and passes it to
a method that determines whether a value is even. Within the isEven() method, the
remainder is taken when the passed parameter is divided by 2. If the remainder after
dividing by 2 is 1, result is set to false. For example, 1, 3, and 5 all are odd, and all result in
a value of 1 when % 2 is applied to them. If the remainder after dividing by 2 is not 1, result
is set to true. For example, 2, 4, and 6 all are even, and all have a 0 remainder when % 2
is applied to them.

import java.util.Scanner;
public class EvenOdd
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
int number;
System.out.print("Enter a number >> ");
number = input.nextInt();
if(isEven(number))

System.out.println(number + " is even");
else

System.out.println(number + " is odd");
}
public static boolean isEven(int number)
{

boolean result;
if(number % 2 == 1)

result = false;
else

result = true;
return result;

}
}

Figure 12-41 The flawed EvenOdd program without an assertion

Figure 12-42 shows several executions of the application in Figure 12-41. The output seems
correct until the last two executions. The values –5 and –7 are classified as even although
they are odd. An assertion might help you to debug this application.

Using Assertions

635

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 12-43 contains a new version of the isEven() method to which the shaded
assert statement has been added. The statement asserts that when the remainder of a
number divided by 2 is not 1, it must be 0. If the expression is not true, a message is created
using the values of both number and its remainder after dividing by 2.

public static boolean isEven(int number)
{

boolean result;
if(number % 2 == 1)

result = false;
else
{

result = true;
assert number % 2 == 0 : number + " % 2 is " + number % 2;

}
return result;

}

Figure 12-43 The flawed isEven() method with an assertion

If you add the assertion shown in Figure 12-43 and then compile and execute the program in
the usual way, you get the same incorrect output as in Figure 12-42. To enable the assertion,
you must use the -ea option when you execute the program; ea stands for enable assertion.
Figure 12-44 shows the command prompt with an execution that uses the -ea option.

Figure 12-42 Typical executions of the EvenOdd application

C H A P T E R 1 2 Exception Handling

636

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When the EvenOdd program executes and the user enters –5, the program displays the
messages in Figure 12-44 instead of displaying incorrect output. You can see from the
message that an AssertionError was thrown and that the value of –5 % 2 is –1, not 1 as you
had assumed. The remainder operator results in a negative value when one of its operands is
negative, making the output in this program incorrect.

When the programmer sees that –5 % 2 is –1, the reasonable course of action is to return to
the source code and change the logic.

Several adjustments are possible:

The programmer might decide to convert the parameter to the isEven() method to its
absolute value before using the remainder operator, as in the following:

number = Math.abs(number);

Another option would be to change the if statement to test for even values by comparing
number % 2 to 0 first, as follows:

if(number % 2 == 0)
result = true;

else
result = false;

Then values of both 1 and –1 would be classified as not even.

Other options might include displaying an error message when negative values are
encountered, reversing the result values of true and false when the parameter is
negative, or throwing an exception.

An experienced programmer might have found the error in the original EvenOdd application
without using an assertion. For example, the programmer might have previously used the
remainder operator with a negative operand, remembered that the result might be negative,
and changed the code accordingly. Alternatively, the programmer could have inserted
statements to display values at strategic points in the program. However, after the mistake is
found and fixed, any extra display statements should be removed when the final product is
ready for distribution to users. By contrast, any assert statements can be left in place, and if
the user does not use the -ea option when running the program, the user will see no evidence

Figure 12-44 Executing an application using the enable assertion option

Using Assertions

637

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

that the assert statements exist. Placing assert statements in key program locations can
reduce development and debugging time.

You do not want to use assertions to check for every type of error that could occur in a
program. For example, if you want to ensure that a user enters numeric data, you should use
exception-handling techniques that provide the means for your program to recover from the
mistake. If you want to ensure that the data falls within a specific range, you should use a
decision or a loop. Assertions are meant to be helpful in the development stage of a program,
not when it is in production and in the hands of users.

TWO TRUTHS & A LIE

Using Assertions

1. All logic errors cause a program to terminate, and they should be handled by
throwing and catching exceptions.

2. The Boolean expression in an assert statement should always be true if the
program is working correctly.

3. To enable an assertion, you must use the -ea option when you execute the
program.

. stl user t cerr ocni ecudor p yl p mi s yeht —noit ani mr et
mar gor p esuact on od sr orr e ci gol yna M. 1# si t ne met at s esl af ehT

You Do It

Creating a Class that Automatically Throws Exceptions

Next, you create a class that contains two methods that throw exceptions but don’t
catch them. The PickMenu class allows restaurant customers to choose from a
dinner menu. Before you create PickMenu, you will create the Menu class, which lists
dinner choices and allows a user to make a selection.

1. Open a new file, and then enter the following import statement, class header,
and opening curly brace for the Menu class:
import javax.swing.*;
public class Menu
{

(continues)

C H A P T E R 1 2 Exception Handling

638

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Type the following String array for three entrée choices. Also include a
String to build the menu that you will display and an integer to hold the
numeric equivalent of the selection.
private String[] entreeChoice = {"Rosemary Chicken",

"Beef Wellington", "Maine Lobster"};
private String menu = "";
private int choice;

3. Add the displayMenu() method, which lists each entrée option with a
corresponding number the customer can type to make a selection. Even
though the allowable entreeChoice array subscripts are 0, 1, and 2, most
users would expect to type 1, 2, or 3. So, you code x + 1 rather than x as the
number in the prompt. After the user enters a selection, convert it to an integer.
Return the String that corresponds to the user’s menu selection—the one with
the subscript that is 1 less than the entered value. After the closing curly brace
for the displayMenu() method, add the closing curly brace for the class.

public String displayMenu()
{

for(int x = 0; x < entreeChoice.length; ++x)
{

menu = menu + "\n" + (x + 1) + " for " +
entreeChoice[x];

}
String input = JOptionPane.showInputDialog(null,

"Type your selection, then press Enter." + menu);
choice = Integer.parseInt(input);
return(entreeChoice[choice - 1]);

}
}

The curly braces are not necessary in the for loop of the displayMenu() method because the
loop contains only one statement. However, in a later exercise, you will add another statement
within this block.

4. Examine the code within the displayMenu() method. Consider the exceptions
that might occur. The user might not type an integer, so the parseInt()method
can fail, and even if the user does type an integer, it might not be in the range
allowed to access the entreeChoice array. Therefore, the displayMenu()

method, like most methods in which you rely on the user to enter data, might
throw exceptions that you can anticipate. (Of course, any method might throw
an unanticipated exception.)

5. Save the file as Menu.java, and compile the class using the javac command.

(continued)

(continues)

Using Assertions

639

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating a Class that Passes on an Exception Object

Next, you create the PickMenu class, which lets a customer choose from the
available dinner entrée options. The PickMenu class declares a Menu and a String

named guestChoice that holds the name of the entrée the customer selects.

To enable the PickMenu class to operate with different kinds of Menus in the future,
you will pass a Menu to PickMenu’s constructor. This technique provides two advan-
tages: First, when the menu options change, you can alter the contents of the
Menu.java file without changing any of the code in programs that use Menu. Second,
you can extend Menu, perhaps to VegetarianMenu, LowSaltMenu, or KosherMenu,
and still use the existing PickMenu class. When you pass any Menu or Menu subclass
into the PickMenu constructor, the correct customer options appear.

The PickMenu class is unlikely to directly generate any exceptions because it does
not request user input. (Keep in mind that any class might generate an exception for
such uncontrollable events as the system not having enough memory available.)
However, PickMenu declares a Menu object; the Menu class, because it relies on user
input, is likely to generate an exception.

1. Open a new file, and type the following first few lines of the PickMenu class
with its data fields (a Menu and a String that reflect the customer’s choice):
import javax.swing.*;
public class PickMenu
{

private Menu briefMenu;
private String guestChoice = new String();

2. Enter the following PickMenu constructor, which receives an argument
representing a Menu. The constructor assigns the Menu that is the argument to
the local Menu, and then calls the setGuestChoice() method, which prompts the
user to select from the available menu. The PickMenu() constructor might throw
an exception because it calls setGuestChoice(), which calls displayMenu(),
a method that uses keyboard input and might throw an exception.
public PickMenu(Menu theMenu)
{

briefMenu = theMenu;
setGuestChoice();

}

(continued)

(continues)

C H A P T E R 1 2 Exception Handling

640

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. The following setGuestChoice() method displays the menu and reads
keyboard data entry (so the method throws an exception). It also displays
instructions and then retrieves the user’s selection.
public void setGuestChoice()
{

JOptionPane.showMessageDialog(null,
"Choose from the following menu:");

guestChoice = briefMenu.displayMenu();
}

4. Add the following getGuestChoice() method that returns a guest’s String

selection from the PickMenu class. Also, add a closing curly brace for the
class.

public String getGuestChoice()
{

return(guestChoice);
}

}

5. Save the file as PickMenu.java, and compile it using the javac command.

Creating an Application that Can Catch Exceptions

You have created a Menu class that simply holds a list of food items, displays itself, and
allows the user to make a selection. You also created a PickMenu class with fields that
hold a user’s specific selection from a given menu and methods to get and set values
for those fields. The PickMenu class might throw exceptions, but it contains no
methods that catch those exceptions. Next, you write an application that uses the
PickMenu class. This application can catch exceptions that PickMenu throws.

1. Open a new file, and start entering the following PlanMenu class, which has
just one method—a main() method:
import javax.swing.*;
public class PlanMenu
{

public static void main(String[] args)
{

2. Construct the following Menu named briefMenu, and declare a PickMenu object
that you name entree. You do not want to construct a PickMenu object yet
because you want to be able to catch the exception that the PickMenu

constructor might throw. Therefore, you want to wait and construct the
PickMenu object within a try block. For now, you just declare entree and
assign it null. Also, you declare a String that holds the customer’s menu
selection.

(continued)

(continues)

Using Assertions

641

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Menu briefMenu = new Menu();
PickMenu entree = null;
String guestChoice = new String();

3. Write the following try block that constructs a PickMenu item. If the
construction is successful, the next statement assigns a selection to the
entree object. Because entree is a PickMenu object, it has access to
the getGuestChoice() method in the PickMenu class, and you can assign
the method’s returned value to the guestChoice String.
try
{

PickMenu selection = new PickMenu(briefMenu);
entree = selection;
guestChoice = entree.getGuestChoice();

}

4. The catch block must immediately follow the try block. When the try block
fails, guestChoice will not have a valid value, so recover from the exception by
assigning a value to guestChoice within the following catch block:
catch(Exception error)
{

guestChoice = "an invalid selection";
}

5. After the catch block, the application continues. Use the following code to
display the customer’s choice at the end of the PlanMenu application, and then
add closing curly braces for the main() method and the class:

JOptionPane.showMessageDialog(null,
"You chose " + guestChoice);

}
}

6. Save the file as PlanMenu.java, and then compile and execute it. Read the
instructions, click OK, choose an entrée by typing its number from the menu,
and click OK again. Confirm that the menu selection displayed is the one you
chose, and click OK to dismiss the last dialog box. Figure 12-45 shows the
first dialog box of instructions, the menu that appears, and the output when
the user selects option 3.

(continued)

(continues)

C H A P T E R 1 2 Exception Handling

642

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. The PlanMenu application works well when you enter a valid menu selection.
One way that you can force an exception is to enter an invalid menu selection at
the prompt. Run the PlanMenu application again, and type 4, A, or any invalid
value at the prompt. Entering 4 produces an ArrayIndexOutOfBoundsException,
and entering A produces a NumberFormatException. If the program lacked the
try…catch pair, either entry would halt the program. However, because the
setGuestChoice() method in the PickMenu class throws the exception and
the PlanMenu application catches it, guestChoice takes on the value “an invalid
selection” and the application ends smoothly, as shown in Figure 12-46.

Figure 12-46 Exceptional execution of the PlanMenu application

Figure 12-45 Typical execution of the PlanMenu application

(continued)

(continues)

Using Assertions

643

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Extending a Class that Throws Exceptions

An advantage to using object-oriented exception-handling techniques is that you gain
the ability to handle error conditions differently within each program you write. Next,
you extend the Menu class to create a class named VegetarianMenu. Subsequently,
when you write an application that uses PickMenu with a VegetarianMenu object, you
can deal with any thrown exception differently than when you wrote the PlanMenu

application.

1. Open the Menu.java file, and change the access specifier for the
entreeChoice array from private to protected. That way, when you
extend the class, the derived class will have access to the array.
Save the file, and recompile it using the javac command.

2. Open a new file, and then type the following class header for the
VegetarianMenu class that extends Menu:
public class VegetarianMenu extends Menu
{

3. Provide new menu choices for the VegetarianMenu as follows:
String[] vegEntreeChoice = {"Spinach Lasagna",

"Cheese Enchiladas", "Fruit Plate"};

4. Add the following constructor that calls the superclass constructor and
assigns each vegetarian selection to the Menu superclass entreeChoice

array, and then add the closing curly brace for the class:
public VegetarianMenu()
{

super();
for(int x = 0; x < vegEntreeChoice.length; ++x)

entreeChoice[x] = vegEntreeChoice[x];
}

}

5. Save the class as VegetarianMenu.java, and then compile it.

6. Now write an application that uses VegetarianMenu. You could write
any program, but for demonstration purposes, you can simply modify
PlanMenu.java. Open the PlanMenu.java file, then immediately save it
as PlanVegetarianMenu.java.

7. Change the class name in the header to PlanVegetarianMenu.

8. Change the first statement within the main() method as follows so it declares
a VegetarianMenu instead of a Menu:
VegetarianMenu briefMenu = new VegetarianMenu();

(continued)

(continues)

C H A P T E R 1 2 Exception Handling

644

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Change the guestChoice assignment statement in the catch block as follows
so it is specific to the program that uses the VegetarianMenu:
guestChoice = "an invalid vegetarian selection";

10. Save the file, compile it, and run the application. When you see the vegetarian
menu, enter a valid selection and confirm that the program works correctly.
Run the application again, and enter an invalid selection. The error message
shown in Figure 12-47 identifies your invalid entry as “an invalid vegetarian
selection”. Remember that you did not change the PickMenu class. Your new
PlanVegetarianMenu application uses the PickMenu class that you wrote and
compiled before a VegetarianMenu ever existed. However, because PickMenu

throws uncaught exceptions, you can handle those exceptions as you see fit in
any new applications in which you catch them. Click OK to end the application.

Creating an Exception Class

Besides using the built-in classes that derive from Exception such as
NumberFormatException and IndexOutOfBoundsException, you can create your
own Exception classes. For example, suppose that although you have asked a
user to type a number representing a menu selection, you realize that some users
might mistakenly type the initial letter of an option, such as R for Rosemary Chicken.
Although the user has made an error, you want to treat this type of error
more leniently than other errors, such as typing a letter that has no discernable
connection to the presented menu. In the next section, you create a MenuException

class that you can use with the Menu class to represent a specific type of error.

1. Open a new file, and enter the MenuException class. The class extends
Exception. Its constructor requires a String argument, which is passed to
the parent class to be used as a return value for the getMessage() method.

(continued)

Figure 12-47 Output of the PlanVegetarianMenu application when the user makes an
invalid selection

(continued)

Using Assertions

645

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class MenuException extends Exception
{

public MenuException(String choice)
{

super(choice);
}

}

2. Save the file as MenuException.java, and compile it.

Using an Exception You Created

Next, you modify the Menu, PickMenu, and PlanMenu classes to demonstrate how to
use a MenuException object.

1. Open the Menu file, and immediately save the file as Menu2.java.

2. Change the class name to Menu2.

3. At the end of the list of class data fields, add an array of characters that can
hold the first letter of each of the entrées in the menu.
protected char initial[] = new char[entreeChoice.length];

4. At the end of the method header for the displayMenu() class, add the
following clause:
throws MenuException

You add this clause because you are going to add code that throws such an
exception.

5. Within the displayMenu() method, just before the closing curly brace of the
for loop that builds the menu String, add a statement that takes the first
character of each entreeChoice and stores it in a corresponding element of
the initial array. At the end of the for loop, the initial array holds the first
character of each available entrée.
initial[x] = entreeChoice[x].charAt(0);

6. After displaying the JOptionPane dialog box that displays the menu and
receives the user’s input, add a loop that compares the first letter of the
user’s choice to each of the initials of valid menu options. If a match is
found, throw a new instance of the MenuException class that uses the
corresponding entrée as its String argument. In other words, when this
thrown MenuException is caught by another method, the assumed entrée is

(continued)

(continues)

C H A P T E R 1 2 Exception Handling

646

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the String returned by the getMessage() method. By placing this test
before the call to parseInt(), you cause entries of R, B, or M to throw a
MenuException before they can cause a NumberFormatException.
for(int y = 0; y < entreeChoice.length; ++y)

if(input.charAt(0) == initial[y])
throw (new MenuException(entreeChoice[y]));

7. Compare your new class with Figure 12-48, in which all of the changes to the
Menu class are shaded.

import javax.swing.*;
public class Menu2
{

protected String[] entreeChoice = {"Rosemary Chicken",
"Beef Wellington", "Maine Lobster"};

private String menu = "";
private int choice;
protected char initial[] = new char[entreeChoice.length];
public String displayMenu() throws MenuException
{

for(int x = 0; x < entreeChoice.length; ++x)
{

menu = menu + "\n" + (x + 1) + " for " +
entreeChoice[x];

initial[x] = entreeChoice[x].charAt(0);
}
String input = JOptionPane.showInputDialog(null,

"Type your selection, then press Enter." + menu);
for(int y = 0; y < entreeChoice.length; ++y)

if(input.charAt(0) == initial[y])
throw(new MenuException(entreeChoice[y]));

choice = Integer.parseInt(input);
return(entreeChoice[choice - 1]);

}
}

Figure 12-48 The Menu2 class

8. Save the class, and compile it.

9. Open the PickMenu file, and immediately save it as PickMenu2.java.

(continued)

(continues)

Using Assertions

647

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Change the class name to PickMenu2, and change the declaration of the Menu

object to a Menu2 object. Change the constructor name to PickMenu2 and its
argument to type Menu2. Also add a throws clause to the PickMenu2

constructor header so that it throws a MenuException. This constructor
does not throw an exception directly, but it calls the setGuestChoice()method,
which calls the displayMenu() method, which throws a MenuException.

11. Add the following throws clause to the setGuestChoice() method header:
throws MenuException

12. Compare your modifications to the PickMenu2 class in Figure 12-49, in
which the changes from the PickMenu class are shaded. Save your file,
and compile it.

import javax.swing.*;
public class PickMenu2
{

private Menu2 briefMenu;
private String guestChoice = new String();
public PickMenu2(Menu2 theMenu) throws MenuException
{

briefMenu = theMenu;
setGuestChoice();

}
public void setGuestChoice() throws MenuException
{

JOptionPane.showMessageDialog(null,
"Choose from the following menu:");

guestChoice = briefMenu.displayMenu();
}
public String getGuestChoice()
{

return(guestChoice);
}

}

Figure 12-49 The PickMenu2 class

13. Open the PlanMenu.java file, and immediately save it as PlanMenu2.java.

14. Change the class name to PlanMenu2. Within the main() method, declare a
Menu2 object and a PickMenu2 reference instead of the current Menu object
and PickMenu reference.

(continued)

(continues)

C H A P T E R 1 2 Exception Handling

648

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

15. Within the try block, change both references of PickMenu to PickMenu2.

Using Figure 12-50 as a reference, add a catch block after the try block
and before the existing catch block. This catch block will catch any thrown
MenuExceptions and display their messages. The message will be the name of
a menu item, based on the initial the user entered. All other Exception objects,
including NumberFormatExceptions and IndexOutOfBoundsExceptions, will fall
through to the second catch block and be handled as before.

import javax.swing.*;
public class PlanMenu2
{

public static void main(String[] args)
{

Menu2 briefMenu = new Menu2();
PickMenu2 entree = null;
String guestChoice = new String();
try
{

PickMenu2 selection = new PickMenu2(briefMenu);
entree = selection;
guestChoice = entree.getGuestChoice();

}
catch(MenuException error)
{

guestChoice = error.getMessage();
}
catch(Exception error)
{

guestChoice = "an invalid selection";
}
JOptionPane.showMessageDialog(null,

"You chose " + guestChoice);
}

}

Figure 12-50 The PlanMenu2 class

16. Save the file, then compile and execute it several times. When you are asked
to make a selection, try entering a valid number, an invalid number, an initial
letter that is part of the menu, and a letter that is not one of the initial menu
letters, and observe the results each time. Whether you enter a valid number
or not, the application works as expected. Entering an invalid number still
results in an error message. When you enter a letter or a string of letters, the
application assumes your selection is valid if you enter the same initial letter,
using the same case, as one of the menu options.

(continued)

Using Assertions

649

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Displaying the Virtual Keyboard
You can write many functional Java programs without using exception-handling techniques.
After all, you did so when working through the first 11 chapters in this book. However, you
will sometimes have to employ exception-handling techniques if you want to use methods
written by others that throw exceptions. For example, if you want to display the virtual
keyboard of the Windows system, you will have to accommodate a thrown exception.

A virtual keyboard is a computer keyboard that appears on the screen. A user operates it by
using a mouse to point to and click keys; if the computer has a touch screen, the user touches
keys with a finger or stylus. You can use code like that shown in Figure 12-51 to bring up
the virtual keyboard in the Windows operating system.

import java.util.Scanner;
import java.io.IOException;
public class VirtualKeyboardDemo
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
try
{

Process proc = Runtime.getRuntime().exec
("cmd /c C:\\Windows\\System32\\osk.exe");

}
catch(IOException e)
{

System.out.println(e.getMessage());
}
String name;
System.out.print("Enter name >> ");
name = input.nextLine();
System.out.println("Hello, " + name + "!");

}
}

Figure 12-51 The VirtualKeyboardDemo application

The application in Figure 12-51 contains standard input and output statements that use the
Scanner class; you have used statements like these since Chapter 2. The shaded statement
that defines a process is the only one that is new to you. Every Java application has a single
instance of the Runtime class that allows the program to interface with its environment. The
exec() method executes the operating system program named osk.exe. The acronym osk
stands for on-screen keyboard. The exec() method throws an uncaught IOException, so its
statement is contained in a try block. You were using Scanner class standard keyboard input
and output shortly after you started this book. Now that you understand how exceptions are
thrown, you can also use the virtual keyboard.

C H A P T E R 1 2 Exception Handling

650

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you write a program like the one in Figure 12-51, no exception will ever be thrown—an exception is far
more likely to occur if you accept the exec() method’s String argument from user input. Therefore, it
does not matter what statements you place in the catch() block. Instead of using a try…catch pair in
the VirtualKeyboardDemo application, many programmers would eliminate the try block, place
the phrase throws IOException at the end of the main() method header, and allow any
exceptions to be rethrown to the operating system.

Figure 12-52 shows the VirtualKeyboardDemo program during execution. The virtual
keyboard appears as soon as the program starts. When the prompt appears at the command
line, the user has the option of typing on the standard keyboard or using the on-screen version.

If you run the program in Figure 12-51 on a machine that does not have the osk.exe file, the program runs
correctly but does not display a keyboard.

TWO TRUTHS & A LIE

Displaying the Virtual Keyboard

1. You can write functional Java programs without using exception-handling
techniques.

2. You must have a touch screen to be able to display a virtual keyboard on
a Windows system.

3. The Runtime class exec() method throws an IOException.

. sul yt s a r o esuo ma hti w det ar epo eb nac dna neer cs
dr adnat s a no deyal psi d eb nac dr aobyekl autri v A. 2# si t ne met at s esl af ehT

Figure 12-52 The VirtualKeyboardDemo program during execution

Displaying the Virtual Keyboard

651

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Displaying the Windows Calculator

In this section, you create a program that asks a user to complete a simple arithmetic
problem and displays the Windows calculator to help the user.

1. Open a new file, and then enter the following import statements, class
header, and opening curly brace for the CalculatorDemo class:
import java.util.Scanner;
import java.io.IOException;
public class CalculatorDemo
{

2. Create the main() method header. The method throws an IOException

because it will use the Runtime exec() method and not handle the exception
the method throws.
public static void main(String[] args) throws IOException
{

3. Declare a Scanner object for input and a Process object that invokes the
built-in calculator program named calc.exe.
Scanner input = new Scanner(System.in);
Process proc = Runtime.getRuntime().exec

("cmd /c C:\\Windows\\System32\\calc.exe");

4. Declare some values to be used in an arithmetic problem. Also declare a
variable to hold the sum of the two numbers and another variable to hold
the user’s answer.
double num1 = 279.6;
double num2 = 872.8;
double answer = num1 + num2;
double usersAnswer;

5. Prompt the user for an answer, accept it, and then display an appropriate
message. Include a closing curly brace for the main() method and another for
the class.

System.out.print("What is the sum of " + num1 +
" and " + num2 + "? >> ");

usersAnswer = input.nextDouble();
if(usersAnswer == answer)

System.out.println("Correct!");
else

System.out.println("Sorry - the answer is " + answer);
}

}
(continues)

C H A P T E R 1 2 Exception Handling

652

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Save the file as CalculatorDemo.java, and then compile and execute it.
When the program runs, the calculator appears on the screen for use.
Figure 12-53 shows a typical execution in progress.

7. If you have no further use for the calculator, dismiss it by clicking its
Close button.

Don’t Do It
Don’t forget that all the statements in a try block might not execute. If an exception is
thrown, no statements after that point in the try block will execute.

Don’t forget that you might need a nextLine() method call after an attempt to read
numeric data from the keyboard throws an exception.

Don’t forget that a variable declared in a try block goes out of scope at the end of the
block.

Don’t forget that when a variable gets its usable value within a try block, you must ensure
that it has a valid value before attempting to use it.

Don’t forget to place more specific catch blocks before more general ones.

(continued)

Figure 12-53 Typical execution of CalculatorDemo program

Don’t Do It

653

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t forget to write a throws clause for a method that throws a checked exception but
does not handle it.

Don’t forget to handle any checked exception thrown to your method either by writing a
catch block or by listing it in your method’s throws clause.

Key Terms
An exception is an unexpected or error condition.

Exception handling is an object-oriented technique for managing or resolving errors.

Runtime exceptions are unplanned exceptions that occur during a program’s execution. The
term is also used more specifically to describe members of the RuntimeException class.

A crash is a premature, unexpected, and inelegant end to a program.

A stack trace history list, or more simply a stack trace, displays all the methods that were
called during program execution.

Mission critical is a term that describes any crucial process in an organization.

Fault-tolerant applications are designed so that they continue to operate, possibly at a
reduced level, when some part of the system fails.

Robustness represents the degree to which a system is resilient to stress, maintaining correct
functioning.

A try block is a block of code that might throw an exception that can be handled by a
subsequent catch block.

A catch block is a segment of code that can handle an exception that might be thrown by the
try block that precedes it.

A throw statement is one that sends an exception out of a block or a method so it can be
handled elsewhere.

A finally block is a block of code that holds statements that must execute at the end of a
try…catch sequence, whether an exception was thrown or not.

A throws clause is an exception specification in a method header.

Exception specification is the practice of using a throws clause in a method header; this
practice is required if a method throws a checked Exception object that it will not catch.

Unchecked exceptions are those from which an executing program cannot reasonably be
expected to recover.

Checked exceptions are those that a programmer should plan for and from which a program
should be able to recover.

C H A P T E R 1 2 Exception Handling

654

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The catch or specify requirement is the Java rule that checked exceptions require catching or
declaration.

Syntactic sugar is a term to describe aspects of a computer language that make it “sweeter,”
or easier, for programmers to use.

Syntactic salt describes a language feature designed to make it harder to write bad code.

The call stack is where the computer stores the list of memory locations to which the system
must return when methods end.

An assertion is a Java language feature that can help you detect logic errors and debug a
program.

A virtual keyboard is a computer keyboard that appears on the screen. A user operates it by
using a mouse to point to and click keys; if the computer has a touch screen, the user touches
keys with a finger or stylus.

Chapter Summary
An exception is an unexpected or error condition. Exception handling is the name for the
object-oriented techniques that manage or resolve such errors. In Java, the two basic
classes of errors are Error and Exception; both descend from the Throwable class.

In object-oriented terminology, a try block holds code that might cause an error and
throw an exception, and a catch block processes the error.

You can place as many statements as you need within a try block, and you can catch
as many exceptions as you want. If you try more than one statement, only the first
error-generating statement throws an exception. As soon as the exception occurs, the
logic transfers to the catch block, which leaves the rest of the statements in the try block
unexecuted. When a program contains multiple catch blocks, the first matching catch

block executes, and each remaining catch block is bypassed.

When you have actions you must perform at the end of a try…catch sequence, you can
use a finally block that executes regardless of whether the preceding try block identifies
an exception. Usually, you use a finally block to perform cleanup tasks.

Besides clarity, an advantage to object-oriented exception handling is the flexibility it
allows in the handling of error situations. Each calling application might need to handle
the same error differently, depending on its purpose.

When you write a method that might throw a checked exception that is not caught within
the method, you must type the clause throws <name>Exception after the method header
to indicate the type of Exception that might be thrown. Methods in which you explicitly
throw a checked exception require a catch or a declaration.

The call stack is the memory location where the computer stores the list of method
locations to which the system must return. When you catch an exception, you can call

Chapter Summary

655

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

printStackTrace() to display a list of methods in the call stack so you can determine the
location of the exception.

Java provides over 40 categories of Exceptions that you can use in your programs.
However, Java’s creators could not predict every condition that might be an Exception in
your applications, so Java also allows you to create your own Exceptions. To create your
own throwable Exception class, you must extend a subclass of Throwable.

An assertion is a Java language feature that can help you detect logic errors and debug a
program. When you use an assertion, you state a condition that should be true, and Java
throws an AssertionError when it is not.

You can call up Windows operating system programs such as the virtual keyboard using
the exec() method in the Runtime class.

Review Questions
1. In object-oriented programming terminology, an unexpected or error condition is

a(n) .

a. anomaly
b. aberration

c. deviation
d. exception

2. All Java Exceptions are .

a. Errors
b. RuntimeExceptions

c. Throwables
d. Omissions

3. Which of the following statements is true?

a. Exceptions are more serious than Errors.
b. Errors are more serious than Exceptions.
c. Errors and Exceptions are equally serious.
d. Exceptions and Errors are the same thing.

4. The method that ends the current application and returns control to the operating
system is .

a. System.end()

b. System.done()

c. System.exit()

d. System.abort()

5. In object-oriented terminology, you a procedure that might not
complete correctly.

a. try
b. catch

c. handle
d. encapsulate

C H A P T E R 1 2 Exception Handling

656

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. A method that detects an error condition or Exception an
Exception.

a. throws
b. catches

c. handles
d. encapsulates

7. A try block includes all of the following elements except .

a. the keyword try

b. the keyword catch

c. curly braces
d. statements that might cause Exceptions

8. The segment of code that handles or takes appropriate action following an exception
is a block.

a. try

b. catch

c. throws

d. handles

9. You within a try block.

a. must place only a single statement
b. can place any number of statements
c. must place at least two statements
d. must place a catch block

10. If you include three statements in a try block and follow the block with three catch

blocks, and the second statement in the try block throws an Exception,
then .

a. the first catch block executes
b. the first two catch blocks execute
c. only the second catch block executes
d. the first matching catch block executes

11. When a try block does not generate an Exception and you have included multiple
catch blocks, .

a. they all execute
b. only the first one executes

c. only the first matching one executes
d. no catch blocks execute

12. The catch block that begins catch(Exception e) can catch Exceptions of
type .

a. IOException

b. ArithmeticException

c. both of the above
d. none of the above

Review Questions

657

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13. The code within a finally block executes when the try block .

a. identifies one or more Exceptions
b. does not identify any Exceptions
c. either a or b
d. neither a nor b

14. An advantage to using a try…catch block is that exceptional events
are .

a. eliminated
b. reduced

c. integrated with regular events
d. isolated from regular events

15. Which methods can throw an Exception?

a. methods with a throws clause
b. methods with a catch block
c. methods with both a throws clause and a catch block
d. any method

16. A method can .

a. check for errors but not handle them
b. handle errors but not check for them
c. either of the above
d. neither of the above

17. Which of the following is least important to know if you want to be able to use a
method to its full potential?

a. the method’s return type
b. the type of arguments the method requires
c. the number of statements within the method
d. the type of Exceptions the method throws

18. The memory location where the computer stores the list of method locations to
which the system must return is known as the .

a. registry
b. call stack

c. chronicle
d. archive

19. You can get a list of the methods through which an Exception has traveled by using
the method.

a. getMessage()

b. callStack()

c. getPath()

d. printStackTrace()

C H A P T E R 1 2 Exception Handling

658

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

20. A(n) is a statement used in testing programs that should be true; if
it is not true, an Exception is thrown.

a. assertion
b. throwable

c. verification
d. declaration

Exercises

Programming Exercises

1. Write an application named BadSubscriptCaught in which you declare an array of
10 first names. Write a try block in which you prompt the user for an integer and
display the name in the requested position. Create a catch block that catches the
potential ArrayIndexOutOfBoundsException thrown when the user enters a number
that is out of range. The catch block should also display an error message. Save the
file as BadSubscriptCaught.java.

2. The Double.parseDouble() method requires a String argument, but it fails if the
String cannot be converted to a floating-point number. Write an application in which
you try accepting a double input from a user and catch a NumberFormatException if
one is thrown. The catch block forces the number to 0 and displays an appropriate
error message. Following the catch block, display the number. Save the file as
TryToParseDouble.java.

3. In Chapter 2, you created an application named QuartsToGallonsInteractive
that accepts a number of quarts from a user and converts the value to gallons.
Now, add exception-handling capabilities to this program and continuously
reprompt the user while any nonnumeric value is entered. Save the file as
QuartsToGallonsWithExceptionHandling.java.

4. In Chapter 8, you wrote an application named DistanceFromAverage that allows a user
to enter up to 20 double values and then displays each entered value and its distance
from the average. Now, modify that program to first prompt the user to enter a number
that represents the array size. Java generates a NegativeArraySizeException if you
attempt to create an array with a negative size, and it creates a NumberFormatException
if you attempt to create an array using a nonnumeric value for the size. Handle these
exceptions using a catch block that displays an appropriate message. If the array is
created successfully, use exception-handling techniques to ensure that each entered
array value is a double before the program calculates each element’s distance from the
average. Save the file as DistanceFromAverageWithExceptionHandling.java.

5. Write an application that throws and catches an ArithmeticException when you
attempt to take the square root of a negative value. Prompt the user for an input value
and try the Math.sqrt() method on it. The application either displays the square root
or catches the thrown Exception and displays an appropriate message. Save the file as
SqrtException.java.

Exercises

659

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Create an ApartmentException class whose constructor receives a String that holds
a street address, an apartment number, a number of bedrooms, and a rent value for
an apartment. Save the file as ApartmentException.java. Create an Apartment class
with those fields. The Apartment constructor requires values for each field. Upon
construction, throw an ApartmentException if the apartment number does not
consist of three digits, if the number of bedrooms is less than 1 or more than 4, or if
the rent is less than $500 or over $2,500. Save the class as Apartment.java. Write an
application that establishes an array of at least six Apartment objects with valid and
invalid values. Display an appropriate message when an Apartment object is created
successfully and when one is not. Save the file as ThrowApartmentException.java.

7. Create a UsedCarException class that extends Exception; its constructor
receives a value for a vehicle identification number (VIN) that is passed to the
parent constructor so it can be used in a getMessage() call. Save the class as
UsedCarException.java. Create a UsedCar class with fields for VIN, make, year,
mileage, and price. The UsedCar constructor throws a UsedCarException when
the VIN is not four digits; when the make is not Ford, Honda, Toyota, Chrysler,
or Other; when the year is not between 1990 and 2014 inclusive; or either the
mileage or price is negative. Save the class as UsedCar.java. Write an application
that establishes an array of at least seven UsedCar objects and handles any
Exceptions. Display a list of only the UsedCar objects that were constructed
successfully. Save the file as ThrowUsedCarExceptions.java.

8. Write an application that displays a series of at least five student ID numbers (that you
have stored in an array) and asks the user to enter a numeric test score for the student.
Create a ScoreException class, and throw a ScoreException for the class if the
user does not enter a valid score (less than or equal to 100). Catch the ScoreException,
and then display an appropriate message. In addition, store a 0 for the student’s score.
At the end of the application, display all the student IDs and scores. Save the files
as ScoreException.java and TestScore.java.

9. Write an application that displays a series of at least 10 student ID numbers
(that you have stored in an array) and asks the user to enter a test letter grade
for the student. Create an Exception class named GradeException that contains
a static public array of valid grade letters (‘A’, ‘B’, ‘C’, ‘D’, ‘F’, and ‘I’) that you
can use to determine whether a grade entered from the application is valid. In
your application, throw a GradeException if the user does not enter a valid
letter grade. Catch the GradeException, and then display an appropriate message.
In addition, store an ‘I’ (for Incomplete) for any student for whom an exception is
caught. At the end of the application, display all the student IDs and grades. Save
the files as GradeException.java and TestGrade.java.

10. Create a DataEntryException class whose getMessage() method returns
information about invalid integer data. Write a program named GetIDAndAge
that continually prompts the user for an ID number and an age until a terminal
0 is entered for both. Throw a DataEntryException if the ID is not in the range
of valid ID numbers (0 through 999), or if the age is not in the range of valid

C H A P T E R 1 2 Exception Handling

660

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ages (0 through 119). Catch any DataEntryException or InputMismatchException

that is thrown, and display an appropriate message. Save the files as
DataEntryException.java and GetIDAndAge.java.

11. Create an application that accepts employee data interactively. Users might make any
of the following errors as they enter data:

The employee number is not numeric, less than 1000, or more than 9999.

The hourly pay rate is not numeric, less than $9.00, or more than $25.00.

Create a class that stores an array of six usable error messages that describe
the preceding mistakes; save the file as EmployeeMessages.java. Create an
EmployeeException class; each object of this class will store one of the messages.
Save the file as EmployeeException.java. Create an application that prompts the
user for employee data, and display the appropriate message when an error occurs.
If no error occurs, display the message “Valid employee data”. Save the program
as EmployeeDataEntry.java.

12. A company accepts user orders for its products interactively. Users might make the
following errors as they enter data:

The item number ordered is not numeric, too low (less than 0), or too high (more
than 9999).

The quantity is not numeric, too low (less than 1), or too high (more than 12).

The item number is not a currently valid item.

Although the company might expand in the future, its current inventory consists of
the items listed in Table 12-1.

Create a class that stores an array of usable error messages; save the file as
OrderMessages.java. Create an OrderException class that stores one of the messages;
save the file as OrderException.java. Create an application that contains prompts
for an item number and quantity. Allow for the possibility of nonnumeric entries as
well as out-of-range entries and entries that do not match any of the currently available
item numbers. The program should display an appropriate message if an error has
occurred. If no errors exist in the entered data, compute the user’s total amount due
(quantity times price each) and display it. Save the program as PlaceAnOrder.java.

Item Number Price ($)

111 0.89

222 1.47

333 2.43

444 5.99

Table 12-1 Item numbers and prices

Exercises

661

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13. In a “You Do It” section of this chapter, you created a CalculatorDemo program that
asked the user to solve an arithmetic problem and provided the system calculator for
assistance. Now modify that program to include the following improvements:

Both numbers in the arithmetic problem should be random integers
between 1 and 5,000.

The program should ask the user to solve five problems.

The program should handle any noninteger data entry by displaying an
appropriate message and continuing with the next problem.

Save the file as CalculatorDemo2.java.

Debugging Exercises
1. Each of the following files in the Chapter12 folder of your downloadable student

files has syntax and/or logic errors. In each case, determine the problem and fix the
program. After you correct the errors, save each file using the same filename preceded
with Fix. For example, DebugTwelve1.java will become FixDebugTwelve1.java.
You will also use a file named DebugEmployeeIDException.java with the
DebugTwelve4.java file.

a. DebugTwelve1.java
b. DebugTwelve2.java

c. DebugTwelve3.java
d. DebugTwelve4.java

Game Zone
1. In Chapter 1, you created a class called RandomGuess. In this game, the application

generates a random number for a player to guess. In Chapter 5, you improved the
application to display a message indicating whether the player’s guess was correct,
too high, or too low. In Chapter 6, you further improved the game by adding a loop
that continually prompts the user to enter the correct value, if necessary. As written,
the game should work as long as the player enters numeric guesses. However, if the
player enters a letter or other nonnumeric character, the game throws an exception.
Discover the type of Exception thrown, then improve the game by handling the
exception so that the user is informed of the error and allowed to attempt to enter
the correct data again. Save the file as RandomGuess4.java.

2. In Chapter 8, you created a Quiz class that contains an array of 10 multiple-choice
questions to which the user was required to respond with an A, B, or C. At the time,
you knew how to handle the user’s response if an invalid character was entered.
Rerun the program now to determine whether an exception is thrown if the user
enters nothing—that is, the user just presses the Enter key without making an entry.
If so, improve the program by catching the exception, displaying an appropriate
error message, and presenting the same question to the user again. Save the file as
QuizWithExceptionsCaught.java.

C H A P T E R 1 2 Exception Handling

662

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Problems
1. In Chapter 11, you created an interactive StaffDinnerEvent class that obtains all

the data for a dinner event for Carly’s Catering, including details about the staff
members required to work at the event. Now, modify the class so that it becomes
immune to user data entry errors by handling exceptions for each numeric entry.
Each time the program requires numeric data—for example, for the number of
guests, selected menu options, and staff members’ salaries—continuously prompt
the user until the data entered is the correct type. Save the revised program as
StaffDinnerEvent.java.

2. In Chapter 11, you created an interactive RentalDemo class that obtains all the data
for four rentals from Sammy’s Seashore Rentals, including details about the contract
number, length of the rental, and equipment type. Now, modify the class so that it
becomes immune to user data entry errors by handling exceptions for each numeric
entry. Each time the program requires numeric data—for example, for the rental
period—continuously prompt the user until the data entered is the correct type.
Save the revised program as RentalDemo.java.

Exercises

663

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 13
File Input and Output

In this chapter, you will:

Learn about computer files

Use the Path and Files classes

Learn about file organization, streams, and buffers

Use Java’s IO classes to write to and read from a file

Create and use sequential data files

Learn about random access files

Write records to a random access data file

Read records from a random access data file

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Computer Files
Data items can be stored on two broad types of storage devices in a computer system:

Volatile storage is temporary; values that are volatile, such as those stored in variables,
are lost when a computer loses power. Random access memory (RAM) is the temporary
storage within a computer. When you write a Java program that stores a value in a
variable, you are using RAM. Most computer professionals simply call nonvolatile
storage memory.

Nonvolatile storage is permanent storage; it is not lost when a computer loses power.
When you write a Java program and save it to a disk, you are using permanent storage.

When discussing computer storage, temporary and permanent refer to volatility, not length of time. For
example, a temporary variable might exist for several hours in a large program or one that the user forgets to
close, but a permanent piece of data might be saved and then deleted within a few seconds. In recent years,
the distinction between memory and storage has blurred because many systems automatically save data to
a nonvolatile device and retrieve it after a power interruption. Because you can erase data from files, some
programmers prefer the term “persistent storage” to permanent storage. In other words, you can remove
data from a file stored on a device such as a disk drive, so it is not technically permanent. However, the data
remains in the file even when the computer loses power; so, unlike with RAM, the data persists, or perseveres.

A computer file is a collection of data stored on a nonvolatile device. Files exist on permanent
storage devices, such as hard disks, Zip disks, USB drives, reels or cassettes of magnetic tape,
and compact discs.

You can categorize files by the way they store data:

Text files contain data that can be read in a text editor because the data has been encoded
using a scheme such as ASCII or Unicode. (See Appendix B for more information on
Unicode.) Some text files are data files that contain facts and figures, such as a payroll file
that contains employee numbers, names, and salaries; some files are program files or
application files that store software instructions. You have created many such files
throughout this book.

Binary files contain data that has not been encoded as text. Their contents are in binary
format, which means that you cannot understand them by viewing them in a text editor.
Examples include images, music, and the compiled program files with a .class extension
that you have created using this book.

Although their contents vary, files have many common characteristics—each file has a size
that specifies the space it occupies on a section of disk or other storage device, and each file
has a name and a specific time of creation.

When you store a permanent file, you can place it in the main or root directory of your
storage device. If you compare computer storage to using a file cabinet drawer, saving to the
root directory is equivalent to tossing a loose document into the drawer. However, for better
organization, most office clerks place documents in folders, and most computer users
organize their files into folders or directories. Users also can create folders within folders
to form a hierarchy. A complete list of the disk drive plus the hierarchy of directories in which

C H A P T E R 1 3 File Input and Output

666

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a file resides is its path. For example, the following is the complete path for a Windows file
named Data.txt, which is saved on the C drive in a folder named Chapter.13 within a folder
named Java:
C:\Java\Chapter.13\Data.txt

In the Windows operating system, the backslash (\) is the path delimiter—the character used
to separate path components. In the Solaris (UNIX) operating system, a slash (/) is used as
the delimiter.

When you work with stored files in an application, you typically perform the following tasks:

Determining whether and where a path or file exists

Opening a file

Writing to a file

Reading from a file

Closing a file

Deleting a file

Java provides built-in classes that contain methods to help you with these tasks.

TWO TRUTHS & A LIE

Understanding Computer Files

1. An advantage of modern computer systems is that both internal computer
memory and disk storage are nonvolatile.

2. Data files contain facts and figures; program files store software instructions
that might use data files.

3. A complete list of the disk drive plus the hierarchy of directories in which a file
resides is the file’s path.

. eli t al ovnon si egar ot s
ksi d; egar ot s eli t al ov si) MAR(yr o me mr et up mocl anr et nI . 1# si t ne met at s esl af ehT

Using the Path and Files Classes
You can use Java’s Path and Files classes to work with stored files.

The Path class is used to create objects that contain information about files and
directories, such as their locations, sizes, creation dates, and whether they even exist.

The Files class is used to perform operations on files and directories, such as deleting
them, determining their attributes, and creating input and output streams.

Using the Path and Files Classes

667

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can include the following statement in a Java program to use both the Path and Files

classes:
import java.nio.file.*;

The nio in java.nio stands for new input/output because its classes are “new” in that they were
not developed until Java 7.

Creating a Path
To create a Path, you first determine the default file system on the host computer by using a
statement such as the following:
FileSystem fs = FileSystems.getDefault();

This statement creates a FileSystem object using the getDefault() method in the
FileSystems class. The statement uses two different classes. The FileSystem class, without
an ending s, is used to instantiate the object. FileSystems, with an ending s, is a class that
contains factory methods, which assist in object creation.

After you create a FileSystem object, you can define a Path using the getPath() method
with it:
Path path = fs.getPath("C:\\Java\\Chapter.13\\Data.txt");

Recall that the backslash is used as part of an escape sequence in Java. (For example, '\n'
represents a newline character.) So, to enter a backslash as a path delimiter within a string,
you must type two backslashes to indicate a single backslash. An alternative is to use the
FileSystem method getSeparator(). This method returns the correct separator for the
current operating system. For example, you can create a Path that is identical to the previous
one using a statement such as the following:
Path filePath = fs.getPath("C:" + fs.getSeparator() + "Java" +

fs.getSeparator() + "Chapter.13" + fs.getSeparator() +
"Data.txt");

Another way to create a Path is to use the Paths class (notice the name ends with s). The
Paths class is a helper class that eliminates the need to create a FileSystem object. The Paths
class get() method calls the getPath() method of the default file system without requiring
you to instantiate a FileSystem object. You can create a Path object by using the following
statement:
Path filePath = Paths.get("C:\\Java\\Chapter.13\\SampleFile.txt");

After the Path is created, you use its identifier (in this case, filePath) to refer to the file
and perform operations on it. C:\Java\Chapter.13\SampleFile.txt is the full name of a stored
file when the operating system refers to it, but the path is known as filePath within the
application. The idea of a file having one name when referenced by the operating system and
a different name within an application is similar to the way a student known as “Arthur” in
school might be “Junior” at home. When an application declares a path and you want to
use the application with a different file, you would change only the String passed to the
instantiating method.

C H A P T E R 1 3 File Input and Output

668

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Every Path is either absolute or relative.

An absolute path is a complete path; it does not need any other information to locate a file
on a system. A full path such as C:\Java\Chapter.13\SampleFile.txt is an absolute path.

A relative path depends on other path information. A simple path such as SampleFile.txt
is relative. When you work with a path that contains only a filename, the file is assumed to
be in the same folder as the program using it. Similarly, when you refer to a relative path
such as Chapter.13\SampleFile.txt (without the drive letter or the top-level Java folder),
the Chapter.13 folder is assumed to be a subfolder of the current directory, and
SampleFile.txt is assumed to be within the folder.

For Microsoft Windows platforms, the prefix of an absolute pathname that contains a disk-drive specifier
consists of the drive letter followed by a colon. For UNIX platforms, the prefix of an absolute pathname is
always a forward slash.

Retrieving Information About a Path
Table 13-1 summarizes several useful Path methods. As you have learned with other
classes, the toString() method is overridden from the Object class; it returns a String

representation of the Path. Basically, this is the list of path elements separated by copies
of the default separator for the operating system. The getFileName() method returns
the last element in a list of pathnames; frequently this is a filename, but it might be a
folder name.

A Path’s elements are accessed using an index. The top-level element in the directory
structure is located at index 0; the lowest element in the structure is accessed by the
getName() method, and has an index that is one less than the number of items on the
list. You can use the getNameCount() method to retrieve the number of names in the list
and the getName(int) method to retrieve the name in the position specified by the
argument.

Method Description

String toString() Returns the String representation of the Path, eliminating double
backslashes

Path getFileName() Returns the file or directory denoted by this Path; this is the last item in
the sequence of name elements

int getNameCount() Returns the number of name elements in the Path

Path getName(int) Returns the name in the position of the Path specified by the integer
parameter

Table 13-1 Selected Path class methods

Using the Path and Files Classes

669

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 13-1 shows a demonstration program that creates a Path and uses some of the
methods in Table 13-1. Figure 13-2 shows the output when the file named in the Path
declaration exists.

import java.nio.file.*;
public class PathDemo
{

public static void main(String[] args)
{

Path filePath =
Paths.get("C:\\Java\\Chapter.13\\Data.txt");

int count = filePath.getNameCount();
System.out.println("Path is " + filePath.toString());
System.out.println("File name is " + filePath.getFileName());
System.out.println("There are " + count +

" elements in the file path");
for(int x = 0; x < count; ++x)
System.out.println("Element " + x + " is " +

filePath.getName(x));
}

}

Figure 13-1 The PathDemo class

Converting a Relative Path to an Absolute One
The toAbsolutePath() method converts a relative path to an absolute path. For example,
Figure 13-3 shows a program that asks a user for a filename and converts it to an absolute
path, if necessary.

Figure 13-2 Output of the PathDemo application

C H A P T E R 1 3 File Input and Output

670

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.Scanner;
import java.nio.file.*;
public class PathDemo2
{

public static void main(String[] args)
{

String name;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter a file name >> ");
name = keyboard.nextLine();
Path inputPath = Paths.get(name);
Path fullPath = inputPath.toAbsolutePath();
System.out.println("Full path is " + fullPath.toString());

}
}

Figure 13-3 The PathDemo2 class

When the PathDemo2 program executes and the filename that is input represents an absolute
Path, the program does not modify the input. However, if the input represents a relative Path,
this program then creates an absolute path by assigning the file to the current directory.
Figure 13-4 shows a typical program execution.

Checking File Accessibility
To verify that a file exists and that the program can access it as needed, you can use the
checkAccess() method. The following import statement allows you to access constants that
can be used as arguments to the method:
import static java.nio.file.AccessMode.*;

Assuming that you have declared a Path named filePath, the syntax you use with
checkAccess() is as follows:
filePath.getFileSystem().provider().checkAccess();

Figure 13-4 Output of the PathDemo2 program

Using the Path and Files Classes

671

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can use any of the following as arguments to the checkAccess() method:

No argument—Checks that the file exists

READ—Checks that the file exists and that the program has permission to read the file

WRITE—Checks that the file exists and that the program has permission to write to the file

EXECUTE—Checks that the file exists and that the program has permission to execute
the file

Java’s static import feature takes effect when you place the keyword static between import
and the name of the package being imported. This feature allows you to use static constants
without their class name. For example, if you remove static from the import statement for
java.nio.file.AccessMode, you must refer to the READ constant by its full name as
AccessMode.READ; when you use static, you can refer to it just as READ.

As an alternative to using checkAccess() with no argument to determine whether a file exists, you can
substitute the Files.exists() method and pass it a Path argument.

You can use multiple arguments to the checkAccess() method, separated by commas. If the file
named in the method call cannot be accessed, an IOException is thrown. (Notice in Figure 13-5
that the java.io.IOException package must be imported.) Figure 13-5 shows an application
that declares a Path and checks whether a file named there can both be read and executed.
Figure 13-6 shows the output when the PathDemo.class file is available in the specified location.

import java.nio.file.*;
import static java.nio.file.AccessMode.*;
import java.io.IOException;
public class PathDemo3
{

public static void main(String[] args)
{

Path filePath =
Paths.get("C:\\Java\\Chapter.13\\PathDemo.class");

System.out.println("Path is " + filePath.toString());
try
{

filePath.getFileSystem().provider().checkAccess
(filePath, READ, EXECUTE);

System.out.println("File can be read and executed");
}
catch(IOException e)
{

System.out.println
("File cannot be used for this application");

}
}

}

Figure 13-5 The PathDemo3 class

C H A P T E R 1 3 File Input and Output

672

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A program might find a file usable, but then the file might become unusable before it is actually used in a later
statement. This type of program bug is called a TOCTTOU bug (pronounced tock too)—it happens when
changes occur from Time Of Check To Time Of Use.

Deleting a Path
The Files class delete() method accepts a Path parameter and deletes the last element
(file or directory) in a path or throws an exception if the deletion fails. For example:

If you try to delete a file that does not exist, a NoSuchFileException is thrown.

A directory cannot be deleted unless it is empty. If you attempt to delete a directory that
contains files, a DirectoryNotEmptyException is thrown.

If you try to delete a file but you don’t have permission, a SecurityException is thrown.

Other input/output errors cause an IOException.

Figure 13-7 shows a program that displays an appropriate message in each of the preceding
scenarios after attempting to delete a file.

import java.nio.file.*;
import java.io.IOException;
public class PathDemo4
{

public static void main(String[] args)
{

Path filePath =
Paths.get("C:\\Java\\Chapter.13\\Data.txt");

try
{

Files.delete(filePath);
System.out.println("File or directory is deleted");

}

Figure 13-6 Output of the PathDemo3 application

Figure 13-7 The PathDemo4 class (continues)

Using the Path and Files Classes

673

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

catch (NoSuchFileException e)
{

System.out.println("No such file or directory");
}
catch (DirectoryNotEmptyException e)
{

System.out.println("Directory is not empty");
}
catch (SecurityException e)
{

System.out.println("No permission to delete");
}
catch (IOException e)
{

System.out.println("IO exception");
}

}
}

Figure 13-7 The PathDemo4 class

The Files class deleteIfExists() method also can be used to delete a file, but if the file does
not exist, no exception is thrown.

Determining File Attributes
You can use the readAttributes()method of the Files class to retrieve useful information about
a file. The method takes two arguments—a Path object and BasicFileAttributes.class—and
returns an instance of the BasicFileAttributes class. You might create an instance with a
statement such as the following:
BasicFileAttributes attr =

Files.readAttributes(filePath, BasicFileAttributes.class);

After you have created a BasicFileAttributes object, you can use a number of methods for
retrieving information about a file. For example, the size() method returns the size of a file
in bytes. Methods such as creationTime() and lastModifiedTime() return important file
times. Figure 13-8 contains a program that uses these methods.

(continued)

C H A P T E R 1 3 File Input and Output

674

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.nio.file.*;
import java.nio.file.attribute.*;
import java.io.IOException;
public class PathDemo5
{

public static void main(String[] args)
{

Path filePath =
Paths.get("C:\\Java\\Chapter.13\\Data.txt");

try
{

BasicFileAttributes attr =
Files.readAttributes(filePath, BasicFileAttributes.class);

System.out.println("Creation time " + attr.creationTime());
System.out.println("Last modified time " +

attr.lastModifiedTime());
System.out.println("Size " + attr.size());

}
catch(IOException e)
{

System.out.println("IO Exception");
}

}
}

Figure 13-8 The PathDemo5 class

The time methods in the PathDemo5 program each return a FileTime object that is converted
to a String in the println() method calls. FileTime objects are represented in the following
format:
yyyy-mm-ddThh:mm:ss

In a FileTime object, the four-digit year is followed by the two-digit month and two-digit day.
Following a T for Time, the hour, minute, and seconds (including fractions of a second) are
separated by colons. You can see from the output in Figure 13-9 that the file was created in
October 2012 and last modified in May 2014.

Figure 13-9 Output of the PathDemo5 program

Using the Path and Files Classes

675

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Frequently, you don’t care about a file’s exact FileTime value, but you are interested
in comparing two files. You can use the compareTo() method to determine the time
relationships between files. For example, Figure 13-10 shows how you might compare the
creation times of two files. As shown in the shaded statement, the compareTo() method
returns a value of less than 0 if the first FileTime comes before the argument’s FileTime. The
method returns a value of greater than 0 if the first FileTime is later than the argument’s, and
it returns 0 if the FileTime values are the same.

import java.nio.file.*;
import java.nio.file.attribute.*;
import java.io.IOException;
public class PathDemo6
{

public static void main(String[] args)
{

Path file1 =
Paths.get("C:\\Java\\Chapter.13\\Data.txt");

Path file2 =
Paths.get("C:\\Java\\Chapter.13\\Data2.txt");

try
{

BasicFileAttributes attr1 =
Files.readAttributes(file1, BasicFileAttributes.class);

BasicFileAttributes attr2 =
Files.readAttributes(file2, BasicFileAttributes.class);

FileTime time1 = attr1.creationTime();
FileTime time2 = attr2.creationTime();
System.out.println("file1's creation time is: " + time1);
System.out.println("file2's creation time is: " + time2);
if(time1.compareTo(time2) < 0)

System.out.println("file1 was created before file2");
else

if(time1.compareTo(time2) > 0)
System.out.println("file1 was created after file2");

else
System.out.println
("file1 and file2 were created at the same time");

}
catch(IOException e)
{

System.out.println("IO Exception");
}

}
}

Figure 13-10 The PathDemo6 class

C H A P T E R 1 3 File Input and Output

676

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 13-11 shows the output of the application in Figure 13-10. The file named file1 was
created in October 2012, and file2 was created in April 2015, so the program correctly
determines that file1 was created first.

Besides BasicFileAttributes, Java supports specialized classes for DOS file attributes used on DOS
systems and POSIX file attributes used on systems such as UNIX. For example, DOS files might be hidden or
read only and UNIX files might have a group owner. For more details on specialized file attributes, visit the
Java Web site.

Watch the video Paths and Attributes.

TWO TRUTHS & A LIE

Using the Path and Files Classes

1. Java’s Path class is used to create objects that contain information to specify
the location of files or directories.

2. A relative path is a complete path; it does not need any other information to
locate a file on a system.

3. You can use the readAttributes() method of the Files class to retrieve
information about a file, such as its size and when it was created.

. met sys a no elif a
et acol ot noi t a mr of ni r eht o yna deent on seodti ; ht ap et el p moc a si ht ap et ul osba

nA. noi t a mr of ni ht apr eht o no sdneped ht ap evi t al er A. 2# si t ne met at s esl af ehT

Figure 13-11 Output of the PathDemo6 program

Using the Path and Files Classes

677

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

File Organization, Streams, and Buffers
Most businesses generate and use large quantities of data every day. You can store data in
variables within a program, but such storage is temporary. When the application ends, the
variables no longer exist and the data values are lost. Variables are stored in the computer’s
main or primary memory (RAM). When you need to retain data for any significant amount of
time, you must save the data on a permanent, secondary storage device, such as a disk.

Businesses organize data in a hierarchy, as shown in Figure 13-12. The smallest useful piece of
data to most users is the character. A character can be any letter, number, or other special
symbol (such as a punctuation mark) that comprises data. Characters are made up of bits (the
zeros and ones that represent computer circuitry), but people who use data typically do not care
whether the internal representation for an A is 01000001 or 10111110. Rather, they are
concerned with the meaning of A—for example, it might represent a grade in a course, a person’s
initial, or a company code. In computer terminology, a character can be any group of bits, and it
does not necessarily represent a letter or number; for example, some “characters” produce a
sound or control the display. Also, characters are not necessarily created with a single keystroke;
for example, escape sequences are used to create the ' \n' character, which starts a new line, and
' \\', which represents a single backslash. Sometimes, you can think of a character as a unit of
information instead of data with a particular appearance. For example, the mathematical
character pi (π) and the Greek letter pi look the same, but have two different Unicode values.

When businesses use data, they group characters into fields. A field is a group of characters
that has some meaning. For example, the characters T, o, and m might represent your first
name. Other data fields might represent items such as last name, Social Security number, zip
code, and salary.

Fields are grouped together to form records. A record is a collection of fields that contain
data about an entity. For example, a person’s first and last names, Social Security number, zip
code, and salary represent that person’s record. When programming in Java, you have created
many classes, such as an Employee class or a Student class. You can think of the data typically
stored in each of these classes as a record. These classes contain individual variables that
represent data fields. A business’s data records usually represent a person, item, sales
transaction, or some other concrete object or event.

Employee file

Brown record Collins recordAndrews record

Brown Jennifer 12.95ID 786

nwB

File:

Records:

Fields:

Characters: r o

Figure 13-12 Data hierarchy

C H A P T E R 1 3 File Input and Output

678

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Records are grouped to create files. Data files consist of related records, such as a company’s
personnel file that contains one record for each employee. Some files have only a few
records; perhaps your professor maintains a file for your class with 25 records—one record
for each student. Other files contain thousands or even millions of records. For example, an
insurance company maintains a file of policyholders, and a mail-order catalog company
maintains a file of available items.

A data file can be used as a sequential access file when each record is accessed one after
another in the order in which it was stored. Most frequently, each record is stored in order
based on the value in some field; for example, employees might be stored in Social Security
number order, or inventory items might be stored in item number order. When records
are not used in sequence, the file is used as a random access file. You learn more about
random access files later in this chapter.

When records are stored in a data file, their fields can be organized one to a line, or a
character can be used to separate them. A file of comma-separated values (CSV) is one in
which each value in a record is separated from the next by a comma; CSV is a widely used
format for files used in all sorts of applications, including databases and spreadsheets. Later
in this chapter, you will see examples of CSV files.

Before an application can use a data file, it must open the file. A Java application opens a file
by creating an object and associating a stream of bytes with it. Similarly, when you finish
using a file, the program should close the file—that is, make it no longer available to your
application. If you fail to close an input file—a file from which you are reading data—there
usually are no serious consequences; the data still exists in the file. However, if you fail to
close an output file—a file to which you are writing data—the data might become inaccessible.
You should always close every file you open, and usually you should close the file as soon as you no
longer need it. When you leave a file open for no reason, you use computer resources, and your
computer’s performance suffers. Also, particularly within a network, another program might be
waiting to use the file.

Whereas people view a file as a series of records, with each record containing data fields, Java
does not automatically attribute such meaning to a file’s contents. Instead, Java simply views a
file as a series of bytes. When you perform an input operation in an application, you can
picture bytes flowing into your program from an input device through a stream, which
functions as a pipeline or channel. When you perform output, some bytes flow out of your
application through another stream to an output device, as shown in Figure 13-13. A stream
is an object, and like all objects, streams have data and methods. The methods allow you to
perform actions such as opening, closing, reading, and writing.

Application
Input

Output

Figure 13-13 File streams

File Organization, Streams, and Buffers

679

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Most streams flow in only one direction; each stream is either an input or output stream.
(Random access files use streams that flow in two directions. You will use a random access file
later in this chapter.) You might open several streams at once within an application. For
example, an application that reads a data disk and separates valid records from invalid ones
might require three streams. The data arrives via an input stream; one output stream writes
some records to a file of valid records, and another output stream writes other records to a file
of invalid records.

Input and output operations are usually the slowest in any computerized system because of
limitations imposed by the hardware. For that reason, professional programs often employ
buffers. In Chapter 7, you learned that the StringBuilder object sets aside a memory block
called a buffer. The same term describes a memory location where bytes are held after they are
logically output but before they are sent to the output device. Using a buffer to accumulate
input or output before issuing the actual IO command improves program performance. When
you use an output buffer, you sometimes flush it before closing it. Flushing clears any bytes that
have been sent to a buffer for output but have not yet been output to a hardware device.

Watch the video File Organization, Streams, and Buffers.

TWO TRUTHS & A LIE

File Organization, Streams, and Buffers

1. A field is a group of characters that has some meaning; a record is a collection
of fields.

2. A data file is used as a sequential access file when the first field for each record is
stored first in a file, the second field for each record is stored next, and so on.

3. Java views files as a series of bytes that flow into and out of your applications
through a stream.

. dl eif e mos ni eul av eht no desabr edr o ni der ot s si dr ocer
hcae neh welif sseccal ai t neuqes a sa desu si elif at ad A. 2# si t ne met at s esl af ehT

Using Java’s IO Classes
Figure 13-14 shows a partial hierarchical relationship of some of the classes Java uses for
input and output (IO) operations; it shows that InputStream, OutputStream, and Reader
are subclasses of the Object class. All three of these classes are abstract. As you learned in
Chapter 11, abstract classes contain methods that must be overridden in their child classes.
The figure also shows the major IO child classes that you will study in this chapter. The
capabilities of these classes are summarized in Table 13-2.

C H A P T E R 1 3 File Input and Output

680

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 13-14 Relationship of selected IO classes

Class Description

InputStream Abstract class that contains methods for performing input

FileInputStream Child of InputStream that provides the capability to read from disk files

BufferedInputStream Child of FilterInputStream, which is a child of InputStream;
BufferedInputStream handles input from a system’s standard
(or default) input device, usually the keyboard

OutputStream Abstract class that contains methods for performing output

FileOutputStream Child of OutputStream that allows you to write to disk files

BufferedOutputStream Child of FilterOutputStream, which is a child of OutputStream;
BufferedOutputStream handles input from a system’s standard (or
default) output device, usually the monitor

PrintStream Child of FilterOutputStream, which is a child of OutputStream;
System.out is a PrintStream object

Table 13-2 Description of selected classes used for input and output (continues)

Using Java’s IO Classes

681

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As its name implies, the OutputStream class can be used to produce output. Table 13-3 shows
some of the class’s common methods. You can use OutputStream to write all or part of an
array of bytes. When you finish using an OutputStream, you usually want to flush and close it.

Java’s System class contains a PrintStream object named System.out; you have used this
object extensively in the book, along with its print() and println() methods. Besides
System.out, the System class defines a PrintStream object named System.err. The output
from System.err and System.out can go to the same device; in fact, System.err and
System.out are both directed by default to the command line on the monitor. The difference
is that System.err is usually reserved for error messages, and System.out is reserved for valid
output. You can direct either System.err or System.out to a new location, such as a disk file
or printer. For example, you might want to keep a hard copy (printed) log of the error
messages generated by a program, but direct the standard output to a disk file.

Although you usually have no need to do so, you can create your own OutputStream

object and assign System.out to it. Figure 13-15 shows how this works. The application
declares a String of letter grades allowed in a course. Then, the getBytes() method converts
the String to an array of bytes. An OutputStream object is declared, and System.out is
assigned to the OutputStream reference in a try block. The write() method accepts the byte
array and sends it to the output device, and then the output stream is flushed and closed.
Figure 13-16 shows the execution.

OutputStream Method Description

void close() Closes the output stream and releases any system resources
associated with the stream

void flush() Flushes the output stream; if any bytes are buffered, they will be written

void write(byte[] b) Writes all the bytes to the output stream from the specified byte array

void write(byte[] b,

int off, int len)
Writes bytes to the output stream from the specified byte array starting
at offset position off for a length of len characters

Table 13-3 Selected OutputStream methods

Class Description

Reader Abstract class for reading character streams; the only methods that a
subclass must implement are read(char[], int, int) and close()

BufferedReader Reads text from a character-input stream, buffering characters to provide
for efficient reading of characters, arrays, and lines

BufferedWriter Writes text to a character-output stream, buffering characters to provide
for the efficient writing of characters, arrays, and lines

Table 13-2 Description of selected classes used for input and output

(continued)

C H A P T E R 1 3 File Input and Output

682

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.io.*;
public class ScreenOut
{

public static void main(String[] args)
{

String s = "ABCDF";
byte[] data = s.getBytes();
OutputStream output = null;
try
{

output = System.out;
output.write(data);
output.flush();
output.close();

}
catch(Exception e)
{

System.out.println("Message: " + e);
}

}
}

Figure 13-15 The ScreenOut class

Writing to a File
The output in Figure 13-16 is not very impressive. Before you knew about streams, you
wrote applications that displayed a string on the monitor by using the automatically created
System.out object, so the application in Figure 13-15 might seem to contain a lot of unnecessary
work at first. However, other output devices can be assigned to OutputStream references,
allowing your applications to save data to them.

Instead of assigning the standard output device to OutputStream, you can assign a file. To
accomplish this, you can construct a BufferedOutputStream object and assign it to the
OutputStream. If you want to change an application’s output device, you don’t have to modify
the application except to assign a new object to the OutputStream; the rest of the logic
remains the same. Java lets you assign a file to a Stream object so that screen output and file
output work in exactly the same manner.

Figure 13-16 Output of the ScreenOut program

Using Java’s IO Classes

683

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can create a writeable file by using the Files class newOutputStream() method. You pass a
Path and a StandardOpenOption argument to this method. The method creates a file if it does
not already exist, opens the file for writing, and returns an OutputStream that can be used to
write bytes to the file. Table 13-4 shows the StandardOpenOption arguments you can use as
the second argument to the newOutputStream() method. If you do not specify any options and
the file does not exist, a new file is created. If the file exists, it is truncated. In other words,
specifying no option is the same as specifying both CREATE and TRUNCATE_EXISTING.

Figure 13-17 shows an application that writes a String of bytes to a file. The only differences
from the preceding ScreenOut class are shaded in the figure and summarized here:

Additional import statements are used.

The class name is changed.

A Path is declared for a Grades.txt file.

Instead of assigning System.out to the OutputStream reference, a BufferedOutputStream
object is assigned.

import java.nio.file.*;
import java.io.*;
import static java.nio.file.StandardOpenOption.*;

public class FileOut
{

public static void main(String[] args)
{

Path file =
Paths.get("C:\\Java\\Chapter.13\\Grades.txt");

String s = "ABCDF";

StandardOpenOption Description

WRITE Opens the file for writing

APPEND Appends new data to the end of the file; use this option with WRITE or CREATE

TRUNCATE_EXISTING Truncates the existing file to 0 bytes so the file contents are replaced; use
this option with the WRITE option

CREATE_NEW Creates a new file only if it does not exist; throws an exception if the file
already exists

CREATE Opens the file if it exists or creates a new file if it does not

DELETE_ON_CLOSE Deletes the file when the stream is closed; used most often for temporary
files that exist only for the duration of the program

Table 13-4 Selected StandardOpenOption constants

Figure 13-17 The FileOut class (continues)

C H A P T E R 1 3 File Input and Output

684

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

byte[] data = s.getBytes();
OutputStream output = null;
try
{

output = new
BufferedOutputStream(Files.newOutputStream(file, CREATE));

output.write(data);
output.flush();
output.close();

}
catch(Exception e)
{

System.out.println("Message: " + e);
}

}
}

Figure 13-17 The FileOut class

When the FileOut program executes, no output appears on the monitor, but a file is
created at the location specified in the Path statement. Figure 13-18 shows the file when it is
opened in Notepad.

Reading from a File
You use an InputStream like you use an OutputStream. If you want, you can create an
InputStream, assign System.in to it, and use the class’s read() method with the created
object to retrieve keyboard input. Usually, however, it is more efficient to use the Scanner
class for keyboard input and to use the InputStream class to input data that has been stored
in a file.

To open a file for reading, you can use the Files class newInputStream() method. This
method accepts a Path parameter and returns a stream that can read bytes from a file.
Figure 13-19 shows a ReadFile class that reads from the Grades.txt file created earlier. The
Path is declared, an InputStream is declared using the Path, and, in the first shaded
statement in the figure, a stream is assigned to the InputStream reference.

(continued)

Figure 13-18 Contents of the Grades.txt file created by the FileOut program

Using Java’s IO Classes

685

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.nio.file.*;
import java.io.*;
public class ReadFile
{

public static void main(String[] args)
{

Path file = Paths.get("C:\\Java\\Chapter.13\\Grades.txt");
InputStream input = null;
try
{

input = Files.newInputStream(file);
BufferedReader reader = new
BufferedReader(new InputStreamReader(input));

String s = null;
s = reader.readLine();
System.out.println(s);
input.close();

}
catch (IOException e)
{

System.out.println(e);
}

}
}

Figure 13-19 The ReadFile class

If you needed to read multiple lines from the file in the program in Figure 13-19, you could use a loop such as
the following:

while(s = reader.readLine() != null)

System.out.println(s);

This loop continuously reads and displays lines from the file until the readLine() method returns null,
indicating that no more data is available.

In the second shaded statement in the ReadFile class, a BufferedReader is declared. A
BufferedReader reads a line of text from a character-input stream, buffering characters so that
reading is more efficient. Figure 13-20 shows the ReadFile program’s execution. The readLine()
method gets the single line of text from the Grades.txt file, and then the line is displayed.

Figure 13-20 Execution of the ReadFile program

C H A P T E R 1 3 File Input and Output

686

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you use the BufferedReader class, you must import the java.io package into your
program. Table 13-5 shows some useful BufferedReader methods.

TWO TRUTHS & A LIE

Using Java’s IO Classes

1. Java’s InputStream, OutputStream, and Reader classes are used for handling
input and output.

2. You can create your own OutputStream object, assign System.out to it, and use it
for writing output to the screen, or you can use the Files class newOutputStream()
method to create a file and open it for writing.

3. To open a file for reading, you can use the newOutputStream() method to get a
stream that can read bytes from a file.

. elif a morf set yb daer nact aht maert s at eg ot doht e m)(maertStupnIwen

eht esu nac uoy , gni daer r of elif a nepo oT. 3# si t ne met at s esl af ehT

Creating and Using Sequential Data Files
Frequently, you want to save more than a single String to a file. For example, you
might have a data file of personnel records that include an ID number, name, and pay
rate for each employee in your organization. Figure 13-21 shows a program that reads
employee ID numbers, names, and pay rates from the keyboard and sends them to a
comma-separated file.

BufferedReader Method Description

close() Closes the stream and any resources associated with it

read() Reads a single character

read(char[] buffer,

int off, int len)
Reads characters into a portion of an array from position off for
len characters

readLine() Reads a line of text

skip(long n) Skips the specified number of characters

Table 13-5 Selected BufferedReader methods

Creating and Using Sequential Data Files

687

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.nio.file.*;
import java.io.*;
import static java.nio.file.StandardOpenOption.*;
import java.util.Scanner;
public class WriteEmployeeFile
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
Path file =

Paths.get("C:\\Java\\Chapter.13\\Employees.txt");
String s = "";
String delimiter = ",";
int id;
String name;
double payRate;
final int QUIT = 999;
try
{

OutputStream output = new
BufferedOutputStream(Files.newOutputStream(file, CREATE));

BufferedWriter writer = new
BufferedWriter(new OutputStreamWriter(output));

System.out.print("Enter employee ID number >> ");
id = input.nextInt();
while(id != QUIT)
{

System.out.print("Enter name for employee #" +
id + " >> ");

input.nextLine();
name = input.nextLine();
System.out.print("Enter pay rate >> ");
payRate = input.nextDouble();
s = id + delimiter + name + delimiter + payRate;
writer.write(s, 0, s.length());
writer.newLine();
System.out.print("Enter next ID number or " +

QUIT + " to quit >> ");
id = input.nextInt();

}
writer.close();

}
catch(Exception e)
{

System.out.println("Message: " + e);
}

}
}

Figure 13-21 The WriteEmployeeFile class

C H A P T E R 1 3 File Input and Output

688

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 13-21, notice the extra nextLine() call after the employee’s ID number is entered. Recall
from Chapter 2 that this extra call is necessary to consume the newline character that remains in the input
buffer after the ID number is accepted.

The first shaded statement in the WriteEmployeeFile program creates a BufferedWriter
named writer. The BufferedWriter class is the counterpart to BufferedReader. It writes
text to an output stream, buffering the characters. The class has three overloaded write()

methods that provide for efficient writing of characters, arrays, and strings, respectively.
Table 13-6 contains all the methods defined in the BufferedWriter class.

In the WriteEmployeeFile program, Strings of employee data are constructed within a loop
that executes while the user does not enter the QUIT value. When a String is complete—that
is, when it contains an ID number, name, and pay rate separated with commas—the String is
sent to writer in the second shaded statement in the class. The write() method accepts the
String from position 0 for its entire length.

After the String is written, the system’s newline character is also written. Although a data file
would not require a newline character after each record (each new record could be separated
with a comma or any other unique character that was not needed as part of the data), placing
each record on a new line makes the output file easier for a person to read and interpret.
Because not all platforms use '\n' to separate lines, the BufferedWriter class contains a
newLine() method that uses the current platform’s line separator. Alternatively, you could
write the value of System.getProperty("line.separator "). This method call returns the
default line separator for a system; the same separator is supplied either way because the
newLine() method actually calls the System.getProperty() method for you.

Any of the input or output methods in the WriteEmployeeFile program might throw an
exception, so all the relevant code in the class is placed in a try block. Figure 13-22 shows a
typical program execution, and Figure 13-23 shows the output file when it is opened in
Notepad.

BufferedWriter Method Description

close() Closes the stream, flushing it first

flush() Flushes the stream

newline() Writes a line separator

write(String s, int off, int len) Writes a String from position off for length len

write(char[] array, int off, int len) Writes a character array from position off for
length len

write(int c) Writes a single character

Table 13-6 BufferedWriter methods

Creating and Using Sequential Data Files

689

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 13-24 shows a program that reads the Employees.txt file created by the
WriteEmployeeFile program. The program declares an InputStream for the file, then creates a
BufferedReader using the InputStream. The first line is read into a String; as long as the
readLine() method does not return null, the String is displayed and a new line is read.

import java.nio.file.*;
import java.io.*;
public class ReadEmployeeFile
{

public static void main(String[] args)
{

Path file =
Paths.get("C:\\Java\\Chapter.13\\Employees.txt");

String s = "";

Figure 13-23 Output file following the program execution in Figure 13-22

Figure 13-22 Typical execution of the WriteEmployeeFile program

Figure 13-24 The ReadEmployeeFile class (continues)

C H A P T E R 1 3 File Input and Output

690

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

try
{

InputStream input = new
BufferedInputStream(Files.newInputStream(file));

BufferedReader reader = new
BufferedReader(new InputStreamReader(input));

s = reader.readLine();
while(s != null)
{

System.out.println(s);
s = reader.readLine();

}
reader.close();

}
catch(Exception e)
{

System.out.println("Message: " + e);
}

}
}

Figure 13-24 The ReadEmployeeFile class

Figure 13-25 shows the output of the ReadEmployeeFile program when it uses the file that
was created during the execution in Figure 13-22. Each comma-separated String is displayed
on its own line.

Many applications would not want to use the file data only as a String like the
ReadEmployeeFile program does. Figure 13-26 shows a more useful program in which
the retrieved file Strings are split into usable fields. The String class split() method
accepts an argument that identifies the field delimiter (in this case, a comma) and
returns an array of Strings. Each array element holds one field. Then methods such as
parseInt() and parseDouble() can be used to reformat the split Strings into their
respective data types.

(continued)

Figure 13-25 Output of the ReadEmployeeFile program

Creating and Using Sequential Data Files

691

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.nio.file.*;
import java.io.*;
public class ReadEmployeeFile2
{

public static void main(String[] args)
{

Path file =
Paths.get("C:\\Java\\Chapter.13\\Employees.txt");

String[] array = new String[3];
String s = "";
String delimiter = ",";
int id;
String name;
double payRate;
double gross;
final double HRS_IN_WEEK = 40;
double total = 0;
try
{

InputStream input = new
BufferedInputStream(Files.newInputStream(file));

BufferedReader reader = new
BufferedReader(new InputStreamReader(input));

System.out.println();
s = reader.readLine();
while(s != null)
{

array = s.split(delimiter);
id = Integer.parseInt(array[0]);
name = array[1];
payRate = Double.parseDouble(array[2]);
gross = payRate * HRS_IN_WEEK;
System.out.println("ID#" + id + " " + name +

" $" + payRate + " $" + gross);
total += gross;
s = reader.readLine();

}
reader.close();

}
catch(Exception e)
{
System.out.println("Message: " + e);

}
System.out.println(" Total gross payroll is $" + total);

}
}

Figure 13-26 The ReadEmployeeFile2 class

C H A P T E R 1 3 File Input and Output

692

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As each record is read and split in the ReadEmployeeFile2 class, its pay rate field is used to
calculate gross pay for the employee based on a 40-hour workweek. Then the gross is
accumulated to produce a total gross payroll that is displayed after all the data has been
processed. Figure 13-27 shows the program’s execution.

TWO TRUTHS & A LIE

Creating and Using Sequential Data Files

1. A BufferedWriter writes text to an output stream, buffering the characters.

2. A data file does not require a newline character after each record, but adding
a newline makes the output file easier for a person to read and interpret.

3. The String class split() method converts parts of a String to ints,
doubles, and other data types.

. sepyt at adr eht o ot sgnirtS til ps eht tr evnoc ot)(elbuoDesrap

dna)(tnIesrap sa hcus sdoht e mesu nac uoy nehT. dl eif eno sdl oht ne mel e
yarr a hcae hci h wni sgnirtSf o yarr a na snr ut er dna r eti mil ed dl eif a seifi t nedi t aht

t ne mugr a na st pecca doht e m)(tilps ssal c gnirtS ehT. 3# si t ne met at s esl af ehT

Learning About Random Access Files
The file examples in the first part of this chapter have been sequential access files, which
means that you work with the records in sequential order from beginning to end. For
example, in the ReadEmployeeFile programs, if you write an employee record with an ID
number of 145, and then write a second record with an ID number of 289, the records remain
in the original data-entry order when you retrieve them. Businesses store data in sequential
order when they use the records for batch processing, which involves performing the same

Figure 13-27 Execution of the ReadEmployeeFile2 program

Learning About Random Access Files

693

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

tasks with many records, one after the other. For example, when a company produces
customer bills, the records for the billing period are gathered in a batch and the bills are
calculated and printed in sequence. It really doesn’t matter whose bill is produced first
because none are distributed to customers until all bills in a group have been printed and
mailed.

Besides indicating a system that works with many records, the term batch processing can
refer to a system in which you issue many operating-system commands as a group.

For many applications, sequential access is inefficient. These applications, known as real-time
applications, require that a record be accessed immediately while a client is waiting. A
program in which the user makes direct requests is an interactive program. For example, if a
customer telephones a department store with a question about a monthly bill, the customer
service representative does not want to access every customer account in sequence. Suppose
that the store’s database contains tens of thousands of account records to read, and that the
customer record in question is near the end of the list. It would take too long to access the
customer’s record if all the records had to be read sequentially. Instead, customer service
representatives require random access files—files in which records can be retrieved directly
in any order. Random files are also called direct access files or instant access files.

You can use Java’s FileChannel class to create your own random access files. A file channel
object is an avenue for reading and writing a file. A file channel is seekable, meaning you can
search for a specific file location and operations can start at any specified position. Table 13-7
describes some FileChannel methods.

Several methods in Table 13-7 use a ByteBuffer object. As its name describes, a ByteBuffer
is simply a holding place for bytes waiting to be read or written. An array of bytes can be
wrapped, or encompassed, into a ByteBuffer using the ByteBuffer wrap() method.
Wrapping a byte array into a buffer causes changes made to the buffer to change the array as

FileChannel Method Description

FileChannel open(Path file, OpenOption... options) Opens or creates a file, returning a
file channel to access the file

long position() Returns the channel’s file position

FileChannel position(long newPosition) Sets the channel’s file position

int read(ByteBuffer buffer) Reads a sequence of bytes from
the channel into the buffer

long size() Returns the size of the channel’s file

int write(ByteBuffer buffer) Writes a sequence of bytes to the
channel from the buffer

Table 13-7 Selected FileChannel methods

C H A P T E R 1 3 File Input and Output

694

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

well, and causes changes made to the array to change the buffer. Creating a usable FileChannel
for randomly writing data requires creating a ByteBuffer and several other steps:

You can use the Files class newByteChannel() method to get a ByteChannel for a Path.
The newByteChannel() method accepts Path and StandardOpenOption arguments that
specify how the file will be opened.

The ByteChannel returned by the newByteChannel() method can then be cast to a
FileChannel using a statement similar to the following:

FileChannel fc = (FileChannel)Files.newByteChannel(file, READ, WRITE);

You can create a byte array. For example, a byte array can be built from a String using
the getBytes() method as follows:

String s = "XYZ";
byte[] data = s.getBytes();

The byte array can be wrapped into a ByteBuffer as follows:

ByteBuffer out = ByteBuffer.wrap(data);

Then the filled ByteBuffer can be written to the declared FileChannel with a statement
such as the following:

fc.write(out);

You can test whether a ByteBuffer’s contents have been used up by checking the
hasRemaining() method.

After you have written the contents of a ByteBuffer, you can write the same ByteBuffer

contents again by using the rewind() method to reposition the ByteBuffer to the
beginning of the buffer.

Figure 13-28 employs all these steps to declare a file and write some bytes in it randomly at
positions 0, 22, and 12, in that order.

import java.nio.file.*;
import java.io.*;
import java.nio.channels.FileChannel;
import java.nio.ByteBuffer;
import static java.nio.file.StandardOpenOption.*;
public class RandomAccessTest
{

public static void main(String[] args)
{

Path file =
Paths.get("C:\\Java\\Chapter.13\\Numbers.txt");

String s = "XYZ";
byte[] data = s.getBytes();
ByteBuffer out = ByteBuffer.wrap(data);
FileChannel fc = null;

Figure 13-28 The RandomAccessTest class (continues)

Learning About Random Access Files

695

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

try
{

fc = (FileChannel)Files.newByteChannel(file, READ, WRITE);
fc.position(0);
while(out.hasRemaining())

fc.write(out);
out.rewind();
fc.position(22);
while(out.hasRemaining())

fc.write(out);
out.rewind();
fc.position(12);
while(out.hasRemaining())

fc.write(out);
fc.close();

}
catch (Exception e)
{

System.out.println("Error message: " + e);
}

}
}

Figure 13-28 The RandomAccessTest class

Figure 13-29 shows the Numbers.txt text file before and after executing the
RandomAccessTest program in Figure 13-28. The String "XYZ" has been written at positions
0, 8, and 12.

(continued)

Figure 13-29 The Numbers.txt file before and after execution of RandomAccessTest

C H A P T E R 1 3 File Input and Output

696

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Learning About Random Access Files

1. Businesses store data in random order when they use the records for batch
processing.

2. Real-time applications are interactive and require using random access
data files.

3. A FileChannel object is a seekable channel for reading and writing a file.

. gni ssecor p hct abr of sdr ocer eht esu
yeht neh wr edr ol ai t neuqes ni at ad er ot s sesseni suB. 1# si t ne met at s esl af ehT

Writing Records to a Random Access Data File
Writing characters at random text file locations, as in the RandomAccessTest program,
is of limited value. When you store records in a file, it is often more useful to be
able to access the eighth or 12th record rather than the eighth or 12th byte. In such a
case, you multiply each record’s size by the position you want to access. For example,
if you store records that are 50 bytes long, the first record is at position 0, the second
record is at position 50, the third record is at position 100, and so on. In other words,
you can access the nth record in a FileChannel named fc using the following
statement:
fc.position((n - 1) * 50);

One approach to writing a random access file is to place records into the file based on a
key field. A key field is the field in a record that makes the record unique from all others.
For example, suppose you want to store employee ID numbers, last names, and pay rates
in a random access file. In a file of employees, many records might have the same last name
or pay rate, but each record has a unique employee ID number, so that field can act as
the key field.

The first step in creating the random access employee file is to create a file that
holds default records—for example, using zeroes for the ID numbers and pay rates and
blanks for the names. For this example, assume that each employee ID number is three
digits; in other words, you cannot have more than 1,000 employees because the ID
number cannot surpass 999. Figure 13-30 contains a program that creates 1,000 such
records.

Writing Records to a Random Access Data File

697

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.nio.file.*;
import java.io.*;
import java.nio.ByteBuffer;
import static java.nio.file.StandardOpenOption.*;
public class CreateEmptyEmployeesFile
{

public static void main(String[] args)
{

Path file =
Paths.get("C:\\Java\\Chapter.13\\RandomEmployees.txt");

String s = "000, ,00.00" +
System.getProperty("line.separator");

byte[] data = s.getBytes();
ByteBuffer buffer = ByteBuffer.wrap(data);
final int NUMRECS = 1000;
try
{

OutputStream output = new
BufferedOutputStream(Files.newOutputStream(file, CREATE));

BufferedWriter writer = new
BufferedWriter(new OutputStreamWriter(output));

for(int count = 0; count < NUMRECS; ++count)
writer.write(s, 0, s.length());

writer.close();
}
catch(Exception e)
{

System.out.println("Error message: " + e);
}

}
}

Figure 13-30 The CreateEmptyEmployeesFile class

In the first shaded statement in Figure 13-30, a String that represents a default record is
declared. The three-digit employee number is set to zeros, the name consists of seven blanks,
the pay rate is 00.00, and the String ends with the system’s line separator value. A byte array
is constructed from the String and wrapped into a buffer. Then a file is opened in CREATE

mode and a BufferedWriter is established.

In the last shaded statement in Figure 13-30, a loop executes 1,000 times. Within the
loop, the default employee string is passed to the BufferedWriter object’s write()
method. Figure 13-31 shows a few records from the created file when it is opened in
Notepad.

C H A P T E R 1 3 File Input and Output

698

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The default fields in the base random access file don’t have to be zeros and blanks.
For example, if you wanted 000 to be a legitimate employee ID number or you wanted
blanks to represent a correct name, you could use different default values such as 999 and
“XXXXXXX”. The only requirement is that the default records be recognizable as such.

After you create the base default file, you can replace any of its records with data for an actual
employee. You can locate the correct position for the new record by performing arithmetic
with the record’s key field.

For example, the application in Figure 13-32 creates a single employee record defined in the
first shaded statement. The record is for employee 002 with a last name of Newmann and a pay
rate of 12.25. In the second shaded statement, the length of this string is assigned to RECSIZE.
(In this case, RECSIZE is 19, which includes one character for each character in the sample
record string, including the delimiting commas, plus two bytes for the line separator value
returned by the System.getProperty() method.) After the FileChannel is established, the
record is written to the file at the position that begins at two times the record size. The value 2
is hard coded in this demonstration program because the employee’s ID number is 002.

import java.nio.file.*;
import java.io.*;
import java.nio.channels.FileChannel;
import java.nio.ByteBuffer;
import static java.nio.file.StandardOpenOption.*;
public class CreateOneRandomAccessRecord
{

public static void main(String[] args)
{

Path file =
Paths.get("C:\\Java\\Chapter.13\\RandomEmployees.txt");

String s = "002,Newmann,12.25" +
System.getProperty("line.separator");

Figure 13-31 The RandomEmployees.txt file created by the
CreateEmptyEmployeesFile program

Figure 13-32 The CreateOneRandomAccessRecord class (continues)

Writing Records to a Random Access Data File

699

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

final int RECSIZE = s.length();
byte[] data = s.getBytes();
ByteBuffer buffer = ByteBuffer.wrap(data);
FileChannel fc = null;
try
{

fc = (FileChannel)Files.newByteChannel(file, READ, WRITE);
fc.position(2 * RECSIZE);
fc.write(buffer);
fc.close();

}
catch (Exception e)
{

System.out.println("Error message: " + e);
}

}
}

Figure 13-32 The CreateOneRandomAccessRecord class

Figure 13-33 shows the RandomEmployees.txt file contents after the
CreateOneRandomAccessRecord program runs. The employee’s data record is correctly
placed in the third position in the file. Later, if employees are added that have ID numbers 000
and 001, they can be inserted as the first two records in the file.

A program that inserts one hard-coded employee record into a data file is not very useful. The
program in Figure 13-34 accepts any number of records as user input and writes records to a
file in a loop. As shown in the first shaded line in the figure, each employee’s data value is
accepted from the keyboard as a String and converted to an integer using the parseInt()
method. Then, as shown in the second shaded statement, the record’s desired position is
computed by multiplying the ID number value by the record size.

Figure 13-33 The RandomEmployees.txt file after running the
CreateOneRandomAccessRecord program

(continued)

C H A P T E R 1 3 File Input and Output

700

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.nio.file.*;
import java.io.*;
import java.nio.channels.FileChannel;
import java.nio.ByteBuffer;
import static java.nio.file.StandardOpenOption.*;
import java.util.Scanner;
public class CreateEmployeesRandomFile
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
Path file =

Paths.get("C:\\Java\\Chapter.13\\RandomEmployees.txt");
String s = "000, ,00.00" +

System.getProperty("line.separator");
final int RECSIZE = s.length();
FileChannel fc = null;
String delimiter = ",";
String idString;
int id;
String name;
String payRate;
final String QUIT = "999";
try
{

fc = (FileChannel)Files.newByteChannel(file, READ, WRITE);
System.out.print("Enter employee ID number >> ");
idString = input.nextLine();
while(!(idString.equals(QUIT)))
{

id = Integer.parseInt(idString);
System.out.print("Enter name for employee #" +

id + " >> ");
name = input.nextLine();
System.out.print("Enter pay rate >> ");
payRate = input.nextLine();
s = idString + delimiter + name + delimiter +

payRate + System.getProperty("line.separator");
byte[] data = s.getBytes();
ByteBuffer buffer = ByteBuffer.wrap(data);
fc.position(id * RECSIZE);
fc.write(buffer);
System.out.print("Enter next ID number or " +

QUIT + " to quit >> ");
idString = input.nextLine();

}
fc.close();

}
catch (Exception e)
{

System.out.println("Error message: " + e);
}

}
}

Figure 13-34 The CreateEmployeesRandomFile class

Writing Records to a Random Access Data File

701

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 13-35 shows a typical execution of the program, and Figure 13-36 shows the resulting file.
(This program was executed after rerunning the CreateEmptyEmployeesFile program, so all
records started with default values, and the record created by the program shown in Figure 13-33
is not part of the file.) In Figure 13-36, you can see that each employee record is not stored based
on the order in which it was entered, but is located in the correct spot based on its key field.

Figure 13-35 Typical execution of the CreateEmployeesRandomFile program

Figure 13-36 File created during the execution in Figure 13-35

C H A P T E R 1 3 File Input and Output

702

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To keep this example brief and focused on the random access file writing, the
CreateEmployeesFile application makes several assumptions:

An employee record contains only an ID number, name, and pay rate. In a real
application, each employee would require many more data fields, such as address, phone
number, date of hire, and so on.

Each employee ID number is three digits. In many real applications, ID numbers would be
longer to ensure unique values. (Three-digit numbers provide only 1,000 unique
combinations.)

The user will enter valid ID numbers and pay rates. In a real application, this would be
a foolhardy assumption because users might type too many digits or type nonnumeric
characters. However, to streamline the code and concentrate on the writing of a random
access file, error checking for valid ID numbers and pay rates is eliminated from this
example.

The user will not duplicate employee ID numbers. In a real application, a key field
should be checked against all existing key fields to ensure that a record is unique before
adding it to a file.

The names entered are all seven characters. This permits each record to be the same size.
Only when record sizes are uniform can they be used to arithmetically calculate offset
positions. In a real application, you would have to pad shorter names with spaces and
truncate longer names to achieve a uniform size.

Each employee’s record is placed in the random access file position that is one less
than the employee’s ID number. In many real applications, the mathematical
computations performed on a key field to determine file placement are more
complicated.

TWO TRUTHS & A LIE

Writing Records to a Random Access Data File

1. You can set a FileChannel’s reading position based on a key field in a record
and the record size.

2. A key field is the field in a record that holds the most sensitive information.

3. A useful technique for creating random access files involves first setting up a file
with default records in each position.

. sr eht oll a morf euqi nu
dr ocer eht seka mt aht dr ocer a ni dl eif eht si dl eif yek A. 2# si t ne met at s esl af ehT

Writing Records to a Random Access Data File

703

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Reading Records from a Random Access Data File
Just because a file is created as a random access file does not mean it has to be used as one.
You can process a random access file either sequentially or randomly.

Accessing a Random Access File Sequentially
The RandomEmployees.txt file created in the previous section contains 1,000 records.
However, only four of them contain valuable data. Displaying every record in the file would
result in many irrelevant lines of output. It makes more sense to display only those records for
which an ID number has been inserted. The application in Figure 13-37 reads through the
1,000-record file sequentially in a while loop. The shaded statements check for valid ID
numbers. This example assumes that no employee has a valid ID number of 000, so the
program displays a record only when the ID is not 000. If 000 could be a valid ID number,
then you would want to check for a name that was blank, a pay rate that was 0, or both. Figure
13-38 shows the application’s output—a list of the entered records, conveniently in ID
number order, which reflects their relative positions within the file.

import java.nio.file.*;
import java.io.*;
import static java.nio.file.AccessMode.*;
public class ReadEmployeesSequentially
{

public static void main(String[] args)
{

Path file =
Paths.get("C:\\Java\\Chapter.13\\RandomEmployees.txt");

String[] array = new String[3];
String s = "";
String delimiter = ",";
int id;
String stringId;
String name;
double payRate;
double gross;
final double HRS_IN_WEEK = 40;
double total = 0;
try
{

InputStream input = new
BufferedInputStream(Files.newInputStream(file));

BufferedReader reader = new
BufferedReader(new InputStreamReader(input));

System.out.println();
s = reader.readLine();

Figure 13-37 The ReadEmployeesSequentially class (continues)

C H A P T E R 1 3 File Input and Output

704

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

while(s != null)
{

array = s.split(delimiter);
stringId = array[0];
id = Integer.parseInt(array[0]);
if(id != 0)
{

name = array[1];
payRate = Double.parseDouble(array[2]);
gross = payRate * HRS_IN_WEEK;
System.out.println("ID#" + stringId + " " +

name + " $" + payRate + " $" + gross);
total += gross;

}
s = reader.readLine();

}
reader.close();

}
catch(Exception e)
{

System.out.println("Message: " + e);
}
System.out.println(" Total gross payroll is $" + total);

}
}

Figure 13-37 The ReadEmployeesSequentially class

Accessing a Random Access File Randomly
If you simply want to display records in order based on their key field, you do not need to
create a random access file and waste unneeded storage. Instead, you could sort the records
using one of the techniques you learned in Chapter 9. The benefit of using a random access

Figure 13-38 Output of the ReadEmployeesSequentially application

(continued)

Reading Records from a Random Access Data File

705

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

file is the ability to retrieve a specific record from a file directly, without reading through
other records to locate the desired one.

In the ReadEmployeesRandomly application in Figure 13-39, the user is prompted for an
employee ID number, which is converted to an integer with the parseInt() method. (To
keep this example brief, the application does not check for a valid ID number, so the
parseInt() method might throw an exception to the operating system, ending the execution
of the application.) In the shaded portion of the application in Figure 13-39, the position of
the desired record is calculated by multiplying the ID number by the record size and then
positioning the file pointer at the desired location. (Again, to keep the example short, the ID
number is not checked to ensure that it is 999 or less.) The employee record is retrieved from
the data file and displayed, and then the user is prompted for the next desired ID number.
Figure 13-40 shows a typical execution.

import java.nio.file.*;
import java.io.*;
import java.nio.channels.FileChannel;
import java.nio.ByteBuffer;
import static java.nio.file.StandardOpenOption.*;
import java.util.Scanner;
public class ReadEmployeesRandomly
{

public static void main(String[] args)
{

Scanner keyBoard = new Scanner(System.in);
Path file =

Paths.get("C:\\Java\\Chapter.13\\RandomEmployees.txt");
String s = "000, ,00.00" +

System.getProperty("line.separator");
final int RECSIZE = s.length();
byte[] data = s.getBytes();
ByteBuffer buffer = ByteBuffer.wrap(data);
FileChannel fc = null;
String idString;
int id;
final String QUIT = "999";
try
{

fc = (FileChannel)Files.newByteChannel(file, READ, WRITE);
System.out.print("Enter employee ID number or " +

QUIT + " to quit >> ");
idString = keyBoard.nextLine();

Figure 13-39 The ReadEmployeesRandomly class (continues)

C H A P T E R 1 3 File Input and Output

706

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

while(!idString.equals(QUIT))
{

id = Integer.parseInt(idString);
buffer= ByteBuffer.wrap(data);
fc.position(id * RECSIZE);
fc.read(buffer);
s = new String(data);
System.out.println("ID #" + id + " " + s);
System.out.print("Enter employee ID number or " +

QUIT + " to quit >> ");
idString = keyBoard.nextLine();

}
fc.close();

}
catch (Exception e)
{

System.out.println("Error message: " + e);
}

}
}

Figure 13-39 The ReadEmployeesRandomly class

Watch the video Random Access Data Files.

(continued)

Figure 13-40 Typical execution of the ReadEmployeesRandomly program

Reading Records from a Random Access Data File

707

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Reading Records from a Random Access Data File

1. When a file is created as a random access file, you also must read it randomly.

2. The benefit of using a random access file is the ability to retrieve a specific record
from a file directly, without reading through other records to locate the desired one.

3. When you access a record from a random access file, you usually calculate its
position based on a key.

. yl modnar r o yll ai t neuqes elif eht ssecor p nac uoY. eno sa desu eb ot sahti nae mt on
seod elif ssecca modnar a sa det aer c si elif a esuacebt suJ. 1#si t ne met at s esl af ehT

You Do It

Creating Multiple Random Access Files

In this section, you write a class that prompts the user for customer data and assigns
the data to one of two files depending on the customer’s state of residence. This
program assumes that Wisconsin (WI) records are assigned to an in-state file and
that all other records are assigned to an out-of-state file. First you will create empty
files to store the records, and then you will write the code that places each record
in the correct file.

1. Open a new file, and type the following required import statements:
import java.nio.file.*;
import java.io.*;
import java.nio.channels.FileChannel;
import java.nio.ByteBuffer;
import static java.nio.file.StandardOpenOption.*;
import java.util.Scanner;
import java.text.*;

2. Enter the beginning lines of the program, which include a Scanner class
object to accept user input:
public class CreateFilesBasedOnState
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);

(continues)

C H A P T E R 1 3 File Input and Output

708

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. This program uses two Path objects to hold records for in-state and out-of-state
customers. You can use a different String value for your Paths based on your
System and the location where you want to save your files.
Path inStateFile =

Paths.get("C:\\Java\\Chapter.13\\InStateCusts.txt");
Path outOfStateFile =

Paths.get("C:\\Java\\Chapter.13\\OutOfStateCusts.txt");

4. Build a String that can be used to format the empty files that are created
before any actual customer data is written. Include constants for the format of
the account number (three digits), the customer name (10 spaces), the
customer’s state, and the customer’s balance (up to 9999.99). After defining
the field delimiter (a comma), you can build a generic customer string by
assembling the pieces. The record size is then calculated from the dummy
record. A consistent record size is important so it can be used to calculate a
record’s position when the files are accessed randomly.
final String ID_FORMAT = "000";
final String NAME_FORMAT = " ";
final int NAME_LENGTH = NAME_FORMAT.length();
final String HOME_STATE = "WI";
final String BALANCE_FORMAT = "0000.00";
String delimiter = ",";
String s = ID_FORMAT + delimiter + NAME_FORMAT +

delimiter + HOME_STATE + delimiter + BALANCE_FORMAT +
System.getProperty("line.separator");

final int RECSIZE = s.length();

5. The last declarations are for two FileChannel references; String and integer
representations of the customer’s account number; the customer’s name, state,
and balance fields; and a QUIT constant that identifies the end of data entry.
FileChannel fcIn = null;
FileChannel fcOut = null;
String idString;
int id;
String name;
String state;
double balance;
final String QUIT = "999";

6. Next, you call a method that creates the empty files into which the randomly
placed data records can eventually be written. The method accepts the Path

for a file and the String that defines the record format.
createEmptyFile(inStateFile, s);
createEmptyFile(outOfStateFile, s);

(continued)

(continues)

Reading Records from a Random Access Data File

709

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Add closing curly braces for the main() method and the class. Then save the
file as CreateFilesBasedOnState.java, compile it, and correct any syntax
errors before proceeding.

Writing a Method to Create an Empty File

In this section, you write the method that creates empty files using the default record
format string. The method will create 1,000 records with an account number of 000.

1. Just before the closing curly brace of the CreateFilesBasedOnState class,
insert the header and opening brace for a method that will create an empty
file to hold random access records. The method accepts a Path argument
and the default record String.
public static void createEmptyFile(Path file, String s)
{

2. Define a constant for the number of records to be written:
final int NUMRECS = 1000;

3. In a try block, declare a new OutputStream using the method’s Path

parameter. Then create a BufferedWriter using the OutputStream.
try
{

OutputStream outputStr = new
BufferedOutputStream(Files.newOutputStream(file,CREATE));

BufferedWriter writer = new BufferedWriter(new
OutputStreamWriter(outputStr));

4. Use a for loop to write 1,000 default records using the parameter String.
Then close the BufferedWriter, and add a closing brace for the try block.

for(int count = 0; count < NUMRECS; ++count)
writer.write(s, 0, s.length());

writer.close();
}

5. Add a catch block to handle any Exception thrown from the try block, and
add a closing curly brace for the method.

catch(Exception e)
{

System.out.println("Error message: " + e);
}

}

6. Save the file and compile it. Correct any errors.

(continued)

(continues)

C H A P T E R 1 3 File Input and Output

710

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Adding Data-Entry Capability to the Program

In these steps, you add the code that accepts data from the keyboard and writes it to
the correct location (based on the customer’s account number) within the correct file
(based on the customer’s state).

1. After the calls to the createEmptyFile() method, but before the method
header, start a try block that will handle all the data entry and file writing for
customer records:
try
{

2. Set up the FileChannel references for both the in-state and out-of-state files.
fcIn = (FileChannel)Files.newByteChannel(inStateFile, CREATE, WRITE);
fcOut=(FileChannel)Files.newByteChannel(outOfStateFile,CREATE,WRITE);

3. Prompt the user for a customer account number, and accept it from the
keyboard. Then start a loop that will continue as long as the user does not
enter the QUIT value. Next, convert the entered account number to an integer
so it can be used to calculate the file position for the entered record. In a
full-blown application, you would add code to ensure that the account number
is three digits, but to keep this example shorter, this program assumes that
the user will enter valid account numbers.
System.out.print("Enter customer account number >> ");
idString = input.nextLine();
while(!(idString.equals(QUIT)))
{

id = Integer.parseInt(idString);

4. Prompt the user for and accept the customer’s name. To ensure that entered
names are stored using a uniform length, assign the name to a StringBuilder

object, and set the length to the standard length. Then assign the newly
sized StringBuilder back to the String.
System.out.print("Enter name for customer >> ");
name = input.nextLine();
StringBuilder sb = new StringBuilder(name);
sb.setLength(NAME_LENGTH);
name = sb.toString();

5. Prompt the user for and accept the customer’s state of residence. (In a fully
developed program, you would check the entered state against a list of valid
states, but this step is omitted to keep the program shorter.)
System.out.print("Enter state >> ");
state = input.nextLine();

(continued)

(continues)

Reading Records from a Random Access Data File

711

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Prompt the user for and accept the customer’s balance. Because you use the
nextDouble() method to retrieve the balance, you follow it with a call to
nextLine() to absorb the Enter key value left in the input stream. Then you
can use the DecimalFormat class to ensure that the balance meets the format
requirements of the file. Because the BALANCE_FORMAT String’s value is
0000.00, zeros will be added to the front or back of any double that would not
otherwise meet the standard. For example, 200.99 will be stored as 0200.99
and 0.1 will be stored as 0000.10. Appendix C contains more information on
the DecimalFormat class and describes other potential formats.
System.out.print("Enter balance >> ");
balance = input.nextDouble();
input.nextLine();
DecimalFormat df = new DecimalFormat(BALANCE_FORMAT);

7. Construct the String to be written to the file by concatenating the entered
fields with the comma delimiter and the line separator.
s = idString + delimiter + name + delimiter +

state + delimiter + df.format(balance) +
System.getProperty("line.separator");

8. Convert the constructed String to an array of bytes, and wrap the array into
a ByteBuffer.
byte data[] = s.getBytes();
ByteBuffer buffer = ByteBuffer.wrap(data);

9. Depending on the customer’s state, use the in-state or out-of-state
FileChannel. Position the file pointer to start writing a record in the
correct position based on the account number, and write the data String.
if(state.equals(HOME_STATE))
{

fcIn.position(id * RECSIZE);
fcIn.write(buffer);

}
else
{

fcOut.position(id * RECSIZE);
fcOut.write(buffer);

}

10. Prompt the user for the next customer account number, and add a closing
curly brace for the while loop.

System.out.print("Enter next customer account number or " +
QUIT + " to quit >> ");

idString = input.nextLine();
}

(continued)

(continues)

C H A P T E R 1 3 File Input and Output

712

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11. Close the FileChannels, and add a closing curly brace for the class.
fcIn.close();
fcOut.close();

}

12. Add a catch block that can handle any exceptions thrown from the try block
you started in the first step of this section.
catch (Exception e)
{

System.out.println("Error message: " + e);
}

13. Save the file, and compile it. Execute the program, and enter several records.
Make sure to include names that are longer and shorter than 10 characters
and to include a variety of balance values. Figure 13-41 shows a typical
execution.

(continued)

Figure 13-41 Typical execution of the CreateFilesBasedOnState program

(continues)

Reading Records from a Random Access Data File

713

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14. Locate and open the InStateCusts.txt and OutOfStateCusts.txt files. Scroll
through the files until you find the records you created. Figure 13-42 shows part
of both files that contains the records added using the execution in Figure 13-41.
Confirm that each record is placed in the correct file location, that each name and
balance is in the correct format, and that the records with a state value of “WI”
are placed in one file while all the other records are placed in the other file.

Setting Up a Program to Read the Created Files

Now, you can write a program that can use either of the files you just created.
The program has four parts:

The program will prompt the user to enter the filename to be used and set up all
necessary variables and constants.

A few statistics about the file will be displayed.

The nondefault contents of the file will be displayed sequentially.

A selected record from the file will be accessed directly.

1. Open a new file. Enter all the required import statements and the class header
for the ReadStateFile application.
import java.nio.file.*;
import java.io.*;
import java.nio.file.attribute.*;
import static java.nio.file.StandardOpenOption.*;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
import java.util.Scanner;
public class ReadStateFile
{

(continued)

Figure 13-42 Part of the contents of the files created by the program execution in Figure 13-41

(continues)

C H A P T E R 1 3 File Input and Output

714

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Start a main() method in which you declare a Scanner object to handle
keyboard input. Then declare a String that will hold the name of the file the
program will use. Prompt the user for the filename, concatenate it with the
correct path, and create a Path object.
public static void main(String[] args)
{

Scanner kb = new Scanner(System.in);
String fileName;
System.out.print("Enter name of file to use >> ");
fileName = kb.nextLine();
fileName = "C:\\Java\\Chapter.13\\" + fileName;
Path file = Paths.get(fileName);

3. Add the String formatting constants and build a sample record String so
that you can determine the record size. To save time, you can copy these
declarations from the CreateFilesBasedOnState program.
final String ID_FORMAT = "000";
final String NAME_FORMAT = " ";
final int NAME_LENGTH = NAME_FORMAT.length();
final String HOME_STATE = "WI";
final String BALANCE_FORMAT = "0000.00";
String delimiter = ",";
String s = ID_FORMAT + delimiter + NAME_FORMAT + delimiter +

HOME_STATE + delimiter + BALANCE_FORMAT +
System.getProperty("line.separator");

final int RECSIZE = s.length();

4. The last set of declarations includes a byte array that you will use with a
ByteBuffer later in the program, a String that represents the account
number in an empty account, and an array of strings that can hold the pieces
of a split record after it is read from the input file. Add a variable for the
numeric customer balance, which will be converted from the String stored in
the file. Also, declare a total and initialize it to 0 so the total customer balance
due value can be accumulated.
byte data[] = s.getBytes();
final String EMPTY_ACCT = "000";
String[] array = new String[4];
double balance;
double total = 0;

5. Add two closing curly braces for the method and the class. Save the file as
ReadStateFile.java. Compile the file and correct any errors.

(continued)

(continues)

Reading Records from a Random Access Data File

715

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Displaying File Statistics

In the next section of the program, you display the creation time and size of the file.

1. Just before the two closing curly braces you just added to the program, insert
a try block in which you declare a BasicFileAttributes object. Then add
statements to display the file’s creation time and size. Include a catch block
to handle any thrown exceptions.
try
{

BasicFileAttributes attr =
Files.readAttributes(file, BasicFileAttributes.class);

System.out.println("\nAttributes of the file:");
System.out.println("Creation time " + attr.creationTime());
System.out.println("Size " + attr.size());

}
catch(IOException e)
{

System.out.println("IO Exception");
}

2. Save the file, then compile and execute it. When prompted, you can type the
name of either the InStateCusts.txt file or the OutOfStateCusts.txt file.
Figure 13-43 shows a typical execution.

Reading a File Sequentially and Randomly

In these steps, you first display all the entered records in a file sequentially, and then
you display one record that is accessed randomly.

1. Start a new try…catch pair after the first one ends, but before the two closing
curly braces in the program. Declare an InputStream and BufferedReader to
handle reading the file.

(continued)

Figure 13-43 Typical execution of the ReadStateFile program

(continues)

C H A P T E R 1 3 File Input and Output

716

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

try
{

InputStream iStream = new
BufferedInputStream(Files.newInputStream(file));

BufferedReader reader = new
BufferedReader(new InputStreamReader(iStream));

2. Display a heading, and then read the first record from the file into a String.
System.out.println("\nAll non-default records:\n");
s = reader.readLine();

3. In a loop that continues while there is more data to read, split the String

using the comma delimiter. Test the first split element, the account number,
and proceed only if it is not “000”. If the record was entered in the previous
program, display the split String elements. Add the balance to a running
total. As the last action in the loop, read the next record.
while(s != null)
{

array = s.split(delimiter);
if(!array[0].equals(EMPTY_ACCT))
{

balance = Double.parseDouble(array[3]);
System.out.println("ID #" + array[0] + " " +

array[1] + array[2] + " $" + array[3]);
total += balance;

}
s = reader.readLine();

}

4. After all the records have been processed, display the total and close the
reader. Add a closing curly brace for the try block.

System.out.println("Total of all balances is $" + total);
reader.close();

}

5. Create a catch block to handle any thrown exceptions.
catch(Exception e)
{

System.out.println("Message: " + e);
}

6. After the closing brace of the last catch block, but before the two final closing
braces in the class, add a new try block that declares a FileChannel and
ByteBuffer and then prompts the user for and accepts an account to search
for in the file.

(continued)

(continues)

Reading Records from a Random Access Data File

717

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

try
{

FileChannel fc = (FileChannel)Files.newByteChannel(file, READ);
ByteBuffer buffer = ByteBuffer.wrap(data);
int findAcct;
System.out.print("\nEnter account to seek >> ");
findAcct = kb.nextInt();

7. Calculate the position of the desired record in the file by multiplying the record
number by the file size. Read the selected record into the ByteBuffer, and
convert the associated byte array to a String that you can display. Add a
closing curly brace for the try block.

fc.position(findAcct * RECSIZE);
fc.read(buffer);
s = new String(data);
System.out.println("Desired record: " + s);

}

8. Add a catch block to handle any exceptions.
catch(Exception e)
{

System.out.println("Message: " + e);
}

9. Save the file, and then compile and execute it. Figure 13-44 shows a typical
execution. First, the file attributes are displayed, then all the records are
displayed, and then a record selected by the user is displayed.

(continued)

Figure 13-44 Typical execution of the ReadStateFile program
after code has been completed

C H A P T E R 1 3 File Input and Output

718

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It
Don’t forget that a Path name might be relative and that you might need to make the Path
absolute before accessing it.

Don’t forget that the backslash character starts the escape sequence in Java, so you must
use two backslashes in a string that describes a Path in the DOS operating system.

Key Terms
Volatile storage is temporary storage that is lost when a computer loses power.

Random access memory (RAM) is the temporary storage within a computer.

Nonvolatile storage is permanent storage; it is not lost when a computer loses power.

A computer file is a collection of data stored on a nonvolatile device in a computer system.

Permanent storage devices, such as hard disks, Zip disks, USB drives, reels or cassettes of
magnetic tape, and compact discs, are nonvolatile and hold files.

Text files contain data that can be read in a text editor because the data has been encoded
using a scheme such as ASCII or Unicode.

Data files contain facts and figures, such as a payroll file that contains employee numbers,
names, and salaries.

Program files or application files store software instructions.

Binary files contain data that has not been encoded as text; their contents are in binary
format.

The root directory of a storage device is the main directory.

Folders or directories are used to organize stored files.

A path is the complete list of the disk drive plus the hierarchy of directories in which a file
resides.

A path delimiter is the character used to separate path components.

Factory methods are methods that assist in object creation.

An absolute path is a complete path; it does not need any other information to locate a file on
a system.

A relative path is one that depends on other path information.

Java’s static import feature allows you to use static constants without their class name.

Key Terms

719

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A TOCTTOU bug is an error that occurs when changes take place from Time Of Check To
Time Of Use.

A character can be any letter, number, or other special symbol (such as a punctuation mark)
that comprises data.

A field is a group of characters that has some meaning.

A record is a collection of fields that contain data about an entity.

A sequential access file is a file that contains records that are accessed one after another in
the order in which they were stored.

Comma-separated values (CSV) are fields that are separated by a comma.

To open a file is to create an object and associate a stream of bytes with it.

To close the file is to make it no longer available to an application.

A stream is a data pipeline or channel.

Flushing clears any bytes that have been sent to a buffer for output but that have not yet been
output to a hardware device.

Batch processing involves performing the same tasks with many records, one after the other.

Real-time applications require that a record be accessed immediately while a client is waiting.

An interactive program is a program in which a user makes direct requests.

Random access files are files in which records can be retrieved directly in any order.

Direct access files and instant access files are alternate names for random access files.

A file channel object is an avenue for reading and writing a file.

Seekable describes a file channel in which you can search for a specific file location and in
which operations can start at any specified position.

To be wrapped is to be encompassed in another type.

A key field is the field in a record that makes the record unique from all others.

Chapter Summary
Data items can be stored on two broad types of storage devices—temporary, volatile
storage, or permanent, nonvolatile storage. A computer file is a collection of data stored
on a nonvolatile device. Files can be text files or binary files, but all files share
characteristics, such as a size, name, and time of creation.

Java’s Path class is used to gather file information, such as its location, size, and creation
date. You can use the Files class to perform operations on files and directories, such as
deleting them, determining their attributes, and creating input and output streams.

C H A P T E R 1 3 File Input and Output

720

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Businesses organize data in a hierarchy of character, field, record, and file. When a
program performs input and output operations, bytes flow into a program stream, which
functions as a pipeline or channel. A buffer is a memory location where bytes are held
after they are logically output but before they are sent to the output device. Using a buffer
to accumulate input or output improves program performance. Flushing clears any bytes
that have been sent to a buffer for output but that have not yet been output to a hardware
device.

InputStream, OutputStream, and Reader are subclasses of the Object class that are used
for input and output. Output devices can be assigned to OutputStream references,
allowing applications to save data to them. You can create a file and write to it by using the
Files class newOutputStream() method. To open a file for reading, you can use the
newInputStream() method.

The BufferedWriter class contains write() methods that are used to create data files.
Files can be read using the BufferedReader class. The String class split() method
accepts an argument that identifies a field delimiter and returns an array of Strings in
which each array element holds one field.

Businesses store data in sequential order when they use the records for batch processing.
Real-time applications require interactive processing with random access files. Java’s
FileChannel class creates random access files. A file channel is seekable, meaning you can
search for a specific file location and operations can start at any specified position.

One approach to writing a random file is to place records into the file based on a key field
that makes a record unique from all others. The first step in creating the random access
file is to create a file that holds default records. Then you can replace any default record
with actual data by setting the file channel position.

You can process a random access file either sequentially or randomly. The benefit of using
a random access file is the ability to retrieve a specific record from a file directly, without
reading through other records to locate the desired one.

Review Questions
1. Which of the following statements is true?

a. Volatile storage lasts only a few seconds.
b. Volatile storage is lost when a computer loses power.
c. Computer disks are volatile storage devices.
d. All of the above are true.

2. A collection of data stored on a nonvolatile device in a computer
system is .

a. a file
b. an application

c. volatile
d. a type of binary file

Review Questions

721

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. A complete list of the disk drive plus the hierarchy of directories in which a file
resides is its .

a. directory
b. folder

c. delimiter
d. path

4. Which of the following statements creates a Path named p to a FileStream named f?

a. Path p = new Path("C:\\Java\\MyFile.txt");

b. Path p = f("C:\\Java\\MyFile.txt");

c. Path p = f.getPath("C:\\Java\\MyFile.txt");

d. Path p = getPath(new f("C:\\Java\\MyFile.txt"));

5. A path that needs no additional information to locate a file is .

a. an absolute path
b. a relative path

c. a final path
d. a constant path

6. The Path class getFileName() method returns .

a. the String representation of a Path

b. an absolute Path

c. the first item in a Path’s list of name elements
d. the last item in a Path’s list of name elements

7. Which of the following statements always returns the same value as
Files.exists(file)?

a. file.checkAccess()

b. file.checkAccess(EXISTS)

c. file.checkAccess(READ, WRITE)

d. file.checkAccess(file.exists())

8. You cannot delete a Path .

a. under any circumstances
b. if it represents a directory
c. if it represents a directory that is not empty
d. if it represents more than five levels

9. The data hierarchy occurs in the following order from the smallest to largest piece of
data: .

a. character, field, record, file
b. character, file, record, field

c. character, record, field, file
d. record, character, field, file

10. When records are accessed one after the other in the order in which they were
stored, their file is being used as a access file.

a. random
b. binary

c. chronological
d. sequential

C H A P T E R 1 3 File Input and Output

722

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11. If you fail to close an output file, .

a. there are usually no serious consequences
b. you might lose access to the written data
c. Java will close it for you automatically
d. Two of the above are correct.

12. Which of the following is true of streams?

a. Streams are channels through which bytes flow.
b. Streams always flow in two directions.
c. Only one stream can be open in a program at a time.
d. All of the above are true.

13. A buffer .

a. holds bytes that are scheduled for input or output
b. deteriorates program performance
c. cannot be flushed in Java
d. All of the above are true.

14. InputStream is .

a. a child of OutputStream
b. an abstract class
c. used for screen output as opposed to file output
d. All of the above are true.

15. Java’s print() and println() methods are defined in the class.

a. BufferedOutputStream

b. System

c. PrintStream

d. Print

16. The newOutputStream() method .

a. is defined in the Files class
b. creates a file if it does not already exist
c. opens a file for writing
d. All of the above are true.

17. Which of the following does the same thing as the BufferedWriter class
newLine() method?

a. System.getProperty("line.separator ")

b. Path.getProperty("line.separator ")

c. System.out.println()

d. System.out.print("\n")

Review Questions

723

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

18. Which of the following systems is most likely to use batch processing?

a. an airline reservation system
b. payroll

c. point-of-sale credit checking
d. an e-mail application

19. Real-time applications .

a. use sequential access files
b. use batch processing

c. use random access files
d. seldom are interactive

20. A file channel .

a. can be read from
b. can be written to

c. is seekable
d. All of the above are true.

Exercises

Programming Exercises

1. Create a file using any word-processing program or text editor. Write an application
that displays the file’s name, containing folder, size, and time of last modification.
Save the file as FileStatistics.java.

2. Create three files of any type you choose—for example, word-processing documents,
spreadsheets, or pictures. Write an application that determines whether the first two
files are located in the same folder as the third one. Test the program when the files are
in the same folder and when they are not. Save the file as CompareFolders.java.

3. Create a file that contains your favorite song lyric. Use a text editor such as Notepad,
and save the file. Copy the file contents, and paste them into a word-processing
program such as Word. Write an application that displays the sizes of the two files as
well as the ratio of their sizes to each other. Save the file as FileSizeComparison.java.

4. Write an application that determines which, if any, of the following files are
stored in the folder where you have saved the exercises created in this chapter:
autoexec.bat, CompareFolders.java, FileStatistics.class, and Hello.doc. Save the file
as FindSelectedFiles.java.

5. a. Create a program that allows a user to input customer records (ID number, first
name, last name, and balance owed) and save each record to a file. Save the
program as WriteCustomerList.java. When you execute the program, be sure to
enter multiple records that have the same last name because you will search for
repeated first names in part d of this exercise.

b. Write an application that reads the file created by the WriteCustomerList
application and displays the records. Save the file as
DisplaySavedCustomerList.java.

C H A P T E R 1 3 File Input and Output

724

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

c. Write an application that allows you to enter any ID number, reads the customer
data file created in Exercise 5a, and displays the data for the customer. Display an
appropriate message if the ID number cannot be found in the input file. Save the file
as DisplaySelectedCustomer.java.

d. Write an application that allows you to enter any last name and displays all
the data for customers with the given last name. Display an appropriate message
if the name cannot be found in the input file. Save the file as
DisplaySelectedCustomersByName.java.

e. Write an application that allows you to enter any purchase amount and displays
all the data for customers with balances greater than the entered value. Display
an appropriate message if no customers meet the criteria. Save the file as
DisplaySelectedCustomersByBalance.java.

6. Using a text editor, create a file that contains a list of at least 10 six-digit account
numbers. Read in each account number and display whether it is valid. An account
number is valid only if the last digit is equal to the sum of the first five digits
divided by 10. For example, the number 223355 is valid because the sum of the first
five digits is 15, the remainder when 15 is divided by 10 is 5, and the last digit is 5.
Write only valid account numbers to an output file, each on its own line. Save the
application as ValidateCheckDigits.java.

7. a. Write an application that allows a user to enter a filename and an integer
representing a file position. Assume that the file is in the same folder as your
executing program. Access the requested position within the file, and display
the next 20 characters there. Save the file as SeekPosition.java.

b. Modify the SeekPosition application so that instead of displaying 20 characters,
the user enters the number of characters to display, beginning with the requested
position. Save the file as SeekPosition2.java.

8. a. Create an application that allows you to enter student data that consists of an ID
number, first name, last name, and grade point average. Depending on whether
the student’s grade point average is at least 2.0, output each record either to a file
of students in good standing or those on academic probation. Save the program as
StudentsStanding.java.

b. Create an application that displays each record in the two files created in the
StudentsStanding application in Exercise 8a. Display a heading to introduce the list
produced from each file. For each record, display the ID number, first name, last
name, grade point average, and the amount by which the grade point average exceeds
or falls short of the 2.0 cutoff. Save the program as StudentsStanding2.java.

9. a. The Rochester Bank maintains customer records in a random access file. Write
an application that creates 10,000 blank records and then allows the user to enter
customer account information, including an account number that is 9999 or less,
a last name, and a balance. Insert each new record into a data file at a location that
is equal to the account number. Assume that the user will not enter invalid
account numbers. Force each name to eight characters, padding it with spaces

Exercises

725

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

or truncating it if necessary. Also assume that the user will not enter a bank
balance greater than 99,000.00. Save the file as CreateBankFile.java.

b. Create an application that uses the file created by the user in Exercise 9a
and displays all existing accounts in account-number order. Save the file as
ReadBankAccountsSequentially.java.

c. Create an application that uses the file created by the user in Exercise 9a and
allows the user to enter an account number to view the account balance. Allow the
user to view additional account balances until entering an application-terminating
value. Save the file as ReadBankAccountsRandomly.java.

10. a. Write a program that allows you to create a file of customers for a company.
The first part of the program should create an empty file suitable for writing a
three-digit ID number, six-character last name, and five-digit zip code for each
customer. The second half of the program accepts user input to populate the file.
For this exercise, assume that the user will correctly enter ID numbers and zip
codes, but force the customer name to seven characters if it is too long or too
short. Issue an error message, and do not save the records if the user tries to save
a record with an ID number that has already been used. Save the program as
CreateCustomerFile.java.

b. Write a program that creates a file of items carried by the company. Include a
three-digit item number and up to a 20-character description for each item.
Issue an error message if the user tries to store an item number that has already
been used. Save the program as CreateItemFile.java.

c. Write an application that takes customer orders. Allow a user to enter a
customer number and item ordered. Display an error message if the customer
number does not exist in the customer file or the item does not exist in the item
file; otherwise, display all the customer information and item information. Save
the program as CustomerItemOrder.java.

Debugging Exercises
1. Each of the following files in the Chapter13 folder of your downloadable

student files has syntax and/or logic errors. In each case, determine the problem
and fix the program. After you correct the errors, save each file using the same
filename preceded with Fix. For example, DebugThirteen1.java will become
FixDebugThirteen1.java.

a. DebugThirteen1.java
b. DebugThirteen2.java

c. DebugThirteen3.java
d. DebugThirteen4.java

The Chapter13 folder contains four additional data files named DebugData1.txt,
DebugData2.txt, DebugData3.txt, and DebugData4.txt. These files are used by the
Debug programs.

C H A P T E R 1 3 File Input and Output

726

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Game Zone
1. In several Game Zone assignments earlier in this book, you created games similar to

Hangman in which the user guesses a secret phrase by selecting a series of letters.
These versions had limited appeal because each contained only a few possible
phrases to guess; after playing the games a few times, the user would have mem-
orized all the phrases. Now create a version in which any number of secret phrases
can be saved to a file before the game is played. Use a text editor such as Notepad to
type any number of phrases into a file, one per line. Save the file as Phrases.txt.
Then, create a game that randomly selects a phrase from the file and allows a user to
guess the phrase letter by letter. Save the game as SecretPhraseUsingFile.java.

2. In Chapter 8, you created a game named Quiz in which the user could respond to
multiple-choice questions. Modify the game so that it stores the player’s highest
score from any previous game in a file and displays the high score at the start of each
new game. (The first time you play the game, the high score is 0.) Save the game as
QuizUsingFile.java.

3. Use a text editor to create a comma-delimited file of user IDs and passwords. Revise
any one of the games you have created throughout this book so the user must first
enter a correct ID and its associated password before playing. Save the program as
GameWithPassword.java.

Case Problems
1. a. In Chapter 12, you created an interactive StaffDinnerEvent class that obtains

all the data for a dinner event for Carly’s Catering, including details about the
event and all the staff members required to work at the event. Now, modify the
program to prompt the user for data for three dinner events and to create a data
file that contains each event number, event type code, number of guests, and
price. Save the program as StaffDinnerEventAndCreateFile.java.

b. Write a program that displays the data saved in the file created in part 1a.
Save the program as DisplayDinnerEventFile.java.

2. a. In Chapter 12, you created an interactive RentalDemo class that obtains all the
data for four rentals from Sammy’s Seashore Rentals, including details about
the contract number, length of the rental, and equipment type. Now, modify the
program to create a data file that contains each contract number, rental time in
hours and minutes, equipment type code and name, and price. Save the program
as RentalDemoAndCreateFile.java.

b. Write a program that displays the data saved in the file created in part 2a.
Save the program as DisplayRentalFile.java.

Exercises

727

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 14
Introduction to Swing
Components

In this chapter, you will:

Understand Swing components

Use the JFrame class

Use the JLabel class

Use a layout manager

Extend the JFrame class

Add JTextFields, JButtons, and tool tips to a JFrame

Learn about event-driven programming

Understand Swing event listeners

Use the JCheckBox, ButtonGroup, and JComboBox
classes

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Swing Components
Computer programs usually are more user friendly (and more fun to use) when they contain
graphical user interface (GUI) components. GUI components are buttons, text fields, and
other components with which the user can interact. Java contains two sets of prewritten GUI
components—the Abstract Windows Toolkit (AWT) and Swing. AWT components are older,
not as portable as Swing components, and do not have a consistent appearance when used
with different operating systems. This chapter focuses on Swing components because they are
now used more frequently in new program development. In the AWT, components have
simple names, such as Frame and Button. When Java’s creators designed new, improved
classes, they needed new names for the classes, so they used a J in front of each new class
name. Hence, Swing components have names like JFrame and JButton.

Swing components were named after a musical style that was popular in the 1940s. The name is meant to
imply that the components have style and pizzazz. You have already used the JOptionPane component
that is part of the Swing class. The Swing classes are part of a more general set of GUI programming
capabilities that are collectively called the Java Foundation Classes (JFC). JFC includes Swing
component classes and selected classes from the java.awt package.

GUI components are also called controls or widgets. Each Swing component is a descendant
of JComponent, which in turn inherits from the java.awt.Container class. You can insert the
statement import javax.swing.*; at the beginning of your Java program files so you can take
advantage of all the Swing GUI components and their methods. The x in javax originally
stood for extension, so named because the Swing classes were an extension of the original Java
language specifications.

Almost all Swing components are said to be lightweight components because they are written
completely in Java and do not have to rely on the local operating system code. This means the components
are not “weighed down” by having to interact with the operating system (for example, Windows or
Macintosh) in which the application is running. Some Swing components, such as JFrames, are known
as heavyweight components because they do require interaction with the local operating system.
A lightweight component reuses the native (original) window of its closest heavyweight ancestor; a
heavyweight component has its own opaque native window. The only heavyweight components used in
Swing are swing.JFrame, swing.JDialog, swing.JWindow, swing.JApplet,
awt.Component, awt.Container, and awt.JComponent.

When you use Swing components, you usually place them in containers. A container is a type
of component that holds other components so you can treat a group of them as a single
entity. Containers are defined in the Container class. Often, a container takes the form of
a window that you can drag, resize, minimize, restore, and close.

As you know from reading about inheritance in Chapters 10 and 11, all Java classes descend
from the Object class. The Component class is a child of the Object class, and the Container
class is a child of the Component class. Therefore, every Container object “is a” Component,
and every Component object (including every Container) “is an” Object.

The Container class is also a parent class, and the Window class is a child of Container.
A window is a rectangular container that can hold GUI controls. However, Java programmers

C H A P T E R 1 4 Introduction to Swing Components

730

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

often prefer to create a frame instead of a window. A frame is a window that has a
title bar and border. In Java, Frame is a child of Window, and JFrame is the Swing object
that is a child of Frame.

TWO TRUTHS & A LIE

Understanding Swing Components

1. Swing components are elements such as buttons; you can usually recognize
their names because they contain the word Swing.

2. Each Swing component is a descendant of JComponent, which in turn inherits
from the java.awt.Container class.

3. You insert the import statement import javax.swing.*; at the beginning of
your Java program files so you can use Swing components.

. J hti wni geb yeht esuaceb
se mant nenop moc gniwS ezi ngocer yll ausu nac uoY. 1# si t ne met at s esl af ehT

Using the JFrame Class
You usually create a JFrame so that you can place other objects within it for display.
Figure 14-1 shows the JFrame’s inheritance tree. Recall that the Object class is defined in the
java.lang package, which is imported automatically every time you write a Java program.
However, Object’s descendants (shown in Figure 14-1) are not automatically imported.

The JFrame class has four constructors:

JFrame() constructs a new frame that initially is invisible and has no title.

JFrame(String title) creates a new, initially invisible JFrame with the specified title.

JFrame(GraphicsConfiguration gc) creates a JFrame in the specified
GraphicsConfiguration of a screen device with a blank title. (You will learn about the
GraphicsConfiguration class as you continue to study Java.)

Figure 14-1 Relationship of the JFrame class to its ancestors

Using the JFrame Class

731

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

JFrame(String title, GraphicsConfiguration gc) creates a JFrame with the specified
title and the specified GraphicsConfiguration of a screen.

You can construct a JFrame as you do other objects, using the class name, an identifier, the
assignment operator, the new operator, and a constructor call. For example, the following two
statements construct two JFrames: one with the title Hello and another with no title:
JFrame firstFrame = new JFrame("Hello");
JFrame secondFrame = new JFrame();

After you create a JFrame object, you can use the now-familiar object-dot-method format you
have used with other objects to call methods that manipulate a JFrame’s features. Table 14-1
describes some useful JFrame class methods.

The methods in Table 14-1 represent only a small portion of the available methods you can use with a
JFrame. Each of the methods listed in Table 14-1 is inherited from either JFrame’s Component or
Frame parent class. These classes contain many useful methods in addition to the few listed here. You
can read the documentation for all the methods at http://docs.oracle.com/javase/8/docs/api/.

Method Purpose

void setTitle(String) Sets a JFrame’s title using the String argument

void setSize(int, int) Sets a JFrame’s size in pixels with the width and height as
arguments

void setSize(Dimension) Sets a JFrame’s size using a Dimension class object; the
Dimension(int, int) constructor creates an object that
represents both a width and a height

String getTitle() Returns a JFrame’s title

void setResizable(boolean) Sets the JFrame to be resizable by passing true to the
method, or sets the JFrame not to be resizable by passing
false to the method

boolean isResizable() Returns true or false to indicate whether the JFrame is
resizable

void setVisible(boolean) Sets a JFrame to be visible using the boolean argument true
and invisible using the boolean argument false

void setBounds(int, int,

int, int)
Overrides the default behavior for the JFrame to be positioned
in the upper-left corner of the computer screen’s desktop; the
first two arguments are the horizontal and vertical positions of
the JFrame’s upper-left corner on the desktop, and the final two
arguments set the width and height

Table 14-1 Useful methods inherited by the JFrame class

C H A P T E R 1 4 Introduction to Swing Components

732

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 14-2 shows a program that declares a JFrame named aFrame, sets its size to 250 pixels
horizontally by 100 pixels vertically, and sets its title to display a String. Pixels are the picture
elements, or tiny dots of light, that make up the image on your computer monitor.

When you set a JFrame’s size, you do not have the full area available to use because part of the area is
consumed by the JFrame’s title bar and borders.

import javax.swing.*;
public class JFrame1
{

public static void main(String[] args)
{

JFrame aFrame = new JFrame("First frame");
aFrame.setSize(250, 100);
aFrame.setVisible(true);

}
}

Figure 14-2 The JFrame1 application

The application in Figure 14-2 produces the JFrame shown in Figure 14-3. It resembles
frames that you have probably seen when using GUI programs. One reason to use similar
frame objects in your own programs is that users are already familiar with the frame
environment. When users see frames on their computer screens, they expect to see a title
bar at the top containing text information (such as “First frame”). Users also expect to see
Minimize, Maximize or Restore, and Close buttons in the frame’s upper-right corner. Most
users assume that they can change a frame’s size by dragging its border or reposition the
frame on their screen by dragging the frame’s title bar to a new location. The JFrame in
Figure 14-3 has all of these capabilities.

In the application in Figure 14-2, all three statements in the main() method are important. After
you instantiate the JFrame object, you will not see it if you do not use setVisible(true). If
you do not set its size, you see only the title bar of the JFrame because the JFrame size is
0 × 0 by default. It might seem unusual that the default state for a JFrame is invisible.
However, consider that you might want to construct a JFrame in the background while

Figure 14-3 Output of the JFrame1 application

Using the JFrame Class

733

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

other actions are occurring and that you might want to make it visible later, when
appropriate (for example, after the user has taken an action such as selecting an option).

When a user closes a JFrame by clicking the Close button in the upper-right corner, the
default behavior is for the JFrame to be hidden and for the application to keep running.
This makes sense when there are other tasks for the program to complete after the main
frame is closed—for example, displaying additional frames, closing open data files, or
printing an activity report. To change this behavior, you can call a JFrame’s
setDefaultCloseOperation() method and use one of the following four values as an
argument:

JFrame.EXIT_ON_CLOSE exits the program when the JFrame is closed.

WindowConstants.DISPOSE_ON_CLOSE closes the frame, disposes of the JFrame object, and
keeps running the application.

WindowConstants.DO_NOTHING_ON_CLOSE keeps the JFrame and continues running.
In other words, it disables the Close button.

WindowConstants.HIDE_ON_CLOSE closes the JFrame and continues running; this is the
default operation that you frequently want to override.

Each of the four usable setDefaultCloseOperation() arguments represents an integer; for
example, the value of JFrame.EXIT_ON_CLOSE is 3. However, it is easier to remember the constant
names than the numeric values they represent, and other programmers more easily understand your
intentions if you use the named constant identifier.

If you are testing an application and you want to end the program when the user closes a
JFrame, but you forget to change the default close operation, you can end the program by
typing Ctrl+C.

Customizing a JFrame’s Appearance
The appearance of the JFrame in Figure 14-3 is provided by the operating system in which the
program is running (in this case, Windows). For example, the coffee-cup icon in the frame’s
title bar and the Minimize, Restore, and Close buttons look and act as they do in other
Windows applications. The icon and buttons are known as window decorations; by default,
window decorations are supplied by the operating system. However, you can request that
Java’s look and feel provide the decorations for a frame. Look and feel comprises the elements
of design, style, and functionality in any user interface.

Optionally, you can set a JFrame’s look and feel using the setDefaultLookAndFeelDecorated()
method. For example, Figure 14-4 shows an application that calls this method.

C H A P T E R 1 4 Introduction to Swing Components

734

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
public class JFrame2
{

public static void main(String[] args)
{

JFrame.setDefaultLookAndFeelDecorated(true);
JFrame aFrame = new JFrame("Second frame");
aFrame.setSize(250, 100);
aFrame.setVisible(true);

}
}

Figure 14-4 The JFrame2 class

You can provide a custom icon for a frame instead of using your operating system’s default icon or the Java
look-and-feel icon. For details, go to the Java Web site and search for “How to Make Frames.”

The program in Figure 14-4 differs from Figure 14-2 only in the shaded areas, which show the
class name, the text in the title bar, and the look-and-feel statement. Figure 14-5 shows the
output. If you compare the frame in Figure 14-5 with the one in Figure 14-3, you can see that
Java’s look and feel has similar features to that of Windows, but their appearance is different.
Java’s look and feel is also known by the name Metal.

Look and feel is a legal issue because some software companies claim that competitors are infringing on
their copyright protection by copying the look and feel of their products.

Watch the video Using the JFrame class.

Figure 14-5 Output of the JFrame2 application

Using the JFrame Class

735

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using the JFrame Class

1. The JFrame class contains overloaded constructors; for example, you can
specify a title or not.

2. An advantage of using a JFrame is that it resembles traditional frames that
people are accustomed to using.

3. When a user closes a JFrame by clicking the Close button in the upper-right
corner, the default behavior is for the application to end.

. gni nnur peek ot noi t acil ppa eht r of dna neddi h eb ot
emarFJ eht r of si r oi vahebtl uaf ed eht ,r enr oct hgi r- r eppu eht ni nott ub

esol C eht gni kcil c yb emarFJ a sesol c r esu a neh W. 3# si t ne met at s esl af ehT

You Do It

Creating a JFrame

In this section, you create a JFrame object that appears on the screen.

1. Open a new file, and type the following statement to import the
javax.swing classes:
import javax.swing.*;

2. On the next lines, type the following class header for the JDemoFrame class, its
opening curly brace, the main() method header, and its opening curly brace:
public class JDemoFrame
{

public static void main(String[] args)
{

3. Within the body of the main() method, enter the following code to declare
a JFrame with a title, set its size, and make it visible. If you neglect to set
a JFrame’s size, you see only the title bar of the JFrame (because the size is
0 × 0 by default); if you neglect to make the JFrame visible, you do not see
anything. Add two closing curly braces—one for the main() method and one
for the JDemoFrame class.

(continues)

C H A P T E R 1 4 Introduction to Swing Components

736

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

JFrame aFrame = new JFrame("This is a frame");
final int WIDTH = 250;
final int HEIGHT = 250;
aFrame.setSize(WIDTH, HEIGHT);
aFrame.setVisible(true);

}
}

4. Save the file as JDemoFrame.java. Compile and then run the program. The
output looks like Figure 14-6—an empty JFrame with a title bar, a little taller
than it is wide. The JFrame has all the properties of frames you have seen in
applications you have used. For example, click the JFrame’s Minimize button,
and the JFrame minimizes to an icon on the Windows taskbar.

5. Click the JFrame’s icon on the taskbar. The JFrame returns to its previous size.

6. Click the JFrame’s Maximize button. The JFrame fills the screen.

7. Click the JFrame’s Restore button. The JFrame returns to its original size.

8. Position your mouse pointer on the JFrame’s title bar, and then drag the
JFrame to a new position on your screen.

9. Click the JFrame’s Close button. The JFrame disappears or hides. The default
behavior of a JFrame is simply to hide when the user clicks the Close button—
not to end the program.

(continued)

Figure 14-6 Output of the JDemoFrame application

(continues)

Using the JFrame Class

737

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. To end the program and return control to the command line, click the
Command Prompt window, and then press Ctrl+C. In Chapter 6, you
learned to press Ctrl+C to stop a program that contains an infinite loop. This
situation is similar—you want to stop a program that does not have a way to
end automatically.

Ending an Application When a JFrame Closes

Next, you modify the JDemoFrame program so that the application ends when the user
clicks the JDemoFrame Close button.

1. Within the JDemoFrame class file, change the class name to
JDemoFrameThatCloses.

2. Add a new line of code as the final executable statement within the main()

method, as follows:
aFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

3. Save the file as JDemoFrameThatCloses.java, and compile and execute
the application.

4. When the JFrame appears on your screen, confirm that it still has Minimize,
Maximize, and Restore capabilities. Then click the JFrame’s Close button. The
JFrame closes, and the command prompt returns as the program relinquishes
control to the operating system.

Using the JLabel Class
In a GUI environment, a label is an uneditable component that is most often used to provide
information for a user. (Editable describes a component that can accept keystrokes.) JLabel is
a built-in Java Swing class that allows you to create a label that you can display in a JFrame.
The inheritance hierarchy of the JLabel class is shown in Figure 14-7.

(continued)

Figure 14-7 The JLabel class inheritance hierarchy

C H A P T E R 1 4 Introduction to Swing Components

738

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Available constructors for the JLabel class include the following:

JLabel() creates a JLabel instance with no image and with an empty string for the title.

JLabel(Icon image) creates a JLabel instance with the specified image.

JLabel(Icon image, int horizontalAlignment) creates a JLabel instance with the
specified image and horizontal alignment.

JLabel(String text) creates a JLabel instance with the specified text.

JLabel(String text, Icon icon, int horizontalAlignment) creates a JLabel instance
with the specified text, image, and horizontal alignment.

JLabel(String text, int horizontalAlignment) creates a JLabel instance with the
specified text and horizontal alignment.

For example, you can create a JLabel named greeting that holds the words Good day by
writing the following statement:
JLabel greeting = new JLabel("Good day");

You then can add the greeting object to the JFrame object named aFrame using the
add() method as follows:
aFrame.add(greeting);

Figure 14-8 shows an application in which a JFrame is created and its size, visibility, and
close operation are set. Then a JLabel is created and added to the JFrame. Figure 14-9 shows
the output.

import javax.swing.*;
public class JFrame3
{

public static void main(String[] args)
{

final int FRAME_WIDTH = 250;
final int FRAME_HEIGHT = 100;
JFrame aFrame = new JFrame("Third frame");
aFrame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
aFrame.setVisible(true);
aFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JLabel greeting = new JLabel("Good day");
aFrame.add(greeting);

}
}

Figure 14-8 The JFrame3 class

Using the JLabel Class

739

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The counterpart to the add() method is the remove() method. The following statement
removes greeting from aFrame:
aFrame.remove(greeting);

If you add or remove a component from a container after it has been made visible, you should
also call the invalidate(), validate(), and repaint() methods, or else you will not see the
results of your actions. Each performs slightly different functions, but all three together
guarantee that the results of changes in your layout will take effect. The invalidate() and
validate() methods are part of the Container class, and the repaint() method is part of
the Component class.

If you add or remove a component in a JFrame during construction, you do not have to call repaint() if
you later alter the component—for example, by changing its text. You only need to call repaint() if you
add or remove a component after construction. You will learn more about the repaint() method in
the “Graphics” chapter.

You can change the text in a JLabel by using the Component class setText() method with
the JLabel object and passing a String to it. For example, the following code changes the
value displayed in the greeting JLabel:
greeting.setText("Howdy");

You can retrieve the text in a JLabel (or other Component) by using the getText() method,
which returns the currently stored String.

Changing a JLabel’s Font
You probably are not very impressed with the simple application displayed in Figure 14-9.
You might think that the string Good day is plain and lackluster. Fortunately, you can
change the font of strings displayed in GUI components. A font is the size, weight, and
style of a typeface, and Java provides you with a Font class from which you can create an
object that holds typeface and size information. The setFont() method requires a Font

object argument. To construct a Font object, you need three arguments: typeface, style, and
point size.

The typeface argument to the Font constructor is a String representing a font.
Common fonts have names such as Arial, Century, Monospaced, and Times New Roman.
The typeface argument in the Font constructor is only a request; the system on which

Figure 14-9 Output of the JFrame3 application

C H A P T E R 1 4 Introduction to Swing Components

740

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

your program runs might not have access to the requested font, and if necessary, it
substitutes a default font.

The style argument applies an attribute to displayed text and is one of three values:
Font.PLAIN, Font.BOLD, or Font.ITALIC.

The point size argument is an integer that represents about 1/72 of an inch. Printed text is
commonly 12 points; a headline might be 30 points.

In printing, point size defines a measurement between lines of text in a single-spaced text document. The
point size is based on typographic points, which are approximately 1/72 of an inch. Java adopts the
convention that one point on a display is equivalent to one unit in user coordinates. For more information, see
the Font documentation at the Java Web site.

To give a JLabel object a new font, you can create a Font object, as in the following:
Font headlineFont = new Font("Monospaced", Font.BOLD, 36);

The typeface name is a String, so you must enclose it in double quotation marks.

You can use the setFont() method to assign the Font to a JLabel with a statement such as:
greeting.setFont(headlineFont);

Figure 14-10 shows a class named JFrame4. All the changes from JFrame3 are shaded.

import javax.swing.*;
import java.awt.*;
public class JFrame4
{

public static void main(String[] args)
{

final int FRAME_WIDTH = 250;
final int FRAME_HEIGHT = 100;
Font headlineFont = new Font("Arial", Font.BOLD, 36);
JFrame aFrame = new JFrame("Fourth frame");
aFrame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
aFrame.setVisible(true);
aFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JLabel greeting = new JLabel("Good day");
greeting.setFont(headlineFont);
aFrame.add(greeting);

}
}

Figure 14-10 The JFrame4 program

The program in Figure 14-10 includes a new import statement for the package that contains
the Font class. The program contains a Font object named headlineFont that is applied to

Using the JLabel Class

741

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the greeting. Figure 14-11 shows the execution of the JFrame4 program; the greeting appears
in a 36-point, bold, Arial font.

You are not required to provide an identifier for a Font. For example, you could omit the
shaded statement that declares headlineFont in Figure 14-10 and set the greeting Font

with the following statement that uses an anonymous Font object:
greeting.setFont(new Font("Arial", Font.BOLD, 36));

After you create a Font object, you can create a new object with a different type and size using
the deriveFont() method with appropriate arguments. For example, the following two
statements create a headlineFont object and a textBodyFont object that is based on the
first object:
Font headlineFont = new Font("Arial", Font.BOLD, 36);
Font textBodyFont = headlineFont.deriveFont(Font.PLAIN, 14);

TWO TRUTHS & A LIE

Using the JLabel Class

1. JLabel is a built-in Java Swing class that holds text you can display.

2. You can change a JLabel’s text by using its JFrame’s name, a dot, and the
add() method, and then using the desired text as the argument to the method.

3. If you add or remove a component from a container after it has been made visible,
you should also call the validate() and repaint() methods, or else you will not
see the results of your actions.

. doht e meht ot t ne mugr a na sa e man s’ lebaLJ
eht gni su yb neht dna, doht e m)(dda eht dna,t od a, e man s’ emarFJ eht

gni su yb emarFJ a ot lebaLJ a dda uoY.t ne mugr a eht sat xet wen eht gni dul cni
, doht e m)(txeTtes eht gni sut xet s’ lebaLJ a egnahc uoY. 2# si t ne met at s esl af ehT

Figure 14-11 Output of the JFrame4 program

C H A P T E R 1 4 Introduction to Swing Components

742

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using a Layout Manager
When you want to add multiple components to a JFrame or other container, you usually need
to provide instructions for the layout of the components. For example, Figure 14-12 shows an
application in which two JLabels are created and added to a JFrame in the final shaded
statements.

import javax.swing.*;
import java.awt.*;
public class JFrame5
{

public static void main(String[] args)
{

final int FRAME_WIDTH = 250;
final int FRAME_HEIGHT = 100;
JFrame aFrame = new JFrame("Fifth frame");
aFrame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
aFrame.setVisible(true);
aFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JLabel greeting = new JLabel("Hello");
JLabel greeting2 = new JLabel("Who are you?");
aFrame.add(greeting);
aFrame.add(greeting2);

}
}

Figure 14-12 The JFrame5 program

Figure 14-13 shows the output of the application in Figure 14-12. Although two JLabels are
added to the frame, only the last one added is visible. The second JLabel has been placed
on top of the first one, totally obscuring it. If you continued to add more JLabels to the
program, only the last one added to the JFrame would be visible.

To place multiple components at specified positions in a container so they do not hide each
other, you must explicitly use a layout manager—an object that controls component
positioning. The normal (default) behavior of a JFrame is to use a border layout manager,
which divides a container into regions. The Java class that provides this type of layout is
named BorderLayout. When you use BorderLayout but do not specify a region in which

Figure 14-13 Output of the JFrame5 program

Using a Layout Manager

743

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

to place a component (as the JFrame5 program fails to do), all the components are placed in
the same region, and they obscure each other.

When you use a flow layout manager, components do not lie on top of each other. Instead,
the flow layout manager places components in rows; after any row is filled, additional
components automatically spill into the next row. The Java class that provides this type of
layout is FlowLayout.

Three constants are defined in the FlowLayout class that specify how components are
positioned in each row of their container. These constants are FlowLayout.LEFT,
FlowLayout.RIGHT, and FlowLayout.CENTER. For example, to create a layout manager
named flow that positions components to the right, you can use the following statement:
FlowLayout flow = new FlowLayout(FlowLayout.RIGHT);

If you do not specify how components are laid out, by default they are centered in each row.

Suppose that you create a FlowLayout object named flow as follows:
FlowLayout flow = new FlowLayout();

Then the layout of a JFrame named aFrame can be set to the newly created FlowLayout using
the statement:
aFrame.setLayout(flow);

A more compact syntax that uses an anonymous FlowLayout object is:
aFrame.setLayout(new FlowLayout());

Figure 14-14 shows an application in which the JFrame’s layout manager has been set so
that multiple components are visible.

import javax.swing.*;
import java.awt.*;
public class JFrame6
{

public static void main(String[] args)
{

final int FRAME_WIDTH = 250;
final int FRAME_HEIGHT = 100;
JFrame aFrame = new JFrame("Sixth frame");
aFrame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
aFrame.setVisible(true);
aFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JLabel greeting = new JLabel("Hello");
JLabel greeting2 = new JLabel("Who are you?");
aFrame.setLayout(new FlowLayout());
aFrame.add(greeting);
aFrame.add(greeting2);

}
}

Figure 14-14 The JFrame6 program

C H A P T E R 1 4 Introduction to Swing Components

744

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 14-15 shows the execution of the JFrame6 program. Because a FlowLayout is used, the
two JLabels appear side by side. If there were more JLabels or other components, they
would continue to be placed side by side across the JFrame until there was no more room.
Then, the additional components would be placed in a new row beneath the first row of
components.

Other layout managers allow you to position components in a container more precisely. You will learn about
these in the “Graphics” chapter. The examples in this chapter will use FlowLayout because it is the
easiest of the layout managers to use.

Watch the video Using a Layout Manager.

TWO TRUTHS & A LIE

Using a Layout Manager

1. If you do not provide a layout manager for a JFrame, you cannot add multiple
components to it.

2. The normal (default) behavior of a JFrame is to use a layout format named
BorderLayout.

3. The flow layout manager places components in a row, and when a row is filled, it
automatically spills components into the next row.

. el bi si v si eno
dedda yl t necer t so meht yl not ub,ti ot st nenop moc el pi tl u mdda nac uoy

, emarFJ a r of r egana mt uoyal a edi vor pt on od uoy fI . 1# si t ne met at s esl af ehT

Figure 14-15 Output of the JFrame6 program

Using a Layout Manager

745

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Extending the JFrame Class
You can instantiate a simple JFrame object within an application’s main() method or with any
other method of any class you write. Alternatively, you can create your own class that
descends from the JFrame class. The advantage of creating a child class of JFrame is that you
can set the JFrame’s properties within your object’s constructor; then, when you create
your JFrame child object, it is automatically endowed with the features you have specified,
such as title, size, and default close operation.

You already know that you create a child class by using the keyword extends in the class
header, followed by the parent class name. You also know that you can call the parent class’s
constructor using the keyword super, and that when you call super(), the call must be the
first statement in the constructor. For example, the JMyFrame class in Figure 14-16 extends
JFrame. Within the JMyFrame constructor, the super() JFrame constructor is called; it
accepts a String argument to use as the JFrame’s title. (Alternatively, the setTitle() method
could have been used.) The JMyFrame constructor also sets the size, visibility, and default
close operation for every JMyFrame. Each of the methods—setSize(), setVisible(), and
setDefaultCloseOperation()—appears in the constructor in Figure 14-16 without an
object, because the object is the current JMyFrame being constructed. Each of the three
methods could be preceded with a this reference with exactly the same meaning. That is,
within the JMyFrame constructor, the following two statements have identical meanings:
setSize(WIDTH, HEIGHT);
this.setSize(WIDTH, HEIGHT);

Each statement sets the size of “this” current JMyFrame instance.

import javax.swing.*;
public class JMyFrame extends JFrame
{

final int WIDTH = 200;
final int HEIGHT = 120;
public JMyFrame()
{

super("My frame");
setSize(WIDTH, HEIGHT);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

Figure 14-16 The JMyFrame class

Figure 14-17 shows an application that declares two JMyFrame objects. Each has the same set
of attributes, determined by the JMyFrame constructor.

C H A P T E R 1 4 Introduction to Swing Components

746

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class CreateTwoJMyFrameObjects
{

public static void main(String[] args)
{

JMyFrame myFrame = new JMyFrame();
JMyFrame mySecondFrame = new JMyFrame();

}
}

Figure 14-17 The CreateTwoJMyFrameObjects application

When you execute the application in Figure 14-17, the two JMyFrame objects are displayed
with the second one on top of, or obscuring, the first. Figure 14-18 shows the output of
the CreateTwoJMyFrameObjects application after the top JMyFrame has been dragged to
partially expose the bottom one.

You could use the setBounds() method with one of the JMyFrame objects that produces the output in
Figure 14-18 so that you don’t have to move one JMyFrame object to view the other. See Table 14-1 for
details.

You exit the application when you click the Close button on either of the two JMyFrame

objects shown in Figure 14-18. Each object has the same default close operation because
each uses the same constructor that specifies this operation. To allow only one JMyFrame
to control the program’s exit, you could use the setDefaultCloseOperation() method
with one or both of the objects in the application to change its close behavior. For example,
you could use DISPOSE_ON_CLOSE to dismiss one of the frames but keep the application
running.

When you extend a JFrame to create a new custom class, you must remember to make
decisions as to which attributes you want to set within the class and which you want to leave
to the applications that will use the class. For example, you can place the setVisible()

Figure 14-18 Output of the CreateTwoJMyFrameObjects application after dragging the top frame

Extending the JFrame Class

747

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

statement within the JFrame child class constructor (using either an explicit or implied this

reference), or you can allow the application to use a setVisible() statement (using the
name of an instantiated object followed by a dot and the method name). Either one works, but
if you fail to do either, the frame will not be visible.

Programmers frequently place a main() method within a class such as JMyFrame. Then the class
provides the option to be used to instantiate objects, as in the CreateTwoJMyFrameObjects
application, or to be used to execute as a program that creates an object.

TWO TRUTHS & A LIE

Extending the JFrame Class

1. The advantage of creating a child class of JFrame is that you can set the
JFrame’s properties within your object’s constructor so it is automatically
endowed with the features that you have specified.

2. When a class descends from JFrame, you can use super() or setTitle() to
set the title within any of the child’s methods.

3. When you extend a JFrame to create a new custom class, you can decide which
attributes you want to set within the class and which you want to leave to the
applications that will use the class.

. sdoht e mr eht o ni kr owt on seod)(repus,r eve woH
.r ot curt snoc s’ dli hc eht ni hti w el ti t eht t es ot)(eltiTtes r o)(repus

esu nac uoy , emarFJ morf sdnecsed ssal c a neh W. 2# si t ne met at s esl af ehT

Adding JTextFields, JButtons, and Tool Tips to a JFrame
In addition to including JLabel objects, JFrames often contain other window features, such as
JTextFields, JButtons, and tool tips.

Adding JTextFields
A text field is a component into which a user can type a single line of text data. (Text
data comprises any characters you can enter from the keyboard, including numbers and
punctuation.) The Swing class that creates a text field is JTextField. Figure 14-19 shows
the inheritance hierarchy of the JTextField class.

C H A P T E R 1 4 Introduction to Swing Components

748

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Typically, a user types a line into a JTextField and then presses Enter on the keyboard or
clicks a button with the mouse to enter the data. You can construct a JTextField object
using one of several constructors:

public JTextField() constructs a new JTextField.

public JTextField(int columns) constructs a new, empty JTextField with a specified
number of columns.

public JTextField(String text) constructs a new JTextField initialized with the
specified text.

public JTextField(String text, int columns) constructs a new JTextField initialized
with the specified text and columns.

For example, to provide a JTextField that allows enough room for a user to enter
approximately 10 characters, you can code the following:
JTextField response = new JTextField(10);

To add the JTextField named response to a JFrame named frame, you write:
frame.add(response);

The number of characters a JTextField can display depends on the font being used and the
actual characters typed. For example, in most fonts, w is wider than i, so a JTextField of size
10 using the Arial font can display 24 i characters, but only eight w characters.

Try to anticipate how many characters your users might enter when you create a JTextField.
The user can enter more characters than those that display, but the extra characters scroll
out of view. It can be disconcerting to try to enter data into a field that is not large enough.
It is usually better to overestimate than underestimate the size of a text field.

Several other methods are available for use with JTextFields. The setText() method allows
you to change the text in a JTextField (or other Component) that has already been created, as
in the following:
response.setText("Thank you");

Figure 14-19 The JTextField class inheritance hierarchy

Adding JTextFields, JButtons, and Tool Tips to a JFrame

749

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After a user has entered text in a JTextField, you can clear it out with a statement such as
the following, which assigns an empty string to the text:
response.setText("");

The getText() method allows you to retrieve the String of text in a JTextField (or other
Component), as in:
String whatUserTyped = response.getText();

A JTextField is editable by default. If you do not want the user to be able to enter data in
a JTextField, you can send a boolean value to the setEditable() method to change the
JTextField’s editable status. For example, if you want to give a user a limited number of
chances to answer a question correctly, you can count data-entry attempts and then prevent
the user from replacing or editing the characters in the JTextField by using a statement
similar to the following:
if(attempts > LIMIT)

response.setEditable(false);

Adding JButtons
In a GUI environment, a button is a component typically used to trigger an action or make
a selection when the user clicks it. The Java class that creates a button is JButton. A JButton

is even easier to create than a JTextField. There are five JButton constructors:

public JButton() creates a button with no set text.

public JButton(Icon icon) creates a button with an icon of type Icon or ImageIcon.

public JButton(String text) creates a button with text.

public JButton(String text, Icon icon) creates a button with initial text and an icon
of type Icon or ImageIcon.

public JButton(Action a) creates a button in which properties are taken from the
Action supplied. (Action is a Java class.)

The inheritance hierarchy of the JButton class is shown in Figure 14-20.

Figure 14-20 The JButton class inheritance hierarchy

C H A P T E R 1 4 Introduction to Swing Components

750

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To create a JButton with the text Press when ready, you can write the following:
JButton readyJButton = new JButton("Press when ready");

You can add a JButton to a JFrame (or other container) using the add() method. You can
change a JButton’s text with the setText() method, as in:
readyJButton.setText("Don't press me again!");

You can retrieve the text from a JButton and assign it to a String object with the getText()

method, as in:
String whatsOnJButton = readyJButton.getText();

Figure 14-21 shows a class that extends JFrame and holds several components. As the
components (two JLabels, a JTextField, and a JButton) are added to the JFrame, they are
placed from left to right in horizontal rows across the JFrame’s surface. Figure 14-22 shows
the program that instantiates an instance of the JFrame.

import javax.swing.*;
import java.awt.*;
public class JFrameWithManyComponents extends JFrame
{

final int FRAME_WIDTH = 300;
final int FRAME_HEIGHT = 150;
public JFrameWithManyComponents()
{

super("Demonstrating many components");
setSize(FRAME_WIDTH, FRAME_HEIGHT);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JLabel heading = new JLabel("This frame has many components");
heading.setFont(new Font("Arial", Font.BOLD, 16));
JLabel namePrompt = new JLabel("Enter your name:");
JTextField nameField = new JTextField(12);
JButton button = new JButton("Click to continue");
setLayout(new FlowLayout());
add(heading);
add(namePrompt);
add(nameField);
add(button);

}
}

Figure 14-21 The JFrameWithManyComponents class

Adding JTextFields, JButtons, and Tool Tips to a JFrame

751

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class ComponentDemo
{

public static void main(String[] args)
{

JFrameWithManyComponents frame =
new JFrameWithManyComponents();

frame.setVisible(true);
}

}

Figure 14-22 A ComponentDemo application that instantiates a JFrameWithManyComponents

When you execute the ComponentDemo program, the JFrame contains all the components
that were added in the frame’s constructor, as shown in Figure 14-23. A user can minimize
or restore the frame and alter its size by dragging the frame borders. The user can type
characters in the JTextField and click the JButton. When the button is clicked, it appears to
be pressed just like buttons you have used in professional applications. However, when the
user types characters or clicks the button, no resulting actions occur because code has not yet
been written to handle those user-initiated events.

Using Tool Tips
Tool tips are popup windows that can help a user understand the purpose of
components in an application; the tool tip appears when a user hovers the mouse pointer
over the component. You define the text to be displayed in a tool tip by using the
setToolTipText() method and passing an appropriate String to it. For example, in the
JFrameWithManyComponents program in Figure 14-21, you can add a tool tip to the button

component by using the following statement in the JFrame constructor:
button.setToolTipText("Click this button");

Figure 14-23 Execution of the ComponentDemo program

C H A P T E R 1 4 Introduction to Swing Components

752

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 14-24 shows the result when the JFrame is displayed and the user’s mouse pointer is
placed over the button.

The JFrameWithToolTip.java file in your downloadable student files contains a revised version of
JFrameWithManyComponents with the tool tip added. The ToolTipDemo.java file contains an
application that instantiates a JFrameWithToolTip object.

TWO TRUTHS & A LIE

Adding JTextFields, JButtons, and Tool Tips to a JFrame

1. A JTextField is a component into which a user can type a single line of text
data; typically, a user types a line into a JTextField and then presses Enter on
the keyboard or clicks a button with the mouse to enter the data.

2. A JButton is a Component the user can click to make a selection.

3. Tool tips are the different symbols you can select to display as a cursor in your
applications.

.t nenop moc eht
r evor et ni op esuo meht sr evoh r esu a neh wsr aeppa pi t

l oot eht ; noi t acil ppa na ni st nenop mocf o esopr up eht dnat sr ednu
r esu a pl eh nact aht s wodni w pupop er a spi t l ooT. 3# si t ne met at s esl af ehT

Figure 14-24 JFrame with added tool tip

Adding JTextFields, JButtons, and Tool Tips to a JFrame

753

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Adding Components to a JFrame

Next, you create a Swing application that displays a JFrame that holds a JLabel,
JTextField, and JButton.

1. Open a new file, and then type the following first few lines of an application.
The import statements make the Swing and AWT components available, and
the class header indicates that the class is a JFrame. The class contains
several components: a label, field, and button.
import javax.swing.*;
import java.awt.*;
public class JFrameWithComponents extends JFrame
{

JLabel label = new JLabel("Enter your name");
JTextField field = new JTextField(12);
JButton button = new JButton("OK");

2. In the JFrameWithComponents constructor, set the JFrame title to “Frame with
Components” and the default close operation to exit the program when the
JFrame is closed. Set the layout manager. Add the label, field, and button to
the JFrame.
public JFrameWithComponents()
{

super("Frame with Components");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLayout(new FlowLayout());
add(label);
add(field);
add(button);

}

3. Add a closing curly brace for the class, and then save the file as
JFrameWithComponents.java.

4. Compile the class and correct any errors.

5. Next, write an application that creates a new JFrameWithComponents

named aFrame, sizes it using the setSize() method, and then sets its visible
property to true.

(continues)

C H A P T E R 1 4 Introduction to Swing Components

754

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
public class CreateJFrameWithComponents
{

public static void main(String[] args)
{

JFrameWithComponents aFrame =
new JFrameWithComponents();

final int WIDTH = 350;
final int HEIGHT = 100;
aFrame.setSize(WIDTH, HEIGHT);
aFrame.setVisible(true);

}
}

6. Save the file as CreateJFrameWithComponents.java. Compile and then
execute the application. The output is shown in Figure 14-25.

7. Click the JButton. It acts like a button should—that is, it appears to be
pressed when you click it, but nothing happens because you have not yet
written instructions for the button clicks to execute.

8. Close the application.

Learning About Event-Driven Programming
An event occurs when a user takes action on a component, such as clicking the mouse on a
JButton object. In an event-driven program, the user might initiate any number of events in
any order. For example, if you use a word-processing program, you have dozens of choices at
your disposal at any time. You can type words, select text with the mouse, click a button to
change text to bold, click a button to change text to italic, choose a menu item, and so on.
With each word-processing document you create, you choose options in any order that
seems appropriate at the time. The word-processing program must be ready to respond to
any event you initiate.

(continued)

Figure 14-25 Output of the CreateJFrameWithComponents application

Learning About Event-Driven Programming

755

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Within an event-driven program, a component on which an event is generated is the source
of the event. An object that is interested in an event is a listener. Programmers sometimes
say a source triggers an event or fires an event. For example, if a label appears or changes
color when the user clicks a button, the button is the source of the event and the label is a
listener. When the source fires an event, an event-handling method contained in the listener
object’s class responds to the event. A source and a listener can be the same object. For
example, you might program a button to change its own text when a user clicks it.

Not all objects listen for all possible events—you probably have used programs in which
clicking many areas of the screen has no effect. If you want an object to be a listener for an
event, you must register or sign up the object as a listener for the source. Social networking
sites maintain lists of people in whom you are interested and notify you each time a person on
your list posts a comment or picture. Similarly, a Java component source object (such as a
button) maintains a list of registered listeners and notifies all of them when an event occurs.

To respond to user events within any class you create, you must do the following:

Prepare your class to accept event messages by importing and implementing the
appropriate listener interface.

Tell your class to expect events to happen by registering it as a listener.

Tell your class how to respond to events by writing necessary action statements in
a method.

Preparing Your Class to Accept Event Messages
The java.awt.event package includes event classes that provide the capability to work
with user-generated events such as an ActionEvent, which is the type of event that occurs
when a user clicks a button. You import the event package to gain access to the methods in
the event classes, and then you prepare a class to work with events by adding an implements

phrase to the class header. For example, implementing the ActionListener interface
provides you with standard event method specifications that allow a listener to work
with ActionEvents.

You learned to create and implement interfaces in Chapter 11. You can identify interfaces such as
ActionListener because they are used in phrases with the keyword implements. In ordinary
language, an item that is implemented is put into service, or used. Implementation has a similar meaning
when applied to interfaces. By contrast, packages that are imported are brought into an application, and
classes that are added onto are extended.

If you declare a class that extends a class that implements a listener, you do not need to include
implements in the child class header because the new class inherits the implementation.

C H A P T E R 1 4 Introduction to Swing Components

756

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Telling Your Class to Expect Events to Happen
You tell your class to expect an event using a method name that begins with the
appropriate listener-registering method. The method that registers an ActionEvent is the
addActionListener() method. (You learn about other listener-registering methods later in
this chapter.) For example, suppose that you are creating a class that represents a frame;
within the class, you have declared a JButton named aButton, and you want to perform an
action when a user clicks aButton. In this case, aButton is the source of a message, and your
class is a listener.

The following code in the frame class causes any ActionEvent messages (button clicks) that
come from aButton to be sent to the frame:
aButton.addActionListener(this);

You learned in Chapter 4 that the this reference means “this current object.” In this case,
this refers to the frame class in which this statement appears.

Not all Events are ActionEvents with an addActionListener() method. For example,
KeyListeners have an addKeyListener() method, and FocusListeners have an
addFocusListener() method. Additional event types and methods are covered in more detail in
the next chapter.

Telling Your Class How to Respond to Events
You tell your class what to do when an event is generated by writing statements in a
specific method that is part of the listener interface. For example, the ActionListener

interface contains the actionPerformed() method specification that executes when an
event occurs. The method is an example of an event handler—it reacts to and takes care of
generated events. When you implement the ActionListener interface, you must write the
actionPerformed() method to overload the empty version in the interface. (In Chapter 11,
you learned that all the methods in an interface are abstract, and therefore must be given
a body in classes that use them.)

Suppose that you have created a class that extends JFrame, and that you have registered it as a
listener for events triggered by a JButton. When a user clicks the JButton, the
actionPerformed() method executes automatically. The actionPerformed() method must
have the following header, in which e represents any name you choose for the Event:
public void actionPerformed(ActionEvent e)

The body of the method contains any statements that you want to execute when the action
occurs. You might want to perform mathematical calculations, construct new objects,
produce output, or execute any other operation.

An Event-Driven Program
For example, Figure 14-26 shows a JFrame that reacts to a button click. The class contains
a JLabel that prompts the user for a name, a JTextField into which the user can type

Learning About Event-Driven Programming

757

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a response, a JButton to click, and a second JLabel that displays the name entered by the
user. The first shaded section imports the event package, the second shaded section shows
the phrase that implements the event listener, the third shaded section is the statement that
registers the frame as a listener for button clicks, and the last shaded section is the method
that executes when the button is clicked. Within the actionPerformed() method, the String
that a user has typed into the JTextField is retrieved and stored in the name variable and then
used in the text of a second JLabel. Figure 14-27 shows an application that instantiates a
JHelloFrame object and makes it visible.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JHelloFrame extends JFrame implements ActionListener
{

JLabel question = new JLabel("What is your name?");
Font bigFont = new Font("Arial", Font.BOLD, 16);
JTextField answer = new JTextField(10);
JButton pressMe = new JButton("Press me");
JLabel greeting = new JLabel("");
final int WIDTH = 275;
final int HEIGHT = 225;
public JHelloFrame()
{

super("Hello Frame");
setSize(WIDTH, HEIGHT);
setLayout(new FlowLayout());
question.setFont(bigFont);
greeting.setFont(bigFont);
add(question);
add(answer);
add(pressMe);
add(greeting);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pressMe.addActionListener(this);

}
@Override
public void actionPerformed(ActionEvent e)
{

String name = answer.getText();
String greet = "Hello, " + name;
greeting.setText(greet);

}
}

Figure 14-26 The JHelloFrame class that produces output when the user clicks the JButton

C H A P T E R 1 4 Introduction to Swing Components

758

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class JHelloDemo
{

public static void main(String[] args)
{

JHelloFrame frame = new JHelloFrame();
frame.setVisible(true);

}
}

Figure 14-27 An application that instantiates a JHelloFrame object

Figure 14-28 shows a typical execution of the JHelloDemo program. The user enters Lindsey
into the JTextField, and the greeting with the name is displayed after the user clicks the
button.

Using Multiple Event Sources
You can add more than one event source component to a listener. For example, in the
JHelloFrame class in Figure 14-26, you might want the user to be able to see the message
after either clicking the button or pressing Enter in the JTextField. In that case, you would
designate both the pressMe button and the answer text field to be message sources by using
the addActionListener() method with each, as follows:
pressMe.addActionListener(this);
answer.addActionListener(this);

These two statements make the JFrame a listener for messages from either object. The
actionPerformed() method then executes when either the pressMe button or the answer
text field generates an event.

Figure 14-28 Typical execution of the JHelloDemo program

Learning About Event-Driven Programming

759

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you want different actions to occur depending on whether the user clicks the button or
presses Enter, you must determine the source of the event. Within the actionPerformed()
method, you can use the getSource() method with the event parameter to determine which
component generated the event. For example, when the parameter to the actionPerformed()

method is named e, you can use the following statement to determine which object generated
the ActionEvent:
Object source = e.getSource();

For example, if a JFrame contains two JButtons named option1 and option2, you can use the
decision structure in the method in Figure 14-29 to take different courses of action based on
which button is clicked. Whether an event’s source is a JButton, JTextField, or other
Component, it can be assigned to an Object because all components descend from Object.

@Override
public void actionPerformed(ActionEvent e)
{

Object source = e.getSource();
if(source == option1)

//execute these statements when user clicks option1
else

//execute these statements when user clicks any other option
}

Figure 14-29 An actionPerformed() method that takes one of two possible actions

Alternatively, you can also use the instanceof keyword to determine the source of the event.
The instanceof keyword is used when it is necessary to know only the component’s type,
rather than what component triggered the event. For example, if you want to take some
action when a user enters data into any JTextField, but not when an event is generated by
a different Component type, you could use the method format shown in Figure 14-30.

@Override
void actionPerformed(ActionEvent e)
{

Object source = e.getSource();
if(source instanceof JTextField)
{

// execute these statements when any JTextField
// generates the event
// but not when a JButton or other Component does

}
}

Figure 14-30 An actionPerformed() method that executes a block of statements when a user
generates an event from any JTextField

C H A P T E R 1 4 Introduction to Swing Components

760

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the setEnabled() Method
You probably have used computer programs in which a component becomes disabled or
unusable. For example, a JButtonmight become dim and unresponsive when the programmer no
longer wants the user to have access to the JButton’s functionality. Components are enabled by
default, but you can use the setEnabled() method to make a component available or unavailable
by passing true or false to it, respectively. For example, Figure 14-31 shows a JFrame with two
JButton objects. The one on top is enabled, but the one on the bottom has been disabled.

Your downloadable student files contain a file named JTwoButtons.java that produces the JFrame shown in
Figure 14-31.

TWO TRUTHS & A LIE

Learning About Event-Driven Programming

1. Within an event-driven program,a component on which an event is generated is a listener.

2. You prepare your class to accept button-press events by importing the
java.awt.event package into your program and adding the phrase
implements ActionListener to the class header.

3. A class that can react to ActionEvents includes an actionPerformed() method.

.r enet sil a si t neve na ni
det ser et ni si t aht t cej bo na dna,t neve eht f o ecr uos eht si det ar eneg si t neve na
hci h wnot nenop moc a, mar gor p nevi r d- t neve na ni hti W. 1# si t ne met at s esl af ehT

Figure 14-31 A JFrame with an enabled JButton and a disabled JButton

Learning About Event-Driven Programming

761

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Adding Functionality to a JButton and a JTextField

Next, you add functionality to the JButton and JTextField that you created in the
JFrameWithComponents class.

1. Open the JFrameWithComponents.java file. Immediately save the file as
JAction.java.

2. After the existing import statements at the top of the file, add the following
import statement that will allow event handling:
import java.awt.event.*;

3. Change the class name to JAction to match the new filename. Also change
the constructor header to match the new class name. Within the constructor,
change the string argument to the super() method from “Frame with
Components” to “Action”.

4. After extends JFrame at the end of the JAction class header, add the
following phrase so that the class can respond to ActionEvents:
implements ActionListener

5. Register the JAction class as a listener for events generated by either the
button or the text field by adding the following statements at the end of, but
within, the JAction() constructor:
button.addActionListener(this);
field.addActionListener(this);

6. Just prior to the closing curly brace for the class, add the following
actionPerformed() method that overrides the one defined in the
ActionListener interface. The method changes the text on both the label
and the button whenever the user clicks the button or presses Enter in the
text field.
@Override
public void actionPerformed(ActionEvent e)
{

label.setText("Thank you");
button.setText("Done");

}

7. Just after the actionPerformed() method, and just before the closing curly
brace for the class, add a main() method to the class so that you can
instantiate a JAction object for demonstration purposes.

(continues)

C H A P T E R 1 4 Introduction to Swing Components

762

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public static void main(String[] args)
{

JAction aFrame = new JAction();
final int WIDTH = 250;
final int HEIGHT = 100;
aFrame.setSize(WIDTH, HEIGHT);
aFrame.setVisible(true);

}

8. Save the file, then compile and execute it. The output looks like the frame on
the left side of Figure 14-32. Type a name in the text field, and then click the
OK button. Its text changes to “Done”, and its size increases slightly because
the label “Done” requires more space than the label “OK”. The other label
requires less space than it did because “Thank you” is a shorter message
than “Enter your name”. Therefore, all the components are redistributed
because the FlowLayout manager places as many components as will fit
horizontally in the top row before adding components to subsequent rows.
The output looks like the right side of Figure 14-32.

9. Close the application and then execute it again. This time, enter a name in the
text field and press Enter. Again, the button text changes, showing that the
actionPerformed() method reacts to actions that take place on either the
button or the text field.

10. Close the application.

Distinguishing Event Sources

Next, you will modify the actionPerformed() method of the JAction class so that
different results occur depending on which action a user takes.

1. Open the JAction.java file if it is not still open. Immediately save the file as
JAction2.java.

(continued)

Figure 14-32 Typical execution of the JAction application after the user clicks the
OK button

(continues)

Learning About Event-Driven Programming

763

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Change the class name and the constructor name to match the new filename
by adding 2 to each name.

3. In the main() method, change the statement that instantiates the JFrame

object to the following:
JAction2 aFrame = new JAction2();

4. Within the actionPerformed() method, you can use the named ActionEvent

argument and the getSource() method to determine the source of the event.
Using an if statement, you can take different actions when the argument
represents different sources. For example, you can change the label in the frame
to indicate the event’s source. Change the actionPerformed() method to:
@Override
public void actionPerformed(ActionEvent e)
{

Object source = e.getSource();
if(source == button)

label.setText("You clicked the button");
else

label.setText("You pressed Enter");
}

5. Save the file (as JAction2.java), then compile and execute it. Type a name,
press Enter or click the button, and notice the varying results in the frame’s
label. For example, Figure 14-33 shows the application after the user has
typed a name and pressed Enter.

6. Close the application.

Understanding Swing Event Listeners
Many types of listeners exist in Java, and each of these listeners can handle a specific event
type. A class can implement as many event listeners as it needs—for example, a class might
need to respond to both a mouse button press and a keyboard key press, so you might

(continued)

Figure 14-33 Typical execution of the JAction2 application

C H A P T E R 1 4 Introduction to Swing Components

764

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

implement both ActionListener and KeyListener interfaces. Table 14-2 lists some event
listeners and the types of events for which they are used.

As a shorthand, programmers sometimes refer to all the listener classes as a group using XXXListener or
<name>Listener.

An event occurs every time a user types a character, clicks a mouse button, taps a touch
screen, or takes a similar action. Any object can be notified of an event as long as it
implements the appropriate interface and is registered as an event listener on the appropriate
event source. You already know that you establish a relationship between a JButton and a
JFrame that contains it by using the addActionListener() method. Similarly, you can create
relationships between other Swing components and the classes that react to users’
manipulations of them. In Table 14-3, each component listed on the left is associated with a
method on the right. For example, when you want a JCheckBox to respond to a user’s clicks,
you can use the addItemListener() method to register the JCheckBox as the type of object
that can create an ItemEvent. (You learn more about JCheckBox objects later in this chapter.)
The argument you place within the parentheses of the call to the addItemListener() method
is the object that should respond to the event. The format is:
theSourceOfTheEvent.addListenerMethod(theClassThatShouldRespond);

As you have already learned, the class that should respond is frequently the this class.

Listener Type of Events Example

ActionListener Action events Button clicks

AdjustmentListener Adjustment events Scroll bar moves

ChangeListener Change events Slider is repositioned

FocusListener Keyboard focus events Text field gains or loses focus

ItemListener Item events Check box changes status

KeyListener Keyboard events Text is entered

MouseListener Mouse events Mouse clicks

MouseMotionListener Mouse movement events Mouse rolls

WindowListener Window events Window closes

Table 14-2 Alphabetical list of some event listeners

Understanding Swing Event Listeners

765

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Programmers sometimes use the shorthand addXXXListener() or add<name>Listener() to refer to all the add
listener methods as a group.

Any event source can have multiple listeners registered on it. Conversely, a single listener can be
registered with multiple event sources. In other words, a single instance of JCheckBox might generate
ItemEvents and FocusEvents, and a single instance of the JFrame class might respond to
ActionEvents generated by a JButton and ItemEvents generated by a JCheckBox.

The class of the object that responds to an event must contain an event-handling method that
accepts the event object created by the user’s action. You cannot choose your own name for
event handlers—specific method identifiers react to specific event types. Table 14-4 lists just
some of the methods that react to events.

Each listener in Table 14-4 is associated with only one or two methods. Other listeners, such as
KeyListener and MouseListener, are associated with multiple methods. You will learn how to
use these more complicated listeners in the chapter “Advanced GUI Topics.”

Listener Method

ActionListener actionPerformed(ActionEvent)

AdjustmentListener adjustmentValueChanged(AdjustmentEvent)

FocusListener focusGained(FocusEvent) and focusLost(FocusEvent)

ItemListener itemStateChanged(ItemEvent)

Table 14-4 Selected methods that respond to events

Component(s) Associated Listener-Registering Method(s)

JButton, JCheckBox, JComboBox,
JTextField, and JRadioButton

addActionListener()

JScrollBar addAdjustmentListener()

All Swing components addFocusListener(), addKeyListener(),
addMouseListener(), and
addMouseMotionListener()

JButton, JCheckBox, JComboBox, and
JRadioButton

addItemListener()

All JWindow and JFrame components addWindowListener()

JSlider and JCheckBox addChangeListener()

Table 14-3 Some Swing components and their associated listener-registering methods

C H A P T E R 1 4 Introduction to Swing Components

766

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Until you become familiar with the event-handling model, it can seem quite confusing. For
now, remember these tasks you must perform when you declare a class that handles an event:

You must import the java.awt.event package in the class that handles the event.

The class that handles an event must either implement a listener interface or extend
a class that implements a listener interface.

You must register each instance of the event-handling class as a listener for one or
more components using an addXXXListener() method.

You must write an event handler method with an appropriate identifier (as shown
in Table 14-4) that accepts the generated event and reacts to it.

Watch the video Event-Driven Programming.

TWO TRUTHS & A LIE

Understanding Swing Event Listeners

1. A class can implement as many event listeners as it needs.

2. Any object can be notified of a mouse click or keyboard press as long as it
implements the appropriate interface and is registered as an event listener on
the appropriate event source.

3. Every event-handling method accepts a parameter that represents the listener
for the event.

.t neve det ar eneg eht st neser per t aht
r et e mar ap a st pecca doht e mgnil dnah-t neve yr evE. 3# si t ne met at s esl af ehT

Using the JCheckBox, ButtonGroup, and JComboBox
Classes
Besides JButtons and JTextFields, several other Java components allow a user to make
selections in a GUI environment. These include JCheckBoxes, ButtonGroups, and
JComboBoxes.

The JCheckBox Class
A check box consists of a label positioned beside a square; you can click the square to display
or remove a check mark. Usually, you use a check box to allow the user to turn an option on

Using the JCheckBox, ButtonGroup, and JComboBox Classes

767

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

or off. The Java Swing class that creates a check box is JCheckBox. For example, Figure 14-34
shows the code for an application that uses four JCheckBox objects, and Figure 14-35
shows the output.

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
public class CheckBoxDemonstration

extends JFrame implements ItemListener
{

FlowLayout flow = new FlowLayout();
JLabel label = new JLabel("What would you like to drink?");
JCheckBox coffee = new JCheckBox("Coffee", false);
JCheckBox cola = new JCheckBox("Cola", false);
JCheckBox milk = new JCheckBox("Milk", false);
JCheckBox water = new JCheckBox("Water", false);
public CheckBoxDemonstration()
{

super("CheckBox Demonstration");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLayout(new FlowLayout());
label.setFont(new Font("Arial", Font.ITALIC, 22));
coffee.addItemListener(this);
cola.addItemListener(this);
milk.addItemListener(this);
water.addItemListener(this);
add(label);
add(coffee);
add(cola);
add(milk);
add(water);

}
@Override
public void itemStateChanged(ItemEvent check)
{

// Actions based on choice go here
}
public static void main(String[] arguments)
{

final int FRAME_WIDTH = 350;
final int FRAME_HEIGHT = 120;
CheckBoxDemonstration frame =

new CheckBoxDemonstration();
frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
frame.setVisible(true);

}
}

Figure 14-34 The CheckBoxDemonstration class

C H A P T E R 1 4 Introduction to Swing Components

768

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the application in Figure 14-34, the CheckBoxDemonstration class and the main() method that
instantiates an instance of it are part of the same class. You could also store the two parts in separate
classes, as in previous examples.

The inheritance hierarchy of the JCheckBox class is shown in Figure 14-36; frequently used
JCheckBox methods appear in Table 14-5.

Figure 14-35 Output of the CheckBoxDemonstration class

Figure 14-36 The inheritance hierarchy of the JCheckBox class

Method Purpose

void setText(String) Sets the text for the JCheckBox

String getText() Returns the JCheckBox text

void setSelected(boolean) Sets the state of the JCheckBox to true for selected or false
for unselected

boolean isSelected() Gets the current state (checked or unchecked) of the JCheckBox

Table 14-5 Frequently used JCheckBox methods

Using the JCheckBox, ButtonGroup, and JComboBox Classes

769

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Several constructors can be used with JCheckBoxes. When you construct a JCheckBox, you
can choose whether to assign it a label; you can also decide whether the JCheckBox appears
selected (JCheckBoxes start unselected by default). The following statements create four
JCheckBox objects—one with no label and unselected, two with labels and unselected, and
one with a label and selected.

JCheckBox box1 = new JCheckBox();
// No label, unselected

JCheckBox box2 = new JCheckBox("Check here");
// Label, unselected

JCheckBox box3 = new JCheckBox("Check here", false);
// Label, unselected

JCheckBox box4 = new JCheckBox("Check here", true);
// Label, selected

If you do not initialize a JCheckBox with a label and you want to assign one later, or if you
want to change an existing label, you can use the setText() method, as in the following
example:
box1.setText("Check this box now");

You can set the state of a JCheckBox with the setSelected() method; for example, you can
use the following statement to ensure that box1 is unchecked:
box1.setSelected(false);

The isSelected() method is most useful in Boolean expressions, as in the following example,
which adds one to a voteCount variable if box2 is currently checked.
if(box2.isSelected())

++voteCount;

When the status of a JCheckBox changes from unchecked to checked (or from checked to
unchecked), an ItemEvent is generated, and the itemStateChanged() method executes.
You can use the getItem() method to determine which object generated the event and the
getStateChange() method to determine whether the event was a selection or a deselection.
The getStateChange() method returns an integer that is equal to one of two class
variables—ItemEvent.SELECTED or ItemEvent.DESELECTED. For example, in Figure 14-37 the
itemStateChanged() method calls the getItem() method, which returns the object named
source. Then, the value of source is tested in an if statement to determine if it is equivalent to
a JCheckBox object named checkBox. If the two references are to the same object, the code
determines whether the checkBox was selected or deselected, and in each case appropriate
actions are taken.

C H A P T E R 1 4 Introduction to Swing Components

770

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

@Override
public void itemStateChanged(ItemEvent e)
{

Object source = e.getItem();
if(source == checkBox)
{

int select = e.getStateChange();
if(select == ItemEvent.SELECTED)

// statements that execute when the box is checked
else

// statements that execute when the box is unchecked
}
else
{

// statements that execute when the source of the event is
// some component other than the checkBox object

}
}

Figure 14-37 Typical itemStateChanged() method

The ButtonGroup Class
Sometimes, you want options to be mutually exclusive—that is, you want the user to be
able to select only one of several choices. When you create a button group using the
ButtonGroup class, you can group several components, such as JCheckBoxes, so a user can
select only one at a time. When you group JCheckBox objects, all of the other JCheckBoxes are
automatically turned off when the user selects any one check box. The inheritance hierarchy
for the ButtonGroup class is shown in Figure 14-38. You can see that ButtonGroup descends
directly from the Object class. Even though it does not begin with a J, the ButtonGroup class
is part of the javax.swing package.

A group of JCheckBoxes in which a user can select only one at a time also acts like a set of radio buttons
(for example, those used to select preset radio stations on an automobile radio), which you can create using
the JRadioButton class. The JRadioButton class is very similar to the JCheckBox class, and
you might prefer to use it when you have a list of mutually exclusive user options. It makes sense to use
ButtonGroups with items that can be selected (that is, those that use an isSelected() method).
You can find more information about the JRadioButton class at the Java Web site.

Figure 14-38 The inheritance hierarchy for the ButtonGroup class

Using the JCheckBox, ButtonGroup, and JComboBox Classes

771

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To create a ButtonGroup in a JFrame and then add a JCheckBox, you must perform four steps:

Create a ButtonGroup, such as ButtonGroup aGroup = new ButtonGroup();.

Create a JCheckBox, such as JCheckBox aBox = new JCheckBox();.

Add aBox to aGroup with aGroup.add(aBox);.

Add aBox to the JFrame with add(aBox); or this.add(aBox);.

You can create a ButtonGroup and then create the individual JCheckBox objects, or you can
create the JCheckBoxes and then create the ButtonGroup. If you create a ButtonGroup but
forget to add any JCheckBox objects to it, then the JCheckBoxes act as individual,
nonexclusive check boxes.

A user can set one of the JCheckBoxes within a group to “on” by clicking it, or the
programmer can select a JCheckBox within a ButtonGroup with a statement such as the
following:
aGroup.setSelected(aBox);

Only one JCheckBox can be selected within a group. If you assign the selected state to a
JCheckBox within a group, any previous assignment is negated.

You can determine which, if any, of the JCheckBoxes in a ButtonGroup is selected using the
isSelected() method.

After a JCheckBox in a ButtonGroup has been selected, one in the group will always be
selected. In other words, you cannot “clear the slate” for all the items that are members of
a ButtonGroup. A trick that you can use to cause all the JCheckBoxes in a ButtonGroup to
initially appear unselected is to add one JCheckBox that is not visible (using the setVisible()

method). Then, you can use the setSelected() method to select the invisible JCheckBox, and
all the others appear to be deselected.

The JComboBox Class
A combo box is a component that combines a button or an editable field and a drop-down
list. The Swing class JComboBox creates a combo box. When a JComboBox appears on the
screen, the default option is displayed in a field at the top of the box, and the list is not
displayed. When the user clicks the button on the JComboBox, a list drops down; if the user
selects an item from this list, it replaces the box’s displayed item. If the field at the top of the
combo box is editable, the user can also type in it. The biggest advantage to using a JComboBox
over displaying a series of choices with check boxes or buttons is that a combo box doesn’t
take up much room in a frame until its list is expanded. Figure 14-39 shows a JComboBox as it
looks when first displayed and after a user clicks it.

C H A P T E R 1 4 Introduction to Swing Components

772

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The code that produces the JComboBox in Figure 14-39 is contained in the file named
ComboBoxDemonstration.java in your downloadable student files.

Users often expect to view JComboBox options in alphabetical order. If it makes sense for your
application, consider displaying your options this way. Other reasonable approaches are to
place choices in logical order, such as “small”, “medium”, and “large”, or to position the most
frequently selected options first.

The inheritance hierarchy of the JComboBox class is shown in Figure 14-40.

You can build a JComboBox by using a constructor with no arguments and then adding items
(for example, Strings) to the list with the addItem() method. The following statements
create a JComboBox named majorChoice that contains three options from which a user can
choose:
JComboBox<String> majorChoice = new JComboBox<String>();
majorChoice.addItem("English");
majorChoice.addItem("Math");
majorChoice.addItem("Sociology");

In the declaration of the JComboBox, notice the use of String following the constructor
call. By default, a JComboBox expects items that are added to be Object types. Adding
the angle brackets and String notifies the compiler of the expected data types in the
JComboBox and allows the compiler to check for errors if invalid items are added. If you do
not insert a data type for a JComboBox, the program compiles, but a warning message is

Figure 14-39 A JComboBox before and after the user clicks it

Figure 14-40 The inheritance hierarchy of the JComboBox class

Using the JCheckBox, ButtonGroup, and JComboBox Classes

773

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

issued with each addItem() method call. Programmers say that JComboBox uses generics.
Generic programming is a feature of modern languages that allows multiple data types to
be used safely with methods.

As an alternative, you can construct a JComboBox using an array of Objects as the
constructor argument; the Objects in the array become the listed items within the
JComboBox. For example, the following code creates the same majorChoice JComboBox as
the preceding code:
String[] majorArray = {"English", "Math", "Sociology"};
JComboBox majorChoice = new JComboBox(majorArray);

Table 14-6 lists some methods you can use with a JComboBox object. For example, you can
use the setSelectedItem() or setSelectedIndex() method to choose one of the items in
a JComboBox to be the initially selected item. You also can use the getSelectedItem() or
getSelectedIndex() method to discover which item is currently selected.

Method Purpose

void addItem(Object) Adds an item to the list

void removeItem(Object) Removes an item from the list

void removeAllItems() Removes all items from the list

Object getItemAt(int) Returns the list item at the index position specified by the
integer argument

int getItemCount() Returns the number of items in the list

int getMaximumRowCount() Returns the maximum number of items the combo box can
display without a scroll bar

int getSelectedIndex() Returns the position of the currently selected item

Object getSelectedItem() Returns the currently selected item

Object[] getSelectedObjects() Returns an array containing selected Objects

void setEditable(boolean) Sets the field to be editable or not editable

void setMaximumRowCount(int) Sets the number of rows in the combo box that can be
displayed at one time

void setSelectedIndex(int) Sets the index at the position indicated by the argument

void setSelectedItem(Object) Sets the selected item in the combo box display area to be the
Object argument

Table 14-6 Some JComboBox class methods

C H A P T E R 1 4 Introduction to Swing Components

774

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can treat the list of items in a JComboBox object as an array; the first item is at position 0,
the second is at position 1, and so on. It is convenient to use the getSelectedIndex()
method to determine the list position of the currently selected item; then you can use the
index to access corresponding information stored in a parallel array. For example, if a
JComboBox named historyChoice has been filled with a list of historical events, such as
“Declaration of Independence,” “Pearl Harbor,” and “Man walks on moon,” you can code
the following to retrieve the user’s choice:
int positionOfSelection = historyChoice.getSelectedIndex();

The variable positionOfSelection now holds the position of the selected item, and
you can use the variable to access an array of dates so you can display the date
that corresponds to the selected historical event. For example, if you declare the following,
then dates[positionOfSelection] holds the year for the selected historical event:
int[] dates = {1776, 1941, 1969};

A JComboBox does not have to hold items declared as Strings; it can hold an array of Objects and
display the results of the toString() method used with those objects. In other words, instead of using
parallel arrays to store historical events and dates, you could design a HistoricalEvent class that
encapsulates Strings for the event and ints for the date.

In addition to JComboBoxes for which users click items presented in a list, you can create
JComboBoxes into which users type text. To do this, you use the setEditable() method.
A drawback to using an editable JComboBox is that the text a user types must exactly match an
item in the list box. If the user misspells the selection or uses the wrong case, a negative value
is returned from the getSelectedIndex() method. You can use an if statement to test the
value returned or take action such as forcing a default option or issuing an appropriate error
message.

TWO TRUTHS & A LIE

Using the JCheckBox, ButtonGroup, and JComboBox Classes

1. A JCheckBox consists of a label positioned beside a square; you can click the
square to display or remove a check mark.

2. When you create a ButtonGroup, you can group several components, such as
JCheckBoxes, so a user can select multiple options simultaneously.

3. When a user clicks a JComboBox, a list of alternative items drops down; if the
user selects one, it replaces the box’s displayed item.

. e mit at a eno yl not cel es nac r esu a os, sexoBkcehCJ sa hcus, st nenop moc
l ar eves puor g nac uoy , puorGnottuB a et aer c uoy neh W. 2# si t ne met at s esl af ehT

Using the JCheckBox, ButtonGroup, and JComboBox Classes

775

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Including JCheckBoxes in an Application

Next, you create an interactive program for a resort. The base price for a room
is $200, and a guest can choose from several options. Reserving a room for a
weekend night adds $100 to the price, including breakfast adds $20, and including
a round of golf adds $75. A guest can select none, some, or all of these premium
additions. Each time the user changes the option package, the price is recalculated.

1. Open a new file, and then type the following first few lines of a Swing

application that demonstrates the use of a JCheckBox. Note that the
JResortCalculator class implements the ItemListener interface:
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JResortCalculator extends

JFrame implements ItemListener
{

2. Declare the named constants that hold the base price for a resort room and
the premium amounts for a weekend stay, including breakfast and a round of
golf. Also include a variable that holds the total price for the stay, and initialize
it to the value of the base price. Later, depending on the user’s selections,
premium fees might be added to totalPrice, making it more than
BASE_PRICE.
final int BASE_PRICE = 200;
final int WEEKEND_PREMIUM = 100;
final int BREAKFAST_PREMIUM = 20;
final int GOLF_PREMIUM = 75;
int totalPrice = BASE_PRICE;

3. Declare three JCheckBox objects. Each is labeled with a String that contains
a description of the option and the cost of the option. Each JCheckBox starts
unchecked or deselected.
JCheckBox weekendBox = new JCheckBox

("Weekend premium $" + WEEKEND_PREMIUM, false);
JCheckBox breakfastBox = new

JCheckBox("Breakfast $" + BREAKFAST_PREMIUM, false);
JCheckBox golfBox = new JCheckBox

("Golf $" + GOLF_PREMIUM, false);

(continues)

C H A P T E R 1 4 Introduction to Swing Components

776

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Include JLabels to hold user instructions and information and a JTextField in
which to display the total price:
JLabel resortLabel = new JLabel("Resort Price Calculator");
JLabel priceLabel = new JLabel("The price for your stay is");
JTextField totPrice = new JTextField(4);
JLabel optionExplainLabel = new JLabel

("Base price for a room is $" + BASE_PRICE + ".");
JLabel optionExplainLabel2 = new JLabel

("Check the options you want.");

5. Begin the JResortCalculator class constructor. Include instructions to set
the title by passing it to the JFrame parent class constructor, to set the default
close operation, and to set the layout manager. Then add all the necessary
components to the JFrame.
public JResortCalculator()
{

super("Resort Price Estimator");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLayout(new FlowLayout());
add(resortLabel);
add(optionExplainLabel);
add(optionExplainLabel2);
add(weekendBox);
add(breakfastBox);
add(golfBox);
add(priceLabel);
add(totPrice);

6. Continue the constructor by setting the text of the totPrice JTextField to
display a dollar sign and the totalPrice value. Register the class as a listener
for events generated by each of the three JCheckBoxes. Finally, add a closing
curly brace for the constructor.

totPrice.setText("$" + totalPrice);
weekendBox.addItemListener(this);
breakfastBox.addItemListener(this);
golfBox.addItemListener(this);

}

(continued)

(continues)

Using the JCheckBox, ButtonGroup, and JComboBox Classes

777

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Begin the itemStateChanged() method that executes when the user selects
or deselects a JCheckBox. Use the appropriate methods to determine
which JCheckBox is the source of the current ItemEvent and whether the
event was generated by selecting a JCheckBox or by deselecting one.
@Override
public void itemStateChanged(ItemEvent event)
{

Object source = event.getSource();
int select = event.getStateChange();

8. Write a nested if statement that tests whether the source is equivalent to the
weekendBox, breakfastBox, or, by default, the golfBox. In each case,
depending on whether the item was selected or deselected, add or subtract
the corresponding premium fee from the totalPrice. Display the total price
in the JTextField, and add a closing curly brace for the method.

if(source == weekendBox)
if(select == ItemEvent.SELECTED)

totalPrice += WEEKEND_PREMIUM;
else

totalPrice -= WEEKEND_PREMIUM;
else if(source == breakfastBox)
{

if(select == ItemEvent.SELECTED)
totalPrice += BREAKFAST_PREMIUM;

else
totalPrice -= BREAKFAST_PREMIUM;

}
else // if(source == golfBox) by default

if(select == ItemEvent.SELECTED)
totalPrice += GOLF_PREMIUM;

else
totalPrice -= GOLF_PREMIUM;

totPrice.setText("$" + totalPrice);
}

9. Add a main() method that creates an instance of the JFrame and sets its size
and visibility. Then add a closing curly brace for the class.

public static void main(String[] args)
{

JResortCalculator aFrame = new JResortCalculator();
final int WIDTH = 300;
final int HEIGHT = 200;
aFrame.setSize(WIDTH, HEIGHT);
aFrame.setVisible(true);

}
}

(continued)

(continues)

C H A P T E R 1 4 Introduction to Swing Components

778

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Save the file as JResortCalculator.java. Compile and execute the
application. The output appears in Figure 14-41 with the base price initially
set to $200.

11. Select the Weekend premium JCheckBox, and note the change in the total
price of the event. Experiment with selecting and deselecting options to
ensure that the price changes correctly. For example, Figure 14-42 shows the
application with the weekend and golf options selected, adding a total of $175
to the $200 base price. After testing all the option combinations, close the
application.

(continued)

Figure 14-42 Output of the JResortCalculator application after the user has made
selections

Figure 14-41 Initial output of the JResortCalculator application

Using the JCheckBox, ButtonGroup, and JComboBox Classes

779

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It
Don’t forget the x in javax when you import Swing components into an application.

Don’t forget to use a JFrame’s setVisible() method if you want the JFrame to be visible.

Don’t forget to use setLayout() when you add multiple components to a JFrame.

Don’t forget to call validate() and repaint() after you add or remove a component
from a container that has been made visible.

Don’t forget that creating a ButtonGroup does not cause components to be grouped; each
component that should be in the group must be added explicitly.

Don’t forget that the ButtonGroup class does not begin with a J.

Key Terms
GUI components are graphical user interface components, such as buttons and text fields,
with which the user can interact.

The Abstract Windows Toolkit (AWT) contains GUI components that are older and not as
portable as Swing components.

Swing is a toolkit that contains GUI components that are more portable than AWT
components; you can usually recognize their names because they begin with J.

Java Foundation Classes (JFC) include Swing component classes and selected classes from
the java.awt package.

Lightweight components are written completely in Java and do not have to rely on the code
written to run the local operating system.

Heavyweight components require interaction with the local operating system.

A container is a type of component that holds other components so you can treat a group of
them as a single entity. Often, a container takes the form of a window that you can drag,
resize, minimize, restore, and close.

A window is a rectangular container that can hold GUI components.

A frame is a GUI component that is similar to a window, but that has a title bar and border.

Pixels are the picture elements, or tiny dots of light, that make up the image on your
computer monitor.

Window decorations are the icons and buttons that are part of a window or frame.

Look and feel comprises the elements of design, style, and functionality in a user interface.

C H A P T E R 1 4 Introduction to Swing Components

780

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A label is an uneditable GUI component that is most often used to provide information
for a user.

Editable describes a component that can accept keystrokes.

A font is the size, weight, and style of a typeface.

A layout manager is a class that controls component positioning.

A border layout manager is a layout manager that divides a container into regions.

A flow layout manager is a layout manager that places components in rows; when any row is
filled, additional components automatically spill into the next row.

A text field is a GUI component into which a user can type a single line of text data.

A button is a GUI component typically used to trigger an action or make a selection when the
user clicks it.

Tool tips are popup windows that can help a user understand the purpose of components in
an application; a tool tip appears when a user hovers the mouse pointer over the component.

An event occurs when a user takes action on a component.

In an event-driven program, the user might initiate any number of events in any order.

The source of an event is the component on which an event is generated.

A listener is an object that is interested in an event.

To register an object as an event listener is to sign it up as one.

An event handler is a method that executes automatically when an appropriate event occurs.

A check box consists of a label positioned beside a clickable square; frequently you use
a check box to allow the user to turn an option on or off.

A button group groups several components, such as check boxes, so a user can select only one
at a time.

A combo box is a GUI component that combines a display area showing a default option and
a list box containing additional options.

Generic programming is a feature of languages that allows methods to be used safely with
multiple data types.

Chapter Summary
Swing components are GUI elements such as dialog boxes and buttons. EachSwing component
is a descendant of a JComponent, which in turn inherits from the java.awt.Container class.
Swing components usually are placed in a container—a type of component that holds
other components. Containers are defined in the Container class. Often, a container takes
the form of a window that you can drag, resize, minimize, restore, and close.

Chapter Summary

781

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A JFrame holds and displays other objects. Useful methods include setSize(), setTitle(),
setVisible(), setBounds(), and setDefaultCloseOperation(). JFrames include a title
bar at the top containing text information, and Minimize, Maximize or Restore, and Close
buttons in the frame’s upper-right corner. When a user closes a JFrame by clicking the
Close button in the upper-right corner, the default behavior is for the JFrame to be hidden
and for the application to keep running.

JLabel is a built-in Java Swing class that holds text. The setFont() method changes the
font typeface, style, and point size.

A layout manager is a class that controls component positioning in a container. The
normal (default) behavior of a JFrame is to use a layout format named BorderLayout.
With FlowLayout, components are placed in rows; when any row is filled, additional
components automatically spill into the next row.

The advantage to creating a child class of JFrame is that you can set the JFrame’s
properties within your object’s constructor; then, when you create your JFrame child
object, it is automatically endowed with the features you have specified, such as title, size,
and default close operation.

A JTextField is a component into which a user can type a single line of text data.
A JButton is a Component the user can click to make a selection. Tool tips are popup
windows that can help a user understand the purpose of components in an
application; the tool tip appears when a user hovers the mouse pointer over the
component.

Within an event-driven program, a component on which an event is generated is the
source of the event, and an object that is interested in an event is a listener. You prepare
your class to accept button-press events by importing the java.awt.event package into
your program and adding the phrase implements ActionListener to the class header.
You register your class as a listener with the addActionListener() method, and then you
implement the actionPerformed() method to contain the actions that should occur in
response to the event. Within the actionPerformed() method, you can use the
getSource() method to determine which component generated the event.

A class can implement as many event listeners as it needs. Examples of event listeners
are ActionListener, ItemListener, KeyListener, and MouseListener. Any object can
be notified of an event as long as it implements the appropriate interface and is registered
as an event listener on the appropriate event source. Specific methods react to specific
event types.

A JCheckBox consists of a label positioned beside a checkable square and frequently
is used to allow the user to turn an option on or off. A ButtonGroup groups
components so a user can select only one at a time. A JComboBox is a component
that combines a display area showing a default option and a drop-down list box
containing additional options.

C H A P T E R 1 4 Introduction to Swing Components

782

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions
1. A JFrame is a descendant of each of the following classes except the

class.

a. Component

b. Jar

c. Container

d. Window

2. Unlike a Window, a JFrame .

a. can hold other objects
b. can be made visible

c. can have descendants
d. has a title bar and border

3. The statement JFrame myFrame = new JFrame(); creates a JFrame that is
.

a. invisible and has no title
b. invisible and has a title

c. visible and has no title
d. visible and has a title

4. To create a JFrame named aFrame that is 300 pixels wide by 200 pixels tall, you
can .

a. use the declaration JFrame aFrame = new JFrame(300, 200);

b. declare a JFrame named aFrame and then code aFrame.setSize(300, 200);

c. declare a JFrame named aFrame and then code aFrame.setBounds(300, 200);

d. use any of the above

5. When a user closes a JFrame, the default behavior is for .

a. the JFrame to close and the application to keep running
b. the JFrame to be hidden and the application to keep running
c. the JFrame to close and the application to exit
d. nothing to happen

6. An advantage of extending the JFrame class is .

a. you can set the child class properties within the class constructor
b. there is no other way to cause an application to close when the user clicks a

JFrame’s Close button
c. there is no other way to make a JFrame visible
d. all of the above

7. Suppose that you create an application in which you instantiate a JFrame named
frame1 and a JLabel named label1. Which of the following statements within the
application adds label1 to frame1?

a. label1.add(frame1);

b. frame1.add(label1);

c. this.add(label1);

d. two of the above

Review Questions

783

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. The arguments required by the Font constructor include all of the following
except .

a. typeface
b. style

c. mode
d. point size

9. A class that controls component positioning in a JFrame is a .

a. container
b. layout manager

c. formatter
d. design supervisor

10. Which of the following is not true of a JTextField?

a. A user can type text data into it.
b. Its data can be set in the program instead of by the user.
c. A program can set its attributes so that a user cannot type in it.
d. It is a type of Container.

11. are popup windows that appear when a user hovers the mouse
pointer over a component.

a. Navigation notes
b. Tool tips

c. Help icons
d. Graphic suggestions

12. Within an event-driven program, a component on which an event is generated is
the .

a. performer
b. listener

c. source
d. handler

13. A class that will respond to button-press events must use which phrase in its header?

a. import java.event

b. extends Action

c. extends JFrame

d. implements ActionListener

14. A JFrame contains a JButton named button1 that should execute an
actionPerformed() method when clicked. Which statement is needed in the
JFrame class?

a. addActionListener(this);

b. addActionListener(button1);

c. button1.addActionListener(this);

d. this.addActionListener(button1);

15. When you use the getSource() method with an ActionEvent object, the result is
a(n) .

a. Object

b. ActionEvent

c. Component

d. TextField

C H A P T E R 1 4 Introduction to Swing Components

784

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16. A class can implement .

a. one listener
b. two listeners
c. as many listeners as it needs
d. any number of listeners as long as they are not conflicting listeners

17. When you write a method that reacts to JCheckBox changes, you name the
method .

a. itemStateChanged()

b. actionPerformed()

c. checkBoxChanged()

d. any legal identifier you choose

18. If a class contains two components that might each generate a specific event type,
you can determine which component caused the event by using the
method.

a. addActionListener()

b. getSource()

c. whichOne()

d. identifyOrigin()

19. To group several components such as JCheckBoxes so that a user can select only one
at a time, you create a .

a. JCheckBoxGroup

b. CheckBoxGroup

c. JButtonGroup

d. ButtonGroup

20. Suppose that you have declared a ButtonGroup named twoOptions and added two
JCheckBoxes named box1 and box2 to it. Which box is selected after the following
statements execute?
twoOptions.setSelected(box1);
twoOptions.setSelected(box2);

a. box1

b. box2

c. both box1 and box2

d. none of these

Exercises

Programming Exercises

1. a. Write an application that displays a JFrame containing the opening sentence or
two from your favorite book. Save the file as JBookQuote.java.

b. Add a button to the frame in the JBookQuote program. When the user clicks the
button, display the title of the book that contains the quote. Save the file as
JBookQuote2.java.

2. a. Write an application that instantiates a JFrame that contains a JButton. Disable
the JButton after the user clicks it. Save the file as JFrameDisableButton.java.

Exercises

785

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. Modify the JFrameDisableButton program so that the JButton is not disabled
until the user has clicked at least eight times. At that point, display a JLabel that
indicates “That’s enough!”. Save the file as JFrameDisableButton2.java.

3. Create an application with a JFrame and at least five labels that contain interesting
historical facts. Every time the user clicks a JButton, remove one of the labels and add
a different one. Save the file as JHistoricalFacts.java.

4. Write an application for Lambert’s Vacation Rentals. Use separate ButtonGroups to
allow a client to select one of three locations, the number of bedrooms, and whether
meals are included in the rental. Assume that the locations are parkside for $600 per
week, poolside for $750 per week, or lakeside for $825 per week. Assume that the
rentals have one, two, or three bedrooms and that each bedroom over one adds $75
to the base price. Assume that if meals are added, the price is $200 more per rental.
Save the file as JVacationRental.java.

5. a. Write an application that allows a user to select one of at least five television shows
to watch on demand. When the user selects a show, display a brief synopsis. Save
the file as JTVDownload.java.

b. Change the JTVDownload application to include an editable combo box. Allow the
user to type the name of a television show and display an appropriate error
message if the desired show is not available. Save the file as JTVDownload2.java.

6. Design an application for a pizzeria. The user makes pizza order choices from list
boxes, and the application displays the price. The user can choose a pizza size of small
($7), medium ($9), large ($11), or extra large ($14), and one of any number of
toppings. There is no additional charge for cheese, but any other topping adds $1 to
the base price. Offer at least five different topping choices. Save the file as JPizza.java.

7. Write an application that allows a user to select a country from a list box that
contains at least seven options. After the user makes a selection, display the country’s
capital city. Save the file as JCapitals.java.

8. Write an application that allows the user to choose insurance options in JCheckBoxes.
Use a ButtonGroup to allow the user to select only one of two insurance types—HMO
(health maintenance organization) or PPO (preferred provider organization). Use
regular (single) JCheckBoxes for dental insurance and vision insurance options; the
user can select one option, both options, or neither option. As the user selects each
option, display its name and price in a text field; the HMO costs $200 per month, the
PPO costs $600 per month, the dental coverage adds $75 per month, and the vision
care adds $20 per month. When a user deselects an item, make the text field blank.
Save the file as JInsurance.java.

9. a. Search the Java Web site for information on how to use a JTextArea, its
constructors, and its setText() and append() methods. Write an application
that allows the user to select options for a dormitory room. Use JCheckBoxes
for options such as private room, Internet connection, cable TV connection,
microwave, refrigerator, and so on. When the application starts, use a text area to
display a message listing the options that are not yet selected. As the user selects

C H A P T E R 1 4 Introduction to Swing Components

786

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and deselects options, add appropriate messages to the common text area so it
accumulates a running list that reflects the user’s choices. Save the file as JDorm.java.

b. Modify the JDorm application so that instead of a running list of the user’s choices,
the application displays only the current choices. Save the file as JDorm2.java.

10. Create an application for Paula’s Portraits, a photography studio. The application
allows users to compute the price of a photography session. Paula’s base price is $40
for an in-studio photo session with one person. The in-studio fee is $75 for a session
with two or more subjects, and $95 for a session with a pet. A $90 fee is added to
take photos on location instead of in the studio. Include a set of mutually exclusive
check boxes to select the portrait subject and another set of mutually exclusive
check boxes for the session location. Include labels as appropriate to explain the
application’s functionality. Save the file as JPhotoFrame.java.

Debugging Exercises
1. Each of the following files in the Chapter14 folder of your downloadable student

files has syntax and/or logic errors. In each case, determine the problem and fix
the program. After you correct the errors, save each file using the same
filename preceded with Fix. For example, DebugFourteen1.java will become
FixDebugFourteen1.java.

a. DebugFourteen1.java
b. DebugFourteen2.java

c. DebugFourteen3.java
d. DebugFourteen4.java

Game Zone
1. a. Create a quiz game that displays, in turn, five questions about any topic of your

choice. All five questions should have the same three possible multiple-choice
answers. For example, you might ask trivia questions about U.S. states for which
the correct response is either California, Florida, or New York. After each
question is displayed, allow the user to choose one, two, or all three answers by
selecting JCheckBoxes. In other words, if the user is sure of an answer, he will
select just one box, but if he is uncertain, he might select two or three boxes.
When the user is ready to submit the answer(s), he clicks a button. If the user’s
answer to the question is correct and he has selected just one box, award 5
points. If the user is correct but has selected two boxes, award 2 points. If the
user has selected all three boxes, award 1 point. If the user has selected
fewer than three boxes but is incorrect, the user receives 0 points. A total of
25 points is possible. If the user has accumulated more than 21 points at the
end of the quiz, display the message Fantastic! If the user has accumulated
more than 15 points, display the message Very good, and if the user has
accumulated fewer points, display OK. Save the file as HedgeYourBet.java.

Exercises

787

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. Modify the HedgeYourBet game so that it stores the player’s score from the last
game in a file and displays the previous score at the start of each new game. (The
first time you play the game, the previous score should be 0.) Save the game as
HedgeYourBetUsingFile.java.

2. In Chapter 5, you created a lottery game application. Create a similar game using
check boxes. For this game, generate six random numbers, each between 0 and 30
inclusive. Allow the user to choose six check boxes to play the game. (Do not allow
the user to choose more than six boxes.) After the player has chosen six numbers,
display the randomly selected numbers, the player’s numbers, and the amount of
money the user has won, as follows:

Save the file as JLottery2.java.

3. a. Create a game called Last Man Standing in which the objective is to select the
last remaining JCheckBox. The game contains 10 JCheckBoxes. The player can
choose one, two, or three boxes, and then click a JButton to indicate the turn is
complete. The computer then randomly selects one, two, or three JCheckBox
objects. When the last JCheckBox is selected, display a message indicating the
winner. Save the game as LastManStanding.java.

b. In the current version of the Last Man Standing game, the computer might seem
to make strategic mistakes because of its random selections. For example, when
only two JCheckBox objects are left, the computer might randomly choose to
check only one, allowing the player to check the last one and win. Modify the
game to make it as smart as possible, using a random value for the number of the
computer’s selections only when there is no superior alternative. Save the
improved game as SmarterLastManStanding.java.

Case Problems
1. In previous chapters, you have created a number of programs for Carly’s Catering.

Now, create an interactive GUI program that allows the user to enter the number
of guests for an event into a text field; if the value entered is not numeric, set
the event price to 0. Also allow the user to choose one entree from a group of at
least four choices, up to two side dishes from a group of at least four choices, and

Matching Numbers Award ($)

Three matches 100

Four matches 10,000

Five matches 50,000

Six matches 1,000,000

Zero, one, or two matches 0

C H A P T E R 1 4 Introduction to Swing Components

788

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

one dessert from a group of at least three choices. Display the cost of the event as
$35 per person; as the user continues to make selection changes, display
a list of the current items chosen. If a user attempts to choose more than two
side dishes, remove all the current side dish selections so that the user can start
over. Save the program as JCarlysCatering.java.

2. In previous chapters, you have created a number of programs for Sammy’s Seashore
Rentals. Now, create an interactive GUI program that allows the user to enter
a rental time in hours into a text field; if the value entered is not numeric, set the
rental price to 0. Also allow the user to choose one equipment type to rent from
a group of seven choices. The rental fee is $40 per hour for a jet ski or pontoon boat;
$20 per hour for a rowboat, canoe, or kayak; and $7 per hour for a beach chair
or umbrella. Let the user add an equipment lesson for an extra $5. Display a message
that indicates all the details for the rental, including the total price. Save the
program as JSammysSeashore.java.

Exercises

789

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 15
Advanced GUI Topics

In this chapter, you will:

Use content panes

Use color

Learn more about layout managers

Use JPanels to increase layout options

Create JScrollPanes

Understand events and event handling more thoroughly

Use the AWTEvent class methods

Handle mouse events

Use menus

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding the Content Pane
Every Java Swing component that appears on the screen must be part of a containment
hierarchy, which is a tree of components that has a top-level container at its uppermost level.
JFrame, JDialog, and JApplet are Java’s three top-level container classes. Every top-level
container has a content pane that contains all the visible components in the container’s user
interface. So, for example, any of the following techniques causes a JButton to appear
onscreen in a JFrame:

The button can be placed directly on the content pane of the JFrame.

The button can be placed on a container, like a JPanel, that is on the content pane of the
JFrame. (You learn about the JPanel class later in this chapter.)

The button can be placed on a container that is on
another container that is on the content pane of a
JFrame.

And so on, with the content pane always at the top of
the hierarchy.

A top-level container can contain a menu bar. A menu bar
is a horizontal strip that conventionally is placed at the top
of a container and contains user options. The menu bar,
if there is one, is just above (and separate from) the
content pane. A glass pane resides above the content
pane. Figure 15-1 shows the relationship between a
JFrame and its root, content, and glass panes.

The glass pane is a powerful container feature. Tool tips, which you learned about in Chapter 14, reside on the
glass pane. You also can draw your own graphics on the glass pane “on top of” components on a JFrame.
(You will learn about drawing in the “Graphics” chapter.) If you add a MouseListener to the glass pane, it
prevents the mouse from triggering events on the components below the glass pane on the JFrame.

An additional layered pane exists above the root pane, but it is not often used explicitly by Java programmers.
For more details, see the Java Web site.

Whenever you create a JFrame (or other top-level container), you can get a reference to its
content pane using the getContentPane() method. In Chapter 14, you added and removed
components from JFrames and set their layout managers without understanding you were
using the content pane. You had this ability because Java automatically converts
add(), remove(), and setLayoutManager() statements to more complete versions.
For example, the following three statements are equivalent within a class that descends
from JFrame:
this.getContentPane().add(aButton);
getContentPane().add(aButton);
add(aButton);

JFrame

Root pane
Menu bar
Content pane

Glass pane

Figure 15-1 Parts of a JFrame

C H A P T E R 1 5 Advanced GUI Topics

792

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the first statement, this refers to the JFrame class in which the statement appears, and
getContentPane() provides a reference to the content pane. In the second statement, the
this reference is implied. In the third statement, both the this reference and the
getContentPane() call are implied.

Although you do not need to worry about the content pane if you only add components to,
remove components from, or set the layout manager of a JFrame, you must refer to the
content pane for all other actions, such as setting the background color.

When you write an application that adds multiple components to a content pane, it is
more efficient to declare an object that represents the content pane than to keep calling the
getContentPane() method. For example, consider the following code in a JFrame class that
adds three buttons:
getContentPane().add(button1);
getContentPane().add(button2);
getContentPane().add(button3);

You might prefer to write the following statements. The call to getContentPane() is made
once, its reference is stored in a variable, and the reference name is used repeatedly with the
call to the add() method:
Container con = getContentPane();
con.add(button1);
con.add(button2);
con.add(button3);

As an example, the class in Figure 15-2 creates a JFrame like the ones you created throughout
Chapter 14, although to keep the example simple, no tasks are assigned to the button.

import java.awt.*;
import javax.swing.*;
public class JFrameWithExplicitContentPane extends JFrame
{

private final int SIZE = 180;
private Container con = getContentPane();
private JButton button = new JButton("Press Me");
public JFrameWithExplicitContentPane()
{

setSize(SIZE, SIZE);
con.setLayout(new FlowLayout());
con.add(button);

}
public static void main(String[] args)
{

JFrameWithExplicitContentPane frame =
new JFrameWithExplicitContentPane();

frame.setVisible(true);
}

}

Figure 15-2 The JFrameWithExplicitContentPane class

Understanding the Content Pane

793

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To keep the examples simple, many programs shown in the figures in this chapter do not set a title or a
default close operation. Recall that you can end a program without a specified close operation by pressing
Ctrl+C at the command line.

In Figure 15-2, the getContentPane()
method assigns a reference to a Container

named con, and the Container reference
is used later with the setLayout() and
add() methods. Figure 15-3 shows the
result. The frame constructed from the class
in Figure 15-2 is identical to the one that
would be constructed if the shaded parts
were omitted.

When you want to use methods other than
add(), remove(), or setLayout(), you
must use a content pane. In the next
section, you will learn about the
setBackground() and setForeground()

methods, which are used to change colors
in a JFrame. If you use these methods
without a content pane reference, the user
will not see the results.

TWO TRUTHS & A LIE

Understanding the Content Pane

1. Every Java component has a content pane that contains all the visible parts a
user sees.

2. Whenever you create a JFrame, you can get a reference to its content pane
using the getContentPane() method.

3. When you change the background color or layout of a JFrame, you should
change the content pane and not the JFrame directly.

. ecafr et ni r esu s’ r eni at noc eht ni st nenop moc el bi si v eht ll a sni at noc
t aht enapt net noc a sah r eni at nocl evel- pot yr evE. 1# si t ne met at s esl af ehT

Figure 15-3 Output of the
JFrameWithExplicitContentPane application

C H A P T E R 1 5 Advanced GUI Topics

794

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using Color
The Color class defines colors for you to use in your applications. The Color class can be used
with the setBackground() and setForeground() methods of the Component class to make
your applications more attractive and interesting. When you use the Color class, you include
the statement import java.awt.Color; at the top of your class file.

The statement import java.awt.*; uses the wildcard to import all of the types in the java.awt
package, but it does not import java.awt.Color, java.awt.Font, or any other packages within
awt. If you plan to use the classes from java.awt and from java.awt.Color, you must use both
import statements.

The Color class defines named constants that represent 13 colors, as shown in Table 15-1.
Although Java constants are usually written in all uppercase letters, as you learned in
Chapter 2, Java’s creators declared two constants for every color in the Color class—an
uppercase version, such as BLUE, and a lowercase version, such as blue. Earlier versions of
Java contained only the lowercase Color constants. (Two uppercase Color constants use an
underscore in DARK_GRAY and LIGHT_GRAY; the lowercase versions are a single word:
darkgray and lightgray.)

You can also create your own Color object with the following statement:
Color someColor = new Color(r, g, b);

In this statement, r, g, and b are numbers representing the intensities of red, green, and blue
you want in your color. The numbers can range from 0 to 255. For example, the color black is
created using r, g, and b values 0, 0, 0, and white is created by 255, 255, 255. The following
statement produces a dark purple color that has red and blue components, but no green.
Color darkPurple = new Color(100, 0, 100);

You can create more than 16 million custom colors using this approach. Some computers
cannot display each of the 16 million possible colors; each computer displays the closest color
it can to the requested color.

You also can create a Color object using four arguments. The fourth argument is the alpha
value, which indicates the color’s level of transparency and can be a value from 0.0 to 1.0. If
you use no fourth argument or 1.0, the color is completely opaque. If you use 0.0 as the fourth
argument, the color is completely transparent.

BLACK GREEN RED

BLUE LIGHT_GRAY WHITE

CYAN MAGENTA YELLOW

DARK_GRAY ORANGE

GRAY PINK

Table 15-1 Color class constants

Using Color

795

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can discover the red, green, or blue components of any existing color with the methods
getRed(), getGreen(), and getBlue(). Each of these methods returns an integer. For
example, you can discover the amount of red in MAGENTA by displaying the value of
Color.MAGENTA.getRed().

Figure 15-4 shows a short application that sets the background color of a JFrame’s content pane
and sets both the foreground and background colors of a JButton. Figure 15-5 shows the output.

import java.awt.*;
import javax.swing.*;
import java.awt.Color;
public class JFrameWithColor extends JFrame
{

private final int SIZE = 180;
private Container con = getContentPane();
private JButton button = new JButton("Press Me");
public JFrameWithColor()
{

setSize(SIZE, SIZE);
con.setLayout(new FlowLayout());
con.add(button);
con.setBackground(Color.YELLOW);
button.setBackground(Color.RED);
button.setForeground(Color.WHITE);

}
public static void main(String[] args)
{

JFrameWithColor frame = new JFrameWithColor();
frame.setVisible(true);

}
}

Figure 15-4 The JFrameWithColor class

Because this book is printed in only two colors, you
can’t see the full effect of setting applications’ colors
in the figures. However, when you work through the
“You Do It” exercises later in this chapter, you can
observe the effect of color changes on your own
monitor.

Figure 15-5 Execution of the
JFrameWithColor application

C H A P T E R 1 5 Advanced GUI Topics

796

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using Color

1. The Color class can be used with the setBackground() and setForeground() meth-
ods of the Component class to make your applications more attractive and interesting.

2. The Color class defines named constants that represent 256 colors.

3. You can create your own Color object using values that represent the
intensities of red, green, and blue you want in your color.

. sr ol oc 31t neser per
t aht st nat snoc de man senif ed ssal c roloC ehT. 2# si t ne met at s esl af ehT

Learning More About Layout Managers
As you learned in Chapter 14, a layout manager is an object that controls the size and position of
components inside a Container object. The layout manager that you assign to a Container

determines how its components are sized and positioned. Layout manager classes are interfaces
that are part of the JDK; they align your components so the components neither crowd each other
nor overlap. For example, you have already learned that the FlowLayout layout manager positions
components in rows from left to right across their container. Other layout managers arrange
components in equally spaced columns and rows or center components within their container.
Each component you place within a Container can also be a Container itself, so you can assign
layout managers within layout managers. The Java platform supplies layout managers that range
from the very simple (FlowLayout and GridLayout) to the special purpose (BorderLayout and
CardLayout) to the very flexible (GridBagLayout and BoxLayout). Table 15-2 lists each layout
manager and situations in which each is commonly used.

Layout Manager When to Use

BorderLayout Use when you add components to a maximum of five sections arranged in north,
south, east, west, and center positions

FlowLayout Use when you need to add components from left to right; FlowLayout automatically
moves to the next row when needed, and each component takes its preferred size

GridLayout Use when you need to add components into a grid of rows and columns; each
component is the same size

CardLayout Use when you need to add components that are displayed one at a time

BoxLayout Use when you need to add components into a single row or a single column

GridBagLayout Use when you need to set size, placement, and alignment constraints for every
component that you add

Table 15-2 Java layout managers

Learning More About Layout Managers

797

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using BorderLayout
The BorderLayout manager is the default manager class for all content panes. You can
use the BorderLayout class with any container that has five or fewer components. (However,
any of the components could be a container that holds even more components.) When you
use the BorderLayout manager, the components fill the screen in five regions: north, south,
east, west, and center. If you do not specify a region when you add a component to a
BorderLayout, the component is placed in the center region. In Chapter 14, when you
placed multiple components in a BorderLayout without specifying a region, each new
component obscured the previous one in the center region.

Figure 15-6 shows a JFrame that uses BorderLayout; each of the five regions in the content
pane contains a JButton object with descriptive text.

When you add a component to a container that uses BorderLayout, the add() method
uses two arguments: the component and the region to which the component is added.
The BorderLayout class provides five named constants for the regions—BorderLayout.NORTH,
.SOUTH, .EAST, .WEST, and .CENTER—or you can use the Strings those constants represent:
“North”, “South”, “East”, “West”, or “Center”. Figure 15-7 shows the class that creates the
output in Figure 15-6.

import javax.swing.*;
import java.awt.*;
public class JDemoBorderLayout extends JFrame
{

private JButton nb = new JButton("North Button");
private JButton sb = new JButton("South Button");
private JButton eb = new JButton("East Button");
private JButton wb = new JButton("West Button");
private JButton cb = new JButton("Center Button");
private Container con = getContentPane();

Figure 15-6 Output of the JDemoBorderLayout application

Figure 15-7 The JDemoBorderLayout class (continues)

C H A P T E R 1 5 Advanced GUI Topics

798

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public JDemoBorderLayout()
{

con.setLayout(new BorderLayout());
con.add(nb, BorderLayout.NORTH);
con.add(sb, BorderLayout.SOUTH);
con.add(eb, BorderLayout.EAST);
con.add(wb, BorderLayout.WEST);
con.add(cb, BorderLayout.CENTER);
setSize(400, 150);

}
public static void main(String[] args)
{

JDemoBorderLayout frame = new JDemoBorderLayout();
frame.setVisible(true);

}
}

Figure 15-7 The JDemoBorderLayout class

The JDemoBorderLayout program in Figure 15-7 uses the setLayout() and add() methods with
the content pane reference. The reference could also be omitted.

When using BorderLayout, you can use the constants PAGE_START, PAGE_END, LINE_START,
LINE_END, and CENTER instead of NORTH, SOUTH, EAST, WEST, and CENTER. Rather than using
geographical references, these constants correspond to positions as you might picture them on a printed
page. Also, if you add the following import statement at the top of your file, you can simply refer to CENTER
instead of BorderLayout.CENTER:

import static java.awt.BorderLayout.*;

When you place exactly five components in a container and use a different region for each in a
BorderLayout, each component fills one entire region, as illustrated in Figure 15-6. When the
application runs, Java determines the exact size of each component based on the component’s
contents. When you resize a Container that uses BorderLayout, the regions also change in size.
If you drag the Container’s border to make it wider (using a mouse, or a finger or stylus on a
touch screen), the north, south, and center regions become wider, but the east and west regions
do not change. If you increase the Container’s height, the east, west, and center regions become
taller, but the north and south regions do not change.

In Figure 15-7, an anonymous BorderLayout object is created when the constructor is called
within the setLayout() method. Instead, you could declare a named BorderLayout object
and use its identifier in the setLayout() call. However, it’s not necessary to use either
technique to specify BorderLayout because it is the default layout manager for all content
panes. You must use setLayout() with other managers such as FlowLayout.

When you use BorderLayout, you are not required to add components into each of the five
regions. If you add fewer components, any empty component regions disappear, and the
remaining components expand to fill the available space. If any or all of the north, south, east,
or west areas are left out, the center area spreads into the missing area or areas. However, if
the center area is left out, the north, south, east, or west areas do not change.

(continued)

Learning More About Layout Managers

799

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using FlowLayout
Recall from Chapter 14 that you can use the FlowLayout manager class to arrange
components in rows across the width of a Container. With FlowLayout, each Component that
you add is placed to the right of previously added components in a row; or, if the current row
is filled, the Component is placed to start a new row.

When you use BorderLayout, the Components you add fill their regions—that is, each
Component expands or contracts based on its region’s size. However, when you use
FlowLayout, each Component retains its default size, or preferred size. For example,
a JButton’s preferred size is the one that is large enough to hold the JButton’s text
comfortably. Unlike BorderLayout, when you use FlowLayout and then resize the window,
each component retains its size, but it might become partially obscured or change position.

TheFlowLayout class contains three constants you can use to align Components with a Container:

FlowLayout.LEFT

FlowLayout.CENTER

FlowLayout.RIGHT

If you do not specify alignment, Components are center-aligned in a FlowLayout Container by
default. Figure 15-8 shows an application that uses the FlowLayout.LEFT and FlowLayout.RIGHT
constants to reposition JButtons. In this example, a FlowLayout object named layout is
used to set the layout of the content pane. When the user clicks a button, the shaded code in
the actionPerformed() method changes the alignment to left or right using the FlowLayout
class setAlignment() method. Figure 15-9 shows the application when it starts, how the
JButton Components are repositioned after the user clicks the “L” button, and how the
Components are repositioned after the user clicks the “R” button.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JDemoFlowLayout extends JFrame implements ActionListener
{

private JButton leftButton = new JButton("L Button");
private JButton rightButton = new JButton("R Button");
private Container con = getContentPane();
private FlowLayout layout = new FlowLayout();
public JDemoFlowLayout()
{

con.setLayout(layout);
con.add(leftButton);
con.add(rightButton);
leftButton.addActionListener(this);
rightButton.addActionListener(this);
setSize(500, 100);

}

Figure 15-8 The JDemoFlowLayout application (continues)

C H A P T E R 1 5 Advanced GUI Topics

800

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

@Override
public void actionPerformed(ActionEvent event)
{

Object source = event.getSource();
if(source == leftButton)

layout.setAlignment(FlowLayout.LEFT);
else

layout.setAlignment(FlowLayout.RIGHT);
con.invalidate();
con.validate();

}
public static void main(String[] args)
{

JDemoFlowLayout frame = new JDemoFlowLayout();
frame.setVisible(true);

}
}

Figure 15-8 The JDemoFlowLayout application

The last statements in the JDemoFlowLayout class call invalidate() and validate().
The invalidate() call marks the container (and any of its parents) as needing to be laid out. The
validate() call causes the components to be rearranged based on the newly assigned layout.

(continued)

Figure 15-9 The JDemoFlowLayout application as it first appears on the screen, after the user
chooses the “L” button, and after the user chooses the “R” button

Learning More About Layout Managers

801

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using GridLayout
If you want to arrange components into equal rows and columns, you can use the
GridLayout manager class. When you create a GridLayout object, you indicate the numbers
of rows and columns you want, and then the container surface is divided into a grid, much
like the screen you see when using a spreadsheet program. For example, the following
statement establishes an anonymous GridLayout with four horizontal rows and five vertical
columns in a Container named con:
con.setLayout(new GridLayout(4, 5));

Specifying rows and then columns when you use GridLayout might seem natural to you,
because this is the approach you take when defining two-dimensional arrays.

As you add new Components to a GridLayout, they are positioned in sequence from left to right
across each row. Unfortunately, you can’t skip a position or specify an exact position for a
component. (However, you can add a blank component such as a label or panel to a grid
position to give the illusion of skipping a position.) You also can specify a vertical and horizontal
gap measured in pixels, using two additional arguments. For example, Figure 15-10 shows a
JDemoGridLayout program that uses the shaded statement to establish a GridLayout with three
horizontal rows and two vertical columns, and horizontal and vertical gaps of five pixels each.
Five JButton Components are added to the JFrame’s automatically retrieved content pane.

import javax.swing.*;
import java.awt.*;
public class JDemoGridLayout extends JFrame
{

private JButton b1 = new JButton("Button 1");
private JButton b2 = new JButton("Button 2");
private JButton b3 = new JButton("Button 3");
private JButton b4 = new JButton("Button 4");
private JButton b5 = new JButton("Button 5");
private GridLayout layout = new GridLayout(3, 2, 5, 5);
private Container con = getContentPane();
public JDemoGridLayout()
{

con.setLayout(layout);
con.add(b1);
con.add(b2);
con.add(b3);
con.add(b4);
con.add(b5);
setSize(200, 200);

}
public static void main(String[] args)
{

JDemoGridLayout frame = new JDemoGridLayout();
frame.setVisible(true);

}
}

Figure 15-10 The JDemoGridLayout class

C H A P T E R 1 5 Advanced GUI Topics

802

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 15-11 shows the output of the JDemoGridLayout

application. The Components are placed into the pane
across the three rows. Because there are six positions
but only five Components, one spot remains unused.

With GridLayout, you can specify the number of rows
and use 0 for the number of columns to let the layout
manager determine the number of columns, or you
can use 0 for the number of rows, specify the number
of columns, and let the layout manager calculate the
number of rows.

When trying to decide whether to use GridLayout or
FlowLayout, remember the following:

Use GridLayout when you want components in
fixed rows and columns and you want the
components’ size to fill the available space.

Use FlowLayout if you want Java to determine the rows and columns, do not want a rigid
row and column layout, and want components to retain their “natural” size when their
container is resized so their contents are fully visible.

Using CardLayout
The CardLayout manager generates a stack of containers or components, one on top of
another, much like a blackjack dealer reveals playing cards one at a time from the top of a
deck. Each component in the group is referred to as a card, and each card can be any
component type—for example, a JButton, JLabel, or JPanel. You use a CardLayout when
you want multiple components to share the same display space.

A card layout is created from the CardLayout class using one of two constructors:

CardLayout() creates a card layout without a horizontal or vertical gap.

CardLayout(int hgap, int vgap) creates a card layout with the specified horizontal and
vertical gaps. The horizontal gaps are placed at the left and right edges. The vertical gaps
are placed at the top and bottom edges.

For example, Figure 15-12 shows a JDemoCardLayout class that uses a CardLayout

manager to create a stack of JButtons that contain the labels Ace of Hearts, Three of Spades,
and Queen of Clubs. In the class constructor, you need a slightly different version of the add()
method to add a component to a content pane whose layout manager is CardLayout.
The format of the method is:
add(aString, aContainer);

In this statement, aString represents a name you want to use to identify the Component card
that is added.

Figure 15-11 Output of the
JDemoGridLayout program

Learning More About Layout Managers

803

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JDemoCardLayout extends JFrame implements ActionListener
{

private CardLayout cards = new CardLayout();
private JButton b1 = new JButton("Ace of Hearts");
private JButton b2 = new JButton("Three of Spades");
private JButton b3 = new JButton("Queen of Clubs");
private Container con = getContentPane();
public JDemoCardLayout()
{

con.setLayout(cards);
con.add("ace", b1);
b1.addActionListener(this);
con.add("three", b2);
b2.addActionListener(this);
con.add("queen", b3);
b3.addActionListener(this);
setSize(200, 100);

}
@Override
public void actionPerformed(ActionEvent e)
{

cards.next(getContentPane());
}
public static void main(String[] args)
{

JDemoCardLayout frame = new JDemoCardLayout();
frame.setVisible(true);

}
}

Figure 15-12 The JDemoCardLayout class

In a program that has a CardLayout manager, a change of cards is usually triggered
by a user’s action. For example, in the JDemoCardLayout program, each JButton can trigger
the actionPerformed() method. Within this method, the statement next(getContentPane())
flips to the next card of the container. (The order of the cards depends on the order in
which you add them to the container.) You also can use previous(getContentPane());,
first(getContentPane());, and last(getContentPane()); to flip to the previous, first, and
last card, respectively. You can go to a specific card by using the String name assigned in the
add() method call. For example, in the application in Figure 15-12, the following statement
would display “Three of Spades” because "three" is used as the first argument when the b2

object is added to the content pane in the JDemoCardLayout constructor:
cards.show(getContentPane(), "three");

Figure 15-13 shows the output of the JDemoCardLayout program when it first appears on the
screen, after the user clicks the button or taps it on a touch screen once, and after the user

C H A P T E R 1 5 Advanced GUI Topics

804

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

clicks or taps the button a second time. Because each JButton is a card, each JButton

consumes the entire viewing area in the container that uses the CardLayout manager. If the
user continued to click or tap the card buttons in Figure 15-13, the cards would continue to
cycle in order.

The JTabbedPane class operates like a container with a CardLayout, but folder-type tabs are in place
for the user to select the various components. You can find out more about the class at the Java Web site.

Using Advanced Layout Managers
Just as professional Java programmers are constantly creating new Components, they also
create new layout managers. You can search the Web for third-party layout managers to find
some interesting layout managers that have been created for Java. During your programming
career, you might even create your own.

For example, when GridLayout is not sophisticated enough for your purposes, you can
use GridBagLayout. The GridBagLayout manager allows you to add Components to precise
locations within the grid, as well as to indicate that specific Components should span multiple
rows or columns within the grid. For example, if you want to create a JPanel with six
JButtons, in which two of the JButtons are twice as wide as the others, you can use
GridBagLayout. This class is difficult to use because you must set the position and size for
each component, and more than 20 methods are associated with the class. Visit the Java
Web site for details on how to use this class.

Another layout manager option is the BoxLayout manager, which allows multiple
components to be laid out either vertically or horizontally. The components do not wrap,
so a vertical arrangement of components, for example, stays vertically arranged when the
frame is resized. The Java Web site can provide you with details.

Watch the video Layout Managers.

Figure 15-13 Output of JDemoCardLayout when it first appears on the screen, after the user
clicks or taps once, and after the user clicks or taps twice

Learning More About Layout Managers

805

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Learning More About Layout Managers

1. The FlowLayout manager is the default manager class for all content panes.

2. The BorderLayout manager can directly hold only up to five components.

3. The GridLayout manager arranges components in rows and columns.

. senapt net nocll a r of ssal c
r egana mtl uaf ed eht si r egana mtuoyaLredroB ehT. 1# si t ne met at s esl af ehT

You Do It

Using BorderLayout

Using layout managers in the containers in your applications allows flexibility in
arranging the components that users see on the screen. In this section, you create
a JFrame that uses a BorderLayout with components placed in each region. In the
following sections, you will observe how the same components appear when other
layout managers are used.

1. Open a new file, and then type the following first few lines of a program that
demonstrates BorderLayout with five objects:
import javax.swing.*;
import java.awt.*;
public class JBorderLayout extends JFrame
{

2. Instantiate five JButton objects, each with a label that is the name of one of
the regions used by BorderLayout:
private JButton nb = new JButton("North");
private JButton sb = new JButton("South");
private JButton eb = new JButton("East");
private JButton wb = new JButton("West");
private JButton cb = new JButton("Center");

3. Write the constructor that sets the JFrame’s layout manager and adds each of
the five JButtons to the appropriate region. Also set the default close
operation for the JFrame.

(continues)

C H A P T E R 1 5 Advanced GUI Topics

806

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public JBorderLayout()
{

setLayout(new BorderLayout());
add(nb, BorderLayout.NORTH);
add(sb, BorderLayout.SOUTH);
add(eb, BorderLayout.EAST);
add(wb, BorderLayout.WEST);
add(cb, BorderLayout.CENTER);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

4. Add a main() method that instantiates a JBorderLayout object and sets its
size and visibility, and include a closing curly brace for the class:

public static void main(String[] args)
{

JBorderLayout jbl = new JBorderLayout();
jbl.setSize(250, 250);
jbl.setVisible(true);

}
}

5. Save the file as JBorderLayout.java,
and then compile and execute it.
The output looks like Figure 15-14.
Each JButton entirely fills its
region. (If you click the JButtons,
they appear to be pressed, but
because you have not implemented
ActionListener, no other action
is taken.)

(continues)

(continued)

Figure 15-14 Output of the
JBorderLayout program

Learning More About Layout Managers

807

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. So you can observe the effects of changing the size of the viewing area, use
your mouse to drag the right border of the JFrame to increase the width to
approximately that shown in Figure 15-15. (You can use your touch screen if
you have one.) Notice that the center region expands, while the east and west
regions retain their original size.

7. Experiment with resizing both the width and height of the JFrame. Close the
JFrame when you finish.

Using Fewer than Five Components with the BorderLayout Manager

When you use JBorderLayout, you are not required to place components in every
region. For example, you might use only four components, leaving the north region
empty. Next, you remove one of the objects from the JBorderLayout JFrame to
observe the effect.

1. Open the JBorderLayout.java file, and immediately save it as
JBorderLayoutNoNorth.java.

2. Change the class name to JBorderLayoutNoNorth. Also change the constructor
name and the two instances of the class name in the main() method.

3. Remove the declaration of the “North” button, and within the constructor,
remove the statement that adds the “North” button to the JFrame.

(continued)

(continues)

Figure 15-15 Output of the JBorderLayout program after the user drags the right
border to increase the width

C H A P T E R 1 5 Advanced GUI Topics

808

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Save the file, compile it, and then
run the program. The output appears
as shown in Figure 15-16. The center
region occupies the space formerly held
by the north region.

5. Experiment with removing some of
the other components from the
JBorderLayoutNoNorth program.

Using FlowLayout

Next, you modify the JBorderLayout

program to demonstrate how the same
components appear when using FlowLayout.

1. Open the JBorderLayout.java file, and immediately save it as
JFlowLayoutRight.java.

2. Change the class name from JBorderLayout to JFlowLayoutRight. Also
change the constructor name and the references to the name in the main()

method.

3. Within the constructor, change the setLayout() statement to use FlowLayout

and right alignment:
setLayout(new FlowLayout(FlowLayout.RIGHT));

4. Alter each of the five add() statements so that just the button name appears
within the parentheses and the region is omitted. For example,
add(nb, BorderLayout.NORTH); becomes the following:
add(nb);

5. Save the file, and then compile and execute it. Your output should look like
Figure 15-17. The components have their “natural” size (or preferred size)—
the minimum size the buttons need to display their labels. The buttons flow
across the JFrame surface in a row until no more can fit; in Figure 15-17 the
last two buttons added cannot fit in the first row, so they appear in the
second row, right-aligned.

(continues)

(continued)

Figure 15-16 Output of the
JBorderLayoutNoNorth program

Learning More About Layout Managers

809

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Experiment with widening and narrowing the JFrame, and observe how the
components realign. Then close the JFrame.

Using GridLayout

Next, you modify a JFrame to demonstrate GridLayout.

1. Open the JFlowLayoutRight.java file, and save the file as
JGridLayout.java.

2. Change the class name from JFlowLayoutRight to JGridLayout. Change
the constructor name and the two references to the class in the main()

method.

3. Within the constructor, change the setLayout() statement to establish a
GridLayout with two rows, three columns, a horizontal space of two pixels,
and a vertical space of four pixels:
setLayout(new GridLayout(2, 3, 2, 4));

4. Save the file, and then compile and execute it. The components are arranged
in two rows and three columns from left to right across each row, in the order
they were added to their container. Because there are only five components,
one grid position still is available. See Figure 15-18.

(continued)

(continues)

Figure 15-17 Output of the JFlowLayoutRight program

C H A P T E R 1 5 Advanced GUI Topics

810

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Close the program.

Using CardLayout

Next, you create a CardLayout with five cards, each holding one of the JButtons
used in the previous examples.

1. Open the JGridLayout.java file, and save the file as JCardLayout.java.

2. Change the class name from JGridLayout to JCardLayout. Also change the
constructor name and the two references in the main() method.

3. Within the constructor, change the setLayout() statement to establish a
CardLayout:
setLayout(new CardLayout());

4. Change the five add() statements that add the buttons to the content pane so
that each includes a String that names the added component, as follows:
add("north", nb);
add("south", sb);
add("east", eb);
add("west", wb);
add("center", cb);

5. Save the file, and then compile and execute it. The output looks like
Figure 15-19. You see only the “North” JButton because, as the first one
added, it is the top card. You can click the button, but no actions take
place because you have not implemented ActionListener.

(continued)

(continues)

Figure 15-18 Output of the JGridLayout program

Learning More About Layout Managers

811

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Close the program.

Viewing All the Cards in CardLayout

Next, you modify the JCardLayout

program so that its buttons can initiate
events that allow you to view all five
JButtons you add to the content pane.

1. Open the JCardLayout.java
file, and save the file as
JCardLayout2.java.

2. Change the class name, con-
structor name, and two main()

method references from
JCardLayout to JCardLayout2.

3. At the top of the file, add the import statement that adds the classes and
methods that allow the class to respond to events:
import java.awt.event.*;

4. At the end of the class header, insert the following phrase so the JFrame can
respond to button clicks:
implements ActionListener

5. Instead of an anonymous layout manager, you need to create a CardLayout

manager with an identifier that you can use with the next() method when
the user clicks a button. Immediately after the five JButton declaration
statements, insert the following statement:
CardLayout cardLayout = new CardLayout();

6. Within the constructor, change the setLayout() statement so it uses the
named layout manager:
setLayout(cardLayout);

7. At the end of the constructor, add five statements that allow each of the
buttons to initiate an ActionEvent:
nb.addActionListener(this);
sb.addActionListener(this);
eb.addActionListener(this);
wb.addActionListener(this);
cb.addActionListener(this);

(continued)

(continues)

Figure 15-19 Output of the
JCardLayout program

C H A P T E R 1 5 Advanced GUI Topics

812

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. After the constructor’s closing curly brace, add an actionPerformed()

method that responds to user clicks. The method uses the next() method
to display the next card (next button) in the collection.
@Override
public void actionPerformed(ActionEvent e)
{

cardLayout.next(getContentPane());
}

9. Save, compile, and run the program. The output looks the same as in
Figure 15-19: you see only the “North” JButton. However, when you click it,
the button changes to “South”, “East”, “West”, and “Center” in succession.
Close the JFrame when you finish.

Using the JPanel Class
Using the BorderLayout, FlowLayout, GridLayout, and CardLayout managers would provide
a limited number of screen arrangements if you could place only one Component in a section
of the layout. Fortunately, you can greatly increase the number of possible component
arrangements by using the JPanel class to create a panel, which is a plain, borderless surface
that can hold lightweight GUI components such as buttons, check boxes, or other panels.
Figure 15-20 shows the inheritance hierarchy of the JPanel class. You can see that every
JPanel is a Container. By using JPanels within JPanels, you can create an infinite variety
of screen layouts. The default layout manager for every JPanel is FlowLayout.

To add a component to a JPanel, you call the container’s add() method, using the component
as the argument. For example, Figure 15-21 shows the code that creates a JFrameWithPanels

class that extends JFrame. A JButton is added to a JPanel named panel1, and two more
JButtons are added to another JPanel named panel2. Then panel1 and panel2 are added to
the JFrame’s content pane.

(continued)

Figure 15-20 The inheritance hierarchy of the JPanel class

Using the JPanel Class

813

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
import java.awt.Color;
public class JFrameWithPanels extends JFrame
{

private final int WIDTH = 250;
private final int HEIGHT = 120;
private JButton button1 = new JButton("One");
private JButton button2 = new JButton("Two");
private JButton button3 = new JButton("Three");
public JFrameWithPanels()
{

JPanel panel1 = new JPanel();
JPanel pane12 = new JPanel();
Container con = getContentPane();
con.setLayout(new FlowLayout());
con.add(panel1);
con.add(panel2);
panel1.add(button1);
panel1.setBackground(Color.BLUE);
panel2.add(button2);
panel2.add(button3);
panel2.setBackground(Color.BLUE);
setSize(WIDTH, HEIGHT);

}
public static void main(String[] args)
{

JFrameWithPanels frame = new JFrameWithPanels();
frame.setVisible(true);

}
}

Figure 15-21 The JFrameWithPanels class

Figure 15-22 shows the output of the JFrameWithPanels program. Two JPanels have been
added to the JFrame. Because this application uses the setBackground() method to make
each JPanel’s background blue, you can see where one panel ends and the other begins. The
first JPanel contains a single JButton, and the second one contains two JButtons.

Figure 15-22 Output of the JFrameWithPanels application

C H A P T E R 1 5 Advanced GUI Topics

814

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you create a JPanel object, you can use one of four constructors. In Chapters 7 and 13,
you learned that a buffer is a block of memory set aside for a special purpose, such as creating
a StringBuilder object or holding file output. A JPanel also is created in a buffer. The
different constructors allow you to use default values or to specify a layout manager and
whether the JPanel is double buffered. If you indicate double buffering, which is the default
buffering strategy, you specify that additional memory space will be used to draw the JPanel
offscreen when it is updated. With double buffering, a redrawn JPanel is displayed only when
it is complete; this provides the viewer with updated screens that do not flicker while being
redrawn. The four constructors are as follows:

JPanel() creates a JPanel with double buffering and a flow layout.

JPanel(LayoutManager layout) creates a JPanel with the specified layout manager and
double buffering.

JPanel(Boolean isDoubleBuffered) creates a JPanel with a flow layout and the specified
double-buffering strategy.

JPanel(LayoutManager layout, Boolean isDoubleBuffered) creates a JPanel with the
specified layout manager and the specified buffering strategy.

When you employ double buffering, the visible screen surface is called the primary surface, and the
offscreen image is called the back buffer. The act of copying the contents from one surface to another is
frequently referred to as a block line transfer, or blitting, because of the acronym blt, pronounced blit.
Double buffering prevents “tearing,” the visual effect that occurs when you see parts of different images
because the redrawing rate is not fast enough. As with most beneficial features, double buffering has a cost:
additional memory requirements.

As with many aspects of Java, there are multiple ways to achieve the same results. For
example, each of the following techniques creates a JPanel that uses a BorderLayout
manager and double buffering:

You can create a named layout and use it as an argument in a JPanel constructor:

BorderLayout border = new BorderLayout();
JPanel myPanel = new JPanel(border);

You can use an anonymous layout manager in the JPanel constructor:

JPanel myPanel = new JPanel(new BorderLayout());

You can create a JPanel and then set its layout manager using the setLayout() method
and an anonymous layout manager:

JPanel myPanel = new JPanel();
myPanel.setLayout(new BorderLayout());

You can create a JPanel and then set its layout manager using the setLayout() method
and a named layout manager:

JPanel myPanel = new JPanel();
BorderLayout border = new BorderLayout();
myPanel.setLayout(border);

Using the JPanel Class

815

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can create a JPanel with two constructor arguments, explicitly indicating double
buffering:

JPanel myPanel = new JPanel(new BorderLayout(), true);

When a JPanel will have a layout other than FlowLayout, specifying the layout manager
when you create the JPanel is preferable for performance reasons. If you create the JPanel

first and then change its layout, you automatically create an unnecessary FlowLayout object
for the original instantiation.

You add components to a JPanel with the add() method. Figure 15-23 shows a
JDemoManyPanels program in which the JFrame contains four JPanels and 12 JButtons that
each display a single spelled-out number so you can better understand their positions. The
automatically supplied content pane for the JFrame is assigned a BorderLayout, and each
JPanel is assigned either a GridLayout or FlowLayout and placed in one of the regions
(leaving the north region empty). One or more JButtons are then placed on each JPanel.
Figure 15-24 shows the output as the user adjusts the borders of the JFrame to change its size.
Using the code as a guide, be certain you understand why each JButton appears as it does
in the JFrame.

import javax.swing.*;
import java.awt.*;
public class JDemoManyPanels extends JFrame
{
// Twelve buttons

private JButton button01 = new JButton("One");
private JButton button02 = new JButton("Two");
private JButton button03 = new JButton("Three");
private JButton button04 = new JButton("Four");
private JButton button05 = new JButton("Five");
private JButton button06 = new JButton("Six");
private JButton button07 = new JButton("Seven");
private JButton button08 = new JButton("Eight");
private JButton button09 = new JButton("Nine");
private JButton button10 = new JButton("Ten");
private JButton button11 = new JButton("Eleven");
private JButton button12 = new JButton("Twelve");

// Four panels
private JPanel panel01 = new JPanel(new GridLayout(2, 0));
private JPanel panel02 = new JPanel(new FlowLayout());
private JPanel panel03 = new JPanel(new FlowLayout());
private JPanel panel04 = new JPanel(new GridLayout(2, 0));

Figure 15-23 The JDemoManyPanels class (continues)

C H A P T E R 1 5 Advanced GUI Topics

816

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public JDemoManyPanels()
{

setLayout(new BorderLayout());
add(panel01, BorderLayout.WEST);
add(panel02, BorderLayout.CENTER);
add(panel03, BorderLayout.SOUTH);
add(panel04, BorderLayout.EAST);

panel01.add(button01);
panel01.add(button02);
panel01.add(button03);

panel02.add(button04);
panel02.add(button05);
panel02.add(button06);

panel03.add(button07);

panel04.add(button08);
panel04.add(button09);
panel04.add(button10);
panel04.add(button11);
panel04.add(button12);

setSize(400, 250);
}
public static void main(String[] args)
{

JDemoManyPanels frame = new JDemoManyPanels();
frame.setVisible(true);

}
}

Figure 15-23 The JDemoManyPanels class

If you were creating a program with as many buttons and panels as the one in Figure 15-23, you might prefer
to create arrays of the components instead of so many individually named ones. This example does not use
an array so you can more easily see how each component is placed.

(continued)

Using the JPanel Class

817

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 15-24 Output of the JDemoManyPanels program: three views as the user adjusts the
JFrame borders

C H A P T E R 1 5 Advanced GUI Topics

818

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Swing containers other than JPanel and content panes generally provide Application Program Interface
(API) methods that you should use instead of the add() method. See the Java Web site for details.

GridLayout provides you with rows and columns that are similar to a two-dimensional array.
Therefore, it particularly lends itself to displaying arrays of objects. For example, Figure 15-25
contains a Checkerboard class that displays a pattern of eight rows and columns in alternating
colors. The JPanel placed in the content pane has a GridLayout of eight by eight. Sixty-four
JPanels are declared, and in a loop, one by one, they are instantiated and assigned to a section
of the grid (see shaded statements). After each set of eight JPanels is assigned to the grid
(when x is evenly divisible by 8), the first and second color values are reversed, so that the first
row starts with a blue square, the second row starts with a white square, and so on. Within
each row, all the even-positioned squares are filled with one color, and the odd-positioned
squares are filled with the other. Figure 15-26 shows the output.

import java.awt.*;
import javax.swing.*;
import java.awt.Color;
public class Checkerboard extends JFrame
{

private final int ROWS = 8;
private final int COLS = 8;
private final int GAP = 2;
private final int NUM = ROWS * COLS;
private int x;
private JPanel pane = new JPanel

(new GridLayout(ROWS, COLS, GAP, GAP));
private JPanel[] panel = new JPanel[NUM];
private Color color1 = Color.WHITE;
private Color color2 = Color.BLUE;
private Color tempColor;
public Checkerboard()
{

add(pane);
for(x = 0; x < NUM; ++x)
{

panel[x] = new JPanel();
pane.add(panel[x]);
if(x % COLS == 0)
{

tempColor = color1;
color1 = color2;
color2 = tempColor;

}

Figure 15-25 The Checkerboard class (continues)

Using the JPanel Class

819

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

if(x % 2 == 0)
panel[x].setBackground(color1);

else
panel[x].setBackground(color2);

}
}
public static void main(String[] args)
{

Checkerboard frame = new Checkerboard();
final int SIZE = 300;
frame.setSize(SIZE, SIZE);
frame.setVisible(true);

}
}

Figure 15-25 The Checkerboard class

(continued)

Figure 15-26 Output of the Checkerboard application

C H A P T E R 1 5 Advanced GUI Topics

820

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When creating the Checkerboard class, you might be tempted to create just two JPanels, one
blue and one white, and add them to the content pane multiple times. However, each GUI
component can be contained only once. If a component is already in a container and you try
to add it to another container, the component will be removed from the first container and
then added to the second.

Watch the video The JPanel Class.

TWO TRUTHS & A LIE

Using the JPanel Class

1. A JPanel is a plain, borderless surface that can hold lightweight GUI components.

2. To add a component to a JPanel, you call the component’s add() method,
using the JPanel as the argument.

3. Different JPanel constructors allow you to use default values or to specify a
layout manager and whether the JPanel is double buffered.

.t ne mugr a eht sat nenop moc eht gni su, doht e m)(dda

s’ r eni at noc eht ll ac uoy, lenaPJ a ot t nenop moc a dda oT. 2# si t ne met at s esl af ehT

Creating JScrollPanes
When components in a Swing application require more display area than they have been
allocated, you can use a JScrollPane container to hold the components in a way that allows
a user to scroll initially invisible parts of the pane into view. A scroll pane provides scroll
bars along the side or bottom of a pane, or both, with a viewable area called a viewport.
Figure 15-27 displays the inheritance hierarchy of the JScrollPane class.

Figure 15-27 The inheritance hierarchy of the JScrollPane class

Creating JScrollPanes

821

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The JScrollPane constructor takes one of four forms:

JScrollPane() creates an empty JScrollPane in which both horizontal and vertical
scroll bars appear when needed.

JScrollPane(Component) creates a JScrollPane that displays the contents of the
specified component.

JScrollPane(Component, int, int) creates a JScrollPane that displays the specified
component and includes both vertical and horizontal scroll bar specifications.

JScrollPane(int, int) creates a JScrollPane with both vertical and horizontal scroll
bar specifications.

When you create a simple scroll pane using the constructor that takes no arguments, as in the
following example, horizontal and vertical scroll bars appear only if they are needed; that is, if
the contents of the pane cannot be fully displayed without them:
JScrollPane aScrollPane = new JScrollPane();

To force the display of a scroll bar, you can use class variables defined in the
ScrollPaneConstants class, as follows:
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER
ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED
ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS
ScrollPaneConstants.VERTICAL_SCROLLBAR_NEVER

For example, the following code creates a scroll pane that displays an image named picture, a
vertical scroll bar, and no horizontal scroll bar:
JScrollPane scroll = new JScrollPane(picture,

ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

Figure 15-28 shows a JScrollDemo class in which a label with a large font is added to a panel.
The scroll pane named scroll includes the panel and two scroll bars.

import javax.swing.*;
import java.awt.*;
public class JScrollDemo extends JFrame
{

private JPanel panel = new JPanel();
private JScrollPane scroll = new JScrollPane(panel,

ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS);

Figure 15-28 The JScrollDemo application (continues)

C H A P T E R 1 5 Advanced GUI Topics

822

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

private JLabel label = new JLabel("Four score and seven");
private Font bigFont = new Font("Arial", Font.PLAIN, 20);
private Container con;
public JScrollDemo()
{

con = getContentPane();
label.setFont(bigFont);
con.add(scroll);
panel.add(label);

}
public static void main(String[] args)
{

final int WIDTH = 180;
final int HEIGHT = 100;
JScrollDemo aFrame = new JScrollDemo();
aFrame.setSize(WIDTH, HEIGHT);
aFrame.setVisible(true);

}
}

Figure 15-28 The JScrollDemo application

The JScrollDemo object in the program in Figure 15-28 is purposely set small enough
(180 × 100) so that only part of the label it contains is visible at a time. A user can slide the
scroll bars to view the entire label. Figure 15-29 shows the output with the scroll bar in
two positions.

(continued)

Figure 15-29 Output of the JScrollDemo application

Creating JScrollPanes

823

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Creating JScrollPanes

1. A JScrollPane can provide scroll bars along the side or bottom of a pane,
or both.

2. When you create a simple scroll pane using the constructor that takes no
arguments, horizontal and vertical scroll bars appear only if they are needed.

3. You cannot force the display of a scroll bar in a JScrollPane unless the
components it contains require too much room.

.r abll or cs af o yal psi d eht ecr of ot ssal c stnatsnoCenaPllorcS

eht ni denif ed sel bai r av ssal c esu nac uoY. 3# si t ne met at s esl af ehT

A Closer Look at Events and Event Handling
In Chapter 14, you learned that an ActionEvent is generated when a user clicks a button
and an ItemEvent is generated when a user clicks a check box. Both of those event types
descend from the abstract class AWTEvent, which is contained in the package java.awt.event.
AWTEvent descends from EventObject, which descends from the Object class. Although
you might think it would have been logical for the developers to name the event base class
Event rather than EventObject, there is no currently active, built-in Java class named Event
(although there was one in Java 1.0). Figure 15-30 illustrates the inheritance hierarchy of
these relationships.

Figure 15-30 The inheritance hierarchy of event classes

C H A P T E R 1 5 Advanced GUI Topics

824

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can see in Figure 15-30 that ComponentEvent is a parent to several event classes,
including InputEvent, which is a parent of KeyEvent and MouseEvent. The family tree for
events has roots that go fairly deep, but the class names are straightforward, and they share
basic roles within your programs. For example, ActionEvents are generated by components
that users can click, such as JButtons and JCheckBoxes, and TextEvents are generated by
components into which the user enters text, such as a JTextField. MouseEvents include
determining the location of the mouse pointer and distinguishing between a single- and
double-click. Table 15-3 lists some common user actions and the events that are generated
from them.

Because ActionEvents involve the mouse, it is easy to confuse ActionEvents and
MouseEvents. If you are interested in ActionEvents, you focus on changes in a component
(for example, a JButton on a JFrame being pressed); if you are interested in MouseEvents,
your focus is on what the user does manually with the mouse (for example, clicking the
left mouse button).

When you write programs with GUIs, you are always handling events that originate with the
mouse or keys on specific Components or Containers. Just as your telephone notifies you
when you have a call, the computer’s operating system notifies the user when an AWTEvent

occurs—for example, when the mouse is clicked. Just as you can ignore your phone when
you’re not expecting or interested in a call, you can ignore AWTEvents. If you don’t care about
an event, such as when your program contains a component that produces no effect when
clicked, you simply don’t look for a message to occur.

When you care about events—that is, when you want to listen for an event—you can
implement an appropriate interface for your class. Each event class shown in Table 15-3
has a listener interface associated with it, so that for every event class, <name>Event, there
is a similarly named <name>Listener interface. For example, ActionEvent has an
ActionListener interface. (The MouseEvent class has an additional listener besides
MouseListener: MouseMotionListener.)

User Action Resulting Event Type

Click a button ActionEvent

Click a component MouseEvent

Click an item in a list box ItemEvent

Click an item in a check box ItemEvent

Change text in a text field TextEvent

Open a window WindowEvent

Iconify a window WindowEvent

Press a key KeyEvent

Table 15-3 Examples of user actions and their resulting event types

A Closer Look at Events and Event Handling

825

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Remember that an interface contains only abstract methods, so all interface methods are empty. If you
implement a listener, you must provide your own methods for all the methods that are part of the interface.
Of course, you can leave the methods empty in your implementation, providing a header and curly braces but
no statements.

Every <name>Listener interface method has the return type void, and each takes one
argument: an object that is an instance of the corresponding <name>Event class. Thus,
the ActionListener interface has an event handler method named actionPerformed(),
and its header is void actionPerformed(ActionEvent e). When an action takes place,
the actionPerformed() method executes, and e represents an instance of that event.
Instead of implementing a listener class, you can extend an adapter class. An adapter
class implements all the methods in an interface, providing an empty body for each
method. For example, the MouseAdapter class provides an empty method for all the
methods contained in MouseListener. The advantage to extending an adapter class
instead of implementing a listener class is that you need to write only the methods
you want to use, and you do not have to bother creating empty methods for all the
others. (If a listener has only one method, there is no need for an adapter. For example,
the ActionListener class has one method, actionPerformed(), so there is no
ActionAdapter class.)

Whether you use a listener or an adapter, you create an event handler when you write
code for the listener methods; that is, you tell your class how to handle the event. After
you create the handler, you must also register an instance of the class with the component
that you want the event to affect. For any <name>Listener, you must use the form
object.add<name>Listener(Component) to register an object with the Component that
will listen for objects emanating from it. The add<name>Listener() methods, such as
addActionListener() and addItemListener(), all work the same way. They register a
listener with a Component, return void, and take a <name>Listener object as an argument.
For example, if a JFrame is an ActionListener and contains a JButton named pushMe,
then the following statement registers this JFrame as a listener for the pushMe JButton:
pushMe.addActionListener(this);

Table 15-4 lists the events with their listeners and handlers.

C H A P T E R 1 5 Advanced GUI Topics

826

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An Event-Handling Example: KeyListener
You use the KeyListener interface when you are interested in actions the user initiates from the
keyboard. The KeyListener interface contains three methods: keyPressed(), keyTyped(), and
keyReleased(). For most keyboard applications in which the user must press a keyboard key, it
is probably not important whether you take resulting action when a user first presses a key,

Event Listener(s) Handler(s)

ActionEvent ActionListener actionPerformed(ActionEvent)

ItemEvent ItemListener itemStateChanged(ItemEvent)

TextEvent TextListener textValueChanged(TextEvent)

AdjustmentEvent AdjustmentListener adjustmentValueChanged
(AdjustmentEvent)

ContainerEvent ContainerListener componentAdded(ContainerEvent)
componentRemoved(ContainerEvent)

ComponentEvent ComponentListener componentMoved(ComponentEvent)

componentHidden(ComponentEvent)
componentResized(ComponentEvent)

componentShown(ComponentEvent)

FocusEvent FocusListener focusGained(FocusEvent)

focusLost(FocusEvent)

MouseEvent MouseListener
MouseMotionListener

mousePressed(MouseEvent)
mouseReleased(MouseEvent)

mouseEntered(MouseEvent)

mouseExited(MouseEvent)
mouseClicked(MouseEvent)

mouseDragged(MouseEvent)

mouseMoved(MouseEvent)

KeyEvent KeyListener keyPressed(KeyEvent)

keyTyped(KeyEvent)
keyReleased(KeyEvent)

WindowEvent WindowListener windowActivated(WindowEvent)

windowClosing(WindowEvent)
windowClosed(WindowEvent)

windowDeiconified(WindowEvent)

windowIconified(WindowEvent)
windowOpened(WindowEvent)

MouseWheelEvent MouseWheelListener mouseWheelMoved(MouseWheelEvent)

Table 15-4 Events with their related listeners and handlers

A Closer Look at Events and Event Handling

827

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

during the key press, or upon the key’s release; most likely, these events occur in quick sequence.
However, on those occasions when you don’t want to take action while the user holds down the
key, you can place the actions in the keyReleased() method. It is best to use the keyTyped()

method when you want to discover which character was typed. When the user presses a key that
does not generate a character, such as a function key (sometimes called an action key),
keyTyped() does not execute. The methods keyPressed() and keyReleased() provide the
only ways to get information about keys that don’t generate characters. The KeyEvent class
contains constants known as virtual key codes that represent keyboard keys that have been
pressed. For example, when you type A, two virtual key codes are generated: Shift and “a”. The
virtual key code constants have names such as VK_SHIFT and VK_ALT. See the Java Web site for
a complete list of virtual key codes. Figure 15-31 shows a JDemoKeyFrame class that uses the
keyTyped() method to discover which key the user typed last.

Java programmers call keyTyped() events “higher-level” events because they do not depend on the
platform or keyboard layout. (For example, the key that generates VK_Q on a U.S. keyboard layout
generates VK_A on a French keyboard layout.) By contrast, keyPressed() and keyReleased()
events are “lower-level” events and do depend on the platform and keyboard layout. According to the Java
documentation, using keyTyped() is the preferred way to find out about character input.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JDemoKeyFrame extends JFrame

implements KeyListener
{

private JLabel prompt = new JLabel("Type keys below:");
private JLabel outputLabel = new JLabel();
private JTextField textField = new JTextField(10);
public JDemoKeyFrame()
{

setLayout(new BorderLayout());
add(prompt, BorderLayout.NORTH);
add(textField, BorderLayout.CENTER);
add(outputLabel, BorderLayout.SOUTH);
addKeyListener(this);
textField.addKeyListener(this);

}
@Override
public void keyTyped(KeyEvent e)
{

char c = e.getKeyChar();
outputLabel.setText("Last key typed: " + c);

}

Figure 15-31 The JDemoKeyFrame class (continues)

C H A P T E R 1 5 Advanced GUI Topics

828

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

@Override
public void keyPressed(KeyEvent e)
{
}
@Override
public void keyReleased(KeyEvent e)
{
}
public static void main(String[] args)
{

JDemoKeyFrame keyFrame = new JDemoKeyFrame();
final int WIDTH = 250;
final int HEIGHT = 100;
keyFrame.setSize(WIDTH, HEIGHT);
keyFrame.setVisible(true);

}
}

Figure 15-31 The JDemoKeyFrame class

A prompt in the north border area asks the user to type in the text field in the center area.
With each key press by the user, the keyTyped() method changes the label in the south
border area of the frame to display the key that generated the most recent KeyEvent.
Figure 15-32 shows the output after the user has typed several characters into the
text field.

Watch the video Event Handling.

(continued)

Figure 15-32 Output of the JDemoKeyFrame application after the user has typed several characters

A Closer Look at Events and Event Handling

829

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

A Closer Look at Events and Event Handling

1. ActionEvents are generated by components that users can click, TextEvents are
generated by components into which the user enters text, and MouseEvents are
generated by mouse actions.

2. Every <name>Listener interface method has a return type that refers to an
instance of the corresponding <name>Event class.

3. An adapter class implements all the methods in an interface, providing an empty
body for each method.

. ssal c tnevE>eman< gni dnopserr oc
eht f o ecnat sni na si t aht t cej bo na:t ne mugr a eno sekat hcae dna, diov epyt

nr ut er eht sah doht e mecafr et ni renetsiL>eman< yr evE. 2# si t ne met at s esl af ehT

Using AWTEvent Class Methods
In addition to the handler methods included with the event listener interfaces, the AWTEvent

classes themselves contain many other methods that return information about an event. For
example, the ComponentEvent class contains a getComponent() method that allows you to
determine which of multiple Components generates an event. The WindowEvent class contains
a similar method, getWindow(), that returns the Window that is the source of an event.
Table 15-5 lists some useful methods for many of the event classes. All Components have
these methods:

addComponentListener()

addFocusListener()

addMouseListener()

addMouseMotionListener()

C H A P T E R 1 5 Advanced GUI Topics

830

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can call any of the methods listed in Table 15-5 by using the object-dot-method format
that you use with all class methods. For example, if you have a KeyEvent named inputEvent

and an integer named unicodeVal, the following statement is valid:
unicodeVal = inputEvent.getKeyChar();

When you use an event, you can use any of the event’s methods, and through the power of
inheritance, you can also use methods that belong to any superclass of the event. For example,
any KeyEvent has access to the InputEvent, ComponentEvent, AWTEvent, EventObject, and
Object methods, as well as to the KeyEvent methods.

Class Method Purpose

EventObject Object getSource() Returns the Object involved in the event

ComponentEvent Component getComponent() Returns the Component involved in the event

WindowEvent Window getWindow() Returns the Window involved in the event

ItemEvent Object getItem() Returns the Object that was selected or
deselected

ItemEvent int getStateChange() Returns an integer named
ItemEvent.SELECTED or
ItemEvent.DESELECTED

InputEvent int getModifiers() Returns an integer to indicate which mouse
button was clicked

InputEvent int getWhen() Returns a time indicating when the event
occurred

InputEvent boolean isAltDown() Returns whether the Alt key was pressed when
the event occurred

InputEvent boolean isControlDown() Returns whether the Ctrl key was pressed
when the event occurred

InputEvent boolean isShiftDown() Returns whether the Shift key was pressed
when the event occurred

KeyEvent int getKeyChar() Returns the Unicode character entered from
the keyboard

MouseEvent int getClickCount() Returns the number of mouse clicks; lets you
identify the user’s double-clicks

MouseEvent int getX() Returns the x-coordinate of the mouse pointer

MouseEvent int getY() Returns the y-coordinate of the mouse pointer

MouseEvent Point getPoint() Returns the Point Object that contains the
x- and y-coordinates of the mouse location

Table 15-5 Useful event class methods

Using AWTEvent Class Methods

831

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding x- and y-Coordinates
Table 15-5 refers to x- and y-coordinates of a
mouse pointer. A window or frame consists of a
number of horizontal and vertical pixels on the
screen. Any component you place on the screen
has a horizontal, or x-axis, position as well as a
vertical, or y-axis, position in the window. The
upper-left corner of any display is position 0, 0.
The first, or x-coordinate, value increases as you
travel from left to right across the window. The
second, or y-coordinate, value increases as you
travel from top to bottom. Figure 15-33
illustrates some screen coordinate positions.

TWO TRUTHS & A LIE

Using AWTEvent Class Methods

1. You use many of the AWTEvent class methods to determine the nature of and
facts about an event.

2. The getSource() method returns the Object involved in an event, and the
getComponent() method returns the Component involved in an event.

3. The methods isAltDown() and isShiftDown() are ActionEvent methods.

. sdoht e mtnevEyeK

er a)(nwoDtfihSsi dna)(nwoDtlAsi sdoht e mehT. 3# si t ne met at s esl af ehT

Handling Mouse Events
Even though Java program users sometimes type characters from a keyboard, when you write
GUI programs you probably expect users to spend most of their time operating a mouse. The
MouseMotionListener interface provides you with methods named mouseDragged() and
mouseMoved() that detect the mouse being rolled or dragged across a component surface. The
MouseListener interface provides you with methods named mousePressed(), mouseClicked(),
and mouseReleased() that are analogous to the keyboard event methods keyPressed(),
keyTyped(), and keyReleased(). With a mouse, however, you are interested in more than
its button presses; you sometimes simply want to know where a mouse is pointing. The
additional interface methods mouseEntered() and mouseExited() inform you when the
user positions the mouse over a component (entered) or moves the mouse off a component
(exited). The MouseInputListener interface implements all the methods in both the

x

y
10, 10 100, 10

60, 80

Figure 15-33 Screen coordinate positions

C H A P T E R 1 5 Advanced GUI Topics

832

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

MouseListener and MouseMotionListener interfaces; although it has no methods of its
own, it is a convenience when you want to handle many different types of mouse events.
Tables 15-6 and 15-7 show the methods of the MouseListener and MouseMotionListener

classes, respectively.

Many of the methods in Tables 15-6 and 15-7 also appear in tables earlier in this chapter. They are organized
by interface here so you can better understand the scope of methods that are available for mouse actions.
Don’t forget that because MouseListener, MouseMotionListener, and MouseInputListener
are interfaces, you must include each method in every program that implements them, even if you choose to
place no instructions within some of the methods.

The MouseWheelListener interface contains just one method named mouseWheelMoved(), and it
accepts a MouseWheelEvent argument.

Each of the methods in Tables 15-6 and 15-7 accepts a MouseEvent argument. A
MouseEvent is the type of event generated by mouse manipulation. Figure 15-34 shows
the inheritance hierarchy of the MouseEvent class. From this diagram, you can see that a
MouseEvent is a type of InputEvent, which is a type of ComponentEvent. The MouseEvent

Method Description

void mouseClicked(MouseEvent e) Invoked when the mouse button has been clicked (pressed
and released) on a component

void mouseEntered(MouseEvent e) Invoked when the mouse pointer enters a component

void mouseExited(MouseEvent e) Invoked when the mouse pointer exits a component

void mousePressed(MouseEvent e) Invoked when a mouse button has been pressed on a
component

void mouseReleased(MouseEvent e) Invoked when a mouse button has been released on a
component

Table 15-6 MouseListener methods

Method Description

void mouseDragged(MouseEvent e) Invoked when a mouse button is pressed on a component
and then dragged

void mouseMoved(MouseEvent e) Invoked when the mouse pointer has been moved onto
a component but no buttons have been pressed

Table 15-7 MouseMotionListener methods

Handling Mouse Events

833

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

class contains many instance methods and fields that are useful in describing mouse-
generated events. Table 15-8 lists some of the more useful methods of the MouseEvent
class, and Table 15-9 lists some fields.

Figure 15-34 The inheritance hierarchy of the MouseEvent class

Method Description

int getButton() Returns which, if any, of the mouse buttons has changed state; uses
fields NOBUTTON, BUTTON1, BUTTON2, and BUTTON3

int getClickCount() Returns the number of mouse clicks associated with the current event

int getX() Returns the horizontal x-position of the event relative to the source
component

int getY() Returns the vertical y-position of the event relative to the source
component

Table 15-8 Some useful MouseEvent methods

Field Description

static int BUTTON1 Indicates mouse button #1; used by getButton()

static int BUTTON2 Indicates mouse button #2; used by getButton()

static int BUTTON3 Indicates mouse button #3; used by getButton()

static int NOBUTTON Indicates no mouse buttons; used by getButton()

static int MOUSE_CLICKED The “mouse clicked” event

static int MOUSE_DRAGGED The “mouse dragged” event

static int MOUSE_ENTERED The “mouse entered” event

static int MOUSE_EXITED The “mouse exited” event

Table 15-9 Some useful MouseEvent fields

C H A P T E R 1 5 Advanced GUI Topics

834

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 15-35 shows a JMouseActionFrame application that demonstrates several of
the mouse listener and event methods. JMouseActionFrame extends JFrame, and
because it implements the MouseListener interface, it must include all five methods—
mouseClicked(), mouseEntered(), mouseExited(), mousePressed(), and
mouseReleased()—even though no actions are included in the mousePressed()
or mouseReleased() methods.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JMouseActionFrame extends JFrame implements MouseListener
{

private int x, y;
private JLabel label= new JLabel("Do something with the mouse");
String msg = "";

public JMouseActionFrame()
{

setLayout(new FlowLayout());
addMouseListener(this);
add(label);

}
@Override
public void mouseClicked(MouseEvent e)
{

int whichButton = e.getButton();
msg = "You pressed mouse ";
if(whichButton == MouseEvent.BUTTON1)

msg += "button 1.";
else

if(whichButton == MouseEvent.BUTTON2)
msg += "button 2.";

else
msg += "button 3.";

msg += " You are at position " +
e.getX() + ", " + e.getY() + ".";

if(e.getClickCount() == 2)
msg += " You double-clicked.";

else
msg += " You single-clicked.";

label.setText(msg);
}
@Override
public void mouseEntered(MouseEvent e)
{

msg = "You entered the frame.";
label.setText(msg);

}

Figure 15-35 The JMouseActionFrame application (continues)

Handling Mouse Events

835

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

@Override
public void mouseExited(MouseEvent e)
{

msg = "You exited the frame.";
label.setText(msg);

}
@Override
public void mousePressed(MouseEvent e)
{
}
@Override
public void mouseReleased(MouseEvent e)
{
}
public static void main(String[] args)
{

JMouseActionFrame mFrame = new JMouseActionFrame();
final int WIDTH = 600;
final int HEIGHT = 100;
mFrame.setSize(WIDTH, HEIGHT);
mFrame.setVisible(true);

}
}

Figure 15-35 The JMouseActionFrame application

The JMouseActionFrame application in Figure 15-35 displays messages as the user generates
mouse actions. At the start of the class, two integers are declared to hold the mouse position
x- and y-coordinates. A JLabel and a String are also declared to hold messages that inform
the user of the mouse actions taken. In the first shaded section of Figure 15-35, the
constructor sets the layout manager, enables the frame to listen for mouse events, and
adds the JLabel to the JFrame.

In Figure 15-35, most of the action occurs in the mouseClicked() method (the second
unshaded area in the figure). The method builds a String that is ultimately assigned to the
JLabel. The same actions could have been placed in the mousePressed() or mouseReleased()
method because the statements could be placed in the frame just as well at either of those times.
Within the mouseClicked() method, the MouseEvent object named e is used several times. It is
used with the getButton() method to determine which mouse button the user clicked, getX()
and getY() are used to retrieve the mouse position, and getClickCount() is used to distinguish
between single- and double-clicks.

In Figure 15-35, different messages also are generated in the mouseEntered() and mouseExited()

methods, so the user is notified when the mouse pointer has “entered”—that is, passed over the
surface area of—the JFrame, the component that is listening for actions.

The main() method at the end of the class creates one instance of the JMouseActionFrame
class and sets its size and visibility.

(continued)

C H A P T E R 1 5 Advanced GUI Topics

836

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 15-36 shows the JMouseActionFrame application during execution. At this point, the
user has just clicked the left mouse button near the lower-left corner of the frame. Of course, in
your own applications you might not want only to notify users of their mouse actions; instead,
you might want to perform calculations, create files, or generate any other programming tasks.

TWO TRUTHS & A LIE

Handling Mouse Events

1. The MouseMotionListener interface provides you with methods that detect the
mouse being rolled or dragged across a component surface.

2. The MouseListener interface provides you with methods that are analogous
to the keyboard event methods keyPressed(), keyTyped(), and
keyReleased().

3. The MouseListener interface implements all the methods in the
MouseInputListener interface.

. secafr et ni renetsiLnoitoMesuoM dna renetsiLesuoM eht ht ob ni sdoht e m
eht ll a st ne mel p mi ecafr et ni renetsiLtupnIesuoM ehT. 3# si t ne met at s esl af ehT

Using Menus
Menus are lists of user options; they are commonly added features in GUI programs.
Application users are used to seeing horizontal menu bars across the tops of frames,
and they expect to be able to click those options to produce drop-down lists that
display more choices. The horizontal list of JMenus is a JMenuBar. Each JMenu can
contain options, called JMenuItems, or can contain submenus that also are JMenus.
For example, Figure 15-37 shows a JFrame that illustrates the use of the following
components:

A JMenuBar that contains two JMenus named File and Colors.

Three items within the Colors JMenu: Bright, Dark, and White. Dark and White are
JMenuItems. Bright is a JMenu that holds a submenu. You can tell that Bright is a
submenu because an arrow sits to the right of its name, and when the mouse hovers
over Bright, two additional JMenuItems appear: Pink and Yellow.

Figure 15-36 Typical execution of the JMouseActionFrame application

Using Menus

837

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To create the output shown in Figure 15-37, a series of JMenuBar, JMenu, and JMenuItem
objects were created and put together in stages. You can create each of the components you
see in the menus in Figure 15-37 as follows:

You can create a JMenuBar much like other objects—by using the new operator and a call
to the constructor, as follows:

JMenuBar mainBar = new JMenuBar();

You can create the two JMenus that are part of the JMenuBar:

JMenu menu1 = new JMenu("File");
JMenu menu2 = new JMenu("Colors");

The three components within the Colors JMenu are created as follows:

JMenu bright = new JMenu("Bright");
JMenuItem dark = new JMenuItem("Dark");
JMenuItem white = new JMenuItem("White");

The two JMenuItems that are part of the Bright JMenu are created as follows:

JMenuItem pink = new JMenuItem("Pink");
JMenuItem yellow = new JMenuItem("Yellow");

Once all the components are created, you assemble them.

You add the JMenuBar to a JFrame using the setJMenuBar() method as follows:
setJMenuBar(mainBar);

Submenu

Menu items

Menu

Menu bar

Figure 15-37 A JFrame with a horizontal JMenuBar that holds two JMenus

C H A P T E R 1 5 Advanced GUI Topics

838

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the setJMenuBar() method assures that the menu bar is anchored to the top of the
frame and looks like a conventional menu bar. Notice that the JMenuBar is not added to a
JFrame’s content pane; it is added to the JFrame itself.

The JMenus are added to the JMenuBar using the add() method. For example:

mainBar.add(menu1);
mainBar.add(menu2);

A submenu and two JMenuItems are added to the Colors menu as follows:

menu2.add(bright);
menu2.add(dark);
menu2.add(white);

A submenu can contain its own JMenuItems. For example, the Bright JMenu that is part of
the Colors menu in Figure 15-37 contains its own two JMenuItem objects:

bright.add(pink);
bright.add(yellow);

Figure 15-38 shows a complete working program that creates a frame with a greeting and the
JMenu shown in Figure 15-37.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.Color;
public class JMenuFrame extends JFrame implements

ActionListener
{

private JMenuBar mainBar = new JMenuBar();
private JMenu menu1 = new JMenu("File");
private JMenu menu2 = new JMenu("Colors");
private JMenuItem exit = new JMenuItem("Exit");
private JMenu bright = new JMenu("Bright");
private JMenuItem dark = new JMenuItem("Dark");
private JMenuItem white = new JMenuItem("White");
private JMenuItem pink = new JMenuItem("Pink");
private JMenuItem yellow = new JMenuItem("Yellow");
private JLabel label = new JLabel("Hello");

Figure 15-38 The JMenuFrame class (continues)

Using Menus

839

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public JMenuFrame()
{

setLayout(new FlowLayout());
setJMenuBar(mainBar);
mainBar.add(menu1);
mainBar.add(menu2);
menu1.add(exit);
menu2.add(bright);
menu2.add(dark);
menu2.add(white);
bright.add(pink);
bright.add(yellow);
exit.addActionListener(this);
dark.addActionListener(this);
white.addActionListener(this);
pink.addActionListener(this);
yellow.addActionListener(this);
add(label);
label.setFont(new Font("Arial", Font.BOLD, 26));

}
@Override
public void actionPerformed(ActionEvent e)
{

Object source = e.getSource();
Container con = getContentPane();
if(source == exit)

System.exit(0);
else if(source == dark)

con.setBackground(Color.BLACK);
else if(source == white)

con.setBackground(Color.WHITE);
else if(source == pink)

con.setBackground(Color.PINK);
else con.setBackground(Color.YELLOW);

}
public static void main(String[] args)
{

JMenuFrame mFrame = new JMenuFrame();
final int WIDTH = 250;
final int HEIGHT = 200;
mFrame.setSize(WIDTH, HEIGHT);
mFrame.setVisible(true);

}
}

Figure 15-38 The JMenuFrame class

In the application in Figure 15-38, each JMenuItem becomes a source for an ActionEvent,
and the JFrame is assigned the role of listener for each. The actionPerformed() method
determines the source of any generated event. If the user selects the Exit option from the

(continued)

C H A P T E R 1 5 Advanced GUI Topics

840

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

File menu, the application ends. If the user selects any of the colors from the Colors menu,
the background color of the JFrame is altered accordingly.

Using Specialized Menu Items
The JCheckBoxMenuItem and JRadioButtonMenuItem classes derive from the JMenuItem

class. Each provides more specific menu items as follows:

JCheckBoxMenuItem objects appear with a check box next to them. An item can be
selected (displaying a check mark in the box) or not. Usually, you use check box items to
turn options on or off.

JRadioButtonMenuItem objects appear with a round radio button next to them. Users
usually expect radio buttons to be mutually exclusive, so you usually make radio buttons
part of a ButtonGroup. Then, when any radio button is selected, the others are all
deselected.

The state of a JCheckBoxMenuItem or JRadioButtonMenuItem can be determined with the
isSelected() method, and you can alter the state of the check box with the setSelected()
method.

Figure 15-39 shows a JMenuFrame2 application in which two JCheckBoxMenuItems and
three JRadioButtonMenuItems have been added to a JMenu. The controls have not yet been
assigned any tasks, but Figure 15-40 shows how the menu looks when the application
executes.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JMenuFrame2 extends JFrame
{

private JMenuBar mainBar = new JMenuBar();
private JMenu menu1 = new JMenu("File");
private JCheckBoxMenuItem check1 = new

JCheckBoxMenuItem("Check box A");
private JCheckBoxMenuItem check2 = new

JCheckBoxMenuItem("Check box B");
private JRadioButtonMenuItem radio1 = new

JRadioButtonMenuItem("Radio option 1");
private JRadioButtonMenuItem radio2 = new

JRadioButtonMenuItem("Radio option 2");
private JRadioButtonMenuItem radio3 = new

JRadioButtonMenuItem("Radio option 3");
private ButtonGroup group = new ButtonGroup();

Figure 15-39 The JMenuFrame2 application (continues)

Using Menus

841

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public JMenuFrame2()
{

setLayout(new FlowLayout());
setJMenuBar(mainBar);
mainBar.add(menu1);
menu1.add(check1);
menu1.add(check2);
menu1.addSeparator();
menu1.add(radio1);
menu1.add(radio2);
menu1.add(radio3);
group.add(radio1);
group.add(radio2);
group.add(radio3);

}
public static void main(String[] args)
{

JMenuFrame2 frame = new JMenuFrame2();
final int WIDTH = 150;
final int HEIGHT = 200;
frame.setSize(WIDTH, HEIGHT);
frame.setVisible(true);

}
}

Figure 15-39 The JMenuFrame2 application

(continued)

Figure 15-40 Execution of the JMenuFrame2 application

C H A P T E R 1 5 Advanced GUI Topics

842

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using addSeparator()
The shaded statement in Figure 15-39 calls the addSeparator() method. This method
adds a horizontal line to menus in order to visually separate groups for your users. In
Figure 15-40, you can see that the separator falls between the JCheckBoxMenuItems and
the JRadioButtonMenuItems because that’s the order in which the shaded addSeparator()
method call was made. The separator does not change the functionality of the menu; it
simply makes the menu more visually organized for the user.

Using setMnemonic()
A mnemonic is a key that causes an already visible menu
item to be chosen. You can use the setMnemonic()

method to provide a shortcut menu key for any visible
menu item. For example, when you add the following
statement to the JMenuFrame2 constructor in Figure
15-39, the menu appears as in Figure 15-41:
menu1.setMnemonic('F');

The mnemonic for the File menu is set to F, so the F
in File is underlined. When a user presses Alt+F on
the keyboard, the result is the same as if the user had
clicked File on the menu: the menu list is opened and
displayed.

Your downloadable student files contain a JMenuFrame3
application that includes the setMnemonic() instruc-
tion that produces the output in Figure 15-41.

You should use a different mnemonic for each menu item that has one; if you use the same
mnemonic multiple times, only the first assignment works. Usually, you use the first letter of
the option—for example, F for File. If multiple menu items start with the same letter, the
convention is to choose the next most prominent letter in the name. For example, X is often
chosen as the mnemonic for Exit.

An accelerator is similar to a mnemonic. It is a key combination that causes a menu item to
be chosen whether it is visible or not. For example, many word-processing programs allow
you to press Ctrl+P to print from anywhere in the program. Only leaf menu items—menus
that don’t bring up other menus—can have accelerators. (They are called “leaves” because
they are at the end of a branch with no more branches extending from them.) See the Java
Web site for more details.

Figure 15-41 The File menu with
a mnemonic applied

Using Menus

843

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using Menus

1. The horizontal list of JMenus at the top of a JFrame is also a JMenu.

2. Each JMenu can contain options, called JMenuItems, or it can contain submenus
that also are JMenus.

3. You add a JMenuBar to a JFrame using the setJMenuBar() method.

. raBuneMJ a
si emarFJ af o pot eht t a suneMJf ot sil l at nozi r oh ehT. 1# si t ne met at s esl af ehT

You Do It

Using a Menu Bar and JPanels

Next, you create an application for a party planning company that uses a menu bar
with multiple user options, and that uses separate JPanels with different layout
managers to organize components.

1. Open a new file, and enter the following first few lines of the EventSelector

class. The class extends JFrame and implements ActionListener because
the JFrame contains potential user mouse selections.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.Color;
public class EventSelector extends JFrame implements ActionListener
{

2. Create a JMenuBar and its two JMenus as follows:
private JMenuBar mainBar = new JMenuBar();
private JMenu menu1 = new JMenu("File");
private JMenu menu2 = new JMenu("Event types");

3. Next, create the items that will appear within the menus. The File menu
contains an Exit option. The Event types menu contains two submenus: Adult
and Child. Each of those submenus contains more options. For example,
Figure 15-42 shows the expanded Adult event types menu in the finished
program.

(continues)

C H A P T E R 1 5 Advanced GUI Topics

844

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

private JMenuItem exit = new JMenuItem("Exit");
private JMenu adult = new JMenu("Adult");
private JMenu child = new JMenu("Child");
private JMenuItem adultBirthday = new JMenuItem("Birthday");
private JMenuItem anniversary = new JMenuItem("Anniversary");
private JMenuItem retirement = new JMenuItem("Retirement");
private JMenuItem adultOther = new JMenuItem("Other");
private JMenuItem childBirthday = new JMenuItem("Birthday");
private JMenuItem childOther = new JMenuItem("Other");

4. Declare several other components that will be used to show how JFrames are
composed:
private JPanel birthdayPanel = new JPanel();
private JPanel otherPanel = new JPanel();
private JLabel birthdayLabel = new

JLabel("Birthday events are our specialty");
private JLabel otherLabel = new

JLabel("We have lots of ideas for memorable events");
private JPanel buttonPanel = new JPanel();
private JRadioButton radButton1 = new

JRadioButton("Formal events");
private JRadioButton radButton2 = new

JRadioButton("Casual events");

5. Write the constructor for the JFrame. Set the title, the default close operation,
and the layout. Call separate methods to compose the menu, to add the
necessary action listeners to the menu items, and to lay out the JFrame’s
components. These tasks could be performed directly within the constructor,
but you can place them in separate methods to better organize the application.

(continued)

Figure 15-42 The Adult menu

(continues)

Using Menus

845

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public EventSelector()
{

setTitle("Event Selector");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLayout(new FlowLayout());
composeMenus();
addActionListeners();
layoutComponents();

}

6. Add the composeMenus() method. Set the main menu bar, and add two menus to
it. Then add one option to the first menu and two submenus to the second menu.
Finally, add four items to the first submenu and two items to the other one.
public void composeMenus()
{

setJMenuBar(mainBar);
mainBar.add(menu1);
mainBar.add(menu2);
menu1.add(exit);
menu2.add(adult);
menu2.add(child);
adult.add(adultBirthday);
adult.add(anniversary);
adult.add(retirement);
adult.add(adultOther);
child.add(childBirthday);
child.add(childOther);

}

7. Add the addActionListeners() method, which makes the JFrame become a
listener for each menu item:
public void addActionListeners()
{

exit.addActionListener(this);
adultBirthday.addActionListener(this);
anniversary.addActionListener(this);
retirement.addActionListener(this);
adultOther.addActionListener(this);
childBirthday.addActionListener(this);
childOther.addActionListener(this);

}

8. The layoutComponents() method arranges all the components that appear in
the content pane. The birthdayPanel object contains a single label. The
otherPanel object contains a label and another panel (buttonPanel) in a grid.
The buttonPanel contains two radio buttons. For this demonstration, the

(continued)

(continues)

C H A P T E R 1 5 Advanced GUI Topics

846

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

radio buttons are not functional, but in a more complicated application, an
addActionListener() method could be applied to them. Also, in a more
complicated application, you could continue to place panels within another
panel to achieve complex designs.
public void layoutComponents()
{

birthdayPanel.setLayout(new FlowLayout());
otherPanel.setLayout(new GridLayout(2, 1, 3, 3));
birthdayPanel.add(birthdayLabel);
otherPanel.add("other", otherLabel);
otherPanel.add("buttons", buttonPanel);
buttonPanel.add(radButton1);
buttonPanel.add(radButton2);
add(birthdayPanel);
add(otherPanel);

}

9. Add an actionPerformed() method that responds to menu
selections. Different background colors are set depending on the
user’s choices.
@Override
public void actionPerformed(ActionEvent e)
{

Object source = e.getSource();
Container con = getContentPane();
if(source == exit)

System.exit(0);
else if(source == childBirthday || source == childOther)

con.setBackground(Color.PINK);
else

con.setBackground(Color.WHITE);
if(source == adultBirthday || source == childBirthday)
{

birthdayPanel.setBackground(Color.YELLOW);
otherPanel.setBackground(Color.WHITE);

}
else
{

birthdayPanel.setBackground(Color.WHITE);
otherPanel.setBackground(Color.YELLOW);

}
}

10. Add the main() method, which instantiates an EventSelector object and sets
its size and visibility. Add a closing curly brace for the class.

(continues)

(continued)

Using Menus

847

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public static void main(String[] args)
{

EventSelector frame = new EventSelector();
final int WIDTH = 400;
final int HEIGHT = 200;
frame.setSize(WIDTH, HEIGHT);
frame.setVisible(true);

}
}

11. Save the application as EventSelector.java, and then compile and run it.
Make various selections and observe the effects. Figure 15-43 shows the
running application after the user has made a selection. After you experiment
with the application, dismiss the frame.

12. Experiment by making changes to the EventSelector application. For
example, some menu selections could change the JFrame background to
a different color, and others could add a new JLabel to the JFrame

content pane.

Don’t Do It
Don’t forget that the content pane is operating behind the scenes when you use a top-level
container and that, depending on the operations you want to perform, you might need to
get a reference to it.

Don’t forget that when you create a custom Color object, 0 represents the darkest shade
and 255 represents the lightest.

(continued)

Figure 15-43 Typical execution of the EventSelector application

C H A P T E R 1 5 Advanced GUI Topics

848

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t forget to set a layout manager if you do not want to use the default one for a
container.

Don’t forget to use a region when adding a component to a BorderLayout if you do not
want the component to be placed in the center region by default.

Don’t use add() to place a JFrame’s menu bar. You must use the setMenuBar() method to
place a menu bar correctly.

Don’t use the same mnemonic for multiple menu items.

Key Terms
A containment hierarchy is a tree of components that has a top-level container as its root
(that is, at its uppermost level).

A top-level container is one at the top of a containment hierarchy. The Java top-level
containers are JFrame, JDialog, and JApplet.

A content pane contains all the visible components in a top-level container’s user interface.

A menu bar is a horizontal strip that is placed at the top of a container and that contains user
options.

A glass pane resides above the content pane in a container. It can contain tool tips.

The alpha value of a color indicates the level of transparency.

The preferred size of a Component is its default size.

A panel is a plain, borderless surface that can hold other GUI components.

Double buffering is the default buffering strategy in which JPanels are drawn offscreen when
they are updated and displayed only when complete.

The primary surface is the visible screen surface during double buffering.

The back buffer is the offscreen image during double buffering.

A block line transfer, or blitting, is the act of copying the contents from one surface to
another.

A scroll pane provides scroll bars along the side or bottom of a pane, or both, so that the user
can scroll initially invisible parts of the pane into view.

The viewport is the viewable area in a scroll pane.

An adapter class implements all the methods in an interface, providing an empty body for
each method.

An action key is a keyboard key that does not generate a character.

Virtual key codes represent keyboard keys that have been pressed.

Key Terms

849

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The x-axis is an imaginary horizontal line that indicates screen position.

The y-axis is an imaginary vertical line that indicates screen position.

The x-coordinate is a value that increases as you travel from left to right across a window.

The y-coordinate is a value that increases as you travel from top to bottom across a window.

Menus are lists of user options.

A mnemonic is a key that causes an already visible menu item to be chosen.

An accelerator is a key combination that causes a menu item to be chosen, whether or not
the menu item is visible.

A leaf menu item is a menu item that does not bring up another menu; in other words, it is at
the end of a branch.

Chapter Summary
Every top-level container has a content pane that contains all the visible components in
the container’s user interface. The content pane can contain components and other
containers. Whenever you create a top-level container, you can get a reference to its
content pane using the getContentPane() method.

The Color class defines 13 colors for you to use in your applications; you also can create
more than 16 million custom colors. The class can be used with the setBackground() and
setForeground() methods of the Component class to make your applications more
attractive and interesting.

The layout manager assigned to a Container determines how its components are sized
and positioned. The BorderLayout manager is the default manager class for all content
panes; when you use it, the components fill the screen in five regions. The FlowLayout

manager arranges components in rows across the width of a Container. The GridLayout
manager arranges components in rows and columns. The CardLayout manager generates
a stack of components.

A JPanel is a plain, borderless surface that can hold lightweight GUI components.

A JScrollPane provides scroll bars along the side or bottom of a pane, or both, so that the
user can scroll initially invisible parts of the pane into view.

ActionEvents are generated by components that users can click, and TextEvents are
generated by components into which the user enters text. MouseEvents include
determining the location of the mouse pointer and distinguishing between a single- and
double-click. For every event class, such as <name>Event, there is a similarly named
<name>Listener interface. Instead of implementing a listener class, you can extend an
adapter class.

In addition to the handler methods included with the event listener interfaces, the
AWTEvent classes themselves contain methods that return information about an event.

C H A P T E R 1 5 Advanced GUI Topics

850

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The MouseMotionListener interface provides you with methods that react to the mouse
being rolled or dragged across a component surface. The MouseListener interface
provides you with methods that react when a mouse button is pressed, clicked, or released
and then the user enters or exits a component using the mouse. The MouseInputListener

interface implements all the methods in both the MouseListener and
MouseMotionListener interfaces.

Menus are lists of user options. You use JMenuBar, JMenu, JMenuItem, and other classes in
menu creation.

Review Questions
1. If you add fewer than five components to a BorderLayout, .

a. any empty component regions disappear
b. the remaining components expand to fill the available space
c. both a and b
d. none of the above

2. When you resize a Container that uses BorderLayout, .

a. the Container and the regions both change in size
b. the Container changes in size, but the regions retain their original sizes
c. the Container retains its size, but the regions change or might disappear
d. nothing happens

3. When you create a JFrame named myFrame, you can set its layout manager to
BorderLayout with the statement .

a. myFrame.setLayout = new BorderLayout();

b. myFrame.setLayout(new BorderLayout());

c. setLayout(myFrame = new BorderLayout());

d. setLayout(BorderLayout(myFrame));

4. Which of the following is the correct syntax for adding a JButton named b1 to a
Container named con when using CardLayout?

a. con.add(b1);

b. con.add("b1");

c. con.add("Options", b1);

d. none of the above

5. You can use the class to arrange components in a single row or
column of a container.

a. FlowLayout

b. BorderLayout

c. CardLayout

d. BoxLayout

Review Questions

851

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. When you use , the components you add fill their region; they do
not retain their default size.

a. FlowLayout

b. BorderLayout

c. FixedLayout

d. RegionLayout

7. The statement ensures that components are placed from left to
right across a JFrame surface until the first row is full, at which point a second row is
started at the frame surface’s left edge.

a. setLayout(FlowLayout.LEFT);

b. setLayout(new FlowLayout(LEFT));

c. setLayout(new FlowLayout(FlowLayout.LEFT));

d. setLayout(FlowLayout(FlowLayout.LEFT));

8. The GridBagLayout class allows you to .

a. add components to precise locations within the grid
b. indicate that specific components should span multiple

rows or columns within the grid
c. both a and b
d. none of the above

9. The statement setLayout(new GridLayout(2,7)); establishes a GridLayout
with horizontal row(s).

a. zero
b. one

c. two
d. seven

10. As you add new components to a GridLayout, .

a. they are positioned from left to right across each row in sequence
b. you can specify exact positions by skipping some positions
c. both of the above
d. none of the above

11. A JPanel is a .

a. Window

b. Container

c. both of the above
d. none of the above

12. The class allows you to arrange components as if they are stacked
like index or playing cards.

a. GameLayout

b. CardLayout

c. BoxLayout

d. GridBagLayout

C H A P T E R 1 5 Advanced GUI Topics

852

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13. AWTEvent is the child class of .

a. EventObject

b. Event

c. ComponentEvent

d. ItemEvent

14. When a user clicks a JPanel or JFrame, the action generates a(n) .

a. ActionEvent

b. MouseEvent

c. PanelEvent

d. KeyboardEvent

15. Event handlers are .

a. abstract classes
b. concrete classes

c. listeners
d. methods

16. The return type of getComponent() is .

a. Object

b. Component

c. int

d. void

17. The KeyEvent method getKeyChar() returns a(n) .

a. int

b. char

c. KeyEvent

d. AWTEvent

18. The MouseEvent method that allows you to identify double-clicks
is .

a. getDouble()

b. isClickDouble()

c. getDoubleClick()

d. getClickCount()

19. You can use the method to determine the Object in which an
ActionEvent originates.

a. getObject()

b. getEvent()

c. getOrigin()

d. getSource()

20. Which of the following is true in a standard menu application?

a. A JMenuItem holds a JMenu.
b. A JMenuItem holds a JMenuBar.

c. A JMenuBar holds a JMenu.
d. A JMenu holds a JMenuBar.

Exercises

Programming Exercises

1. Create a JFrame and set the layout to BorderLayout. In each region, place a JButton
that displays the name of a classic movie that has the region name in its title. For
example, the east button might indicate the movie East of Eden. When the user clicks
the button, display the year of the movie’s release and the name of one of its stars.
Save the file as JMovieFrame.java.

Exercises

853

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Create an educational program for children that distinguishes between vowels and
consonants as the user clicks buttons. Create 26 JButtons, each labeled with a
different letter of the alphabet. Create a JFrame to hold three JPanels in a two-by-two
grid. Randomly select eight of the 26 JButtons and place four in each of the first
two JPanels. Add a JLabel to the third JPanel. When the user clicks a JButton, the
text of the JLabel identifies the button’s letter as a vowel or consonant, and then a
new randomly selected letter replaces the letter on the JButton. Save the file as
JVowelConsonant.java.

3. Create a JFrame that holds five buttons with the names of five different fonts. Include
a sixth button that the user can click to make a font larger or smaller. Display a
demonstration JLabel using the font and size that the user selects. Save the file as
JFontSelector.java.

4. Create a JFrame that uses BorderLayout. Place a JButton in the center region. Each
time the user clicks the JButton, change the background color in one of the other
regions. Save the file as JColorFrame.java.

5. Create a JFrame with JPanels, a JButton, and a JLabel. When the user clicks the
JButton, reposition the JLabel to a new location in a different JPanel. Save the file as
JMovingFrame.java.

6. Create a class that extends JPanel and whose constructor accepts two colors, a Font,
and a String. Use the colors for the background and foreground of the panel and
display the string using the font parameter. Create an application named JPanelDemo.
Use GridLayout to display four sample panels. Save the files as JFlexiblePanel.java
and JPanelDemo.java.

7. Write an application that lets you determine the integer value returned by the
InputEvent method getModifiers() when you click your left, right, or—if you have
one—middle mouse button on a JFrame. Save the file as JLeftOrRight.java.

8. a. Search the Java Web site for information on how to use a JTextArea. Write an
application for the WebBuy Company that allows a user to compose the three
parts of a complete e-mail message: the “To:”, “Subject:”, and “Message:” text. The
“To:” and “Subject:” text areas should provide a single line for data entry. The
“Message:” area should allow multiple lines of input and be able to scroll if
necessary to accommodate a long message. The user clicks a button to send the
e-mail message. When the message is complete and the Send button is clicked, the
application should display “Mail has been sent!” on a new line in the message area.
Save the file as JEMail.java.

b. Modify the JEMail application to include a Clear button that the user can click at
any time to clear the “To:”, “Subject:”, and “Message:” fields. Save the file as
JEMail2.java.

9. a. Create an application that uses a graphic interface to capture employee data and
writes that data to a random access output file. The data required for each
employee includes an employee ID number from 1 through 99 inclusive, the first
and last names of the employee, and the employee’s hourly pay rate. Allow the

C H A P T E R 1 5 Advanced GUI Topics

854

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

user to enter data one record at a time and to click a button to save each record.
Save the class as CreateRandomEmployeeFile.java.

b. Create an application that allows the user to enter an employee ID number.
When the user clicks a button, display all the stored data for the employee. Save
the file as ReadRandomEmployeeFile.java.

10. Create a JFrame for Java Junior College. Use menus to allow the user to
access information about different campuses, major fields of study offered,
and activities. Include at least two options in each menu. Save the file as
JavaJuniorCollege.java.

Debugging Exercises
1. Each of the following files in the Chapter15 folder of your downloadable student

files has syntax and/or logic errors. In each case, determine the problem and fix
the program. After you correct the errors, save each file using the same
filename preceded with Fix. For example, DebugFifteen1.java will become
FixDebugFifteen1.java.

a. DebugFifteen1.java
b. DebugFifteen2.java

c. DebugFifteen3.java
d. DebugFifteen4.java

Game Zone

As you create some of the games in this section, you might find it convenient to add or remove components
in a container after construction. Recall from Chapter 14 that in order for the user to see your changes, you
might need to call the validate(), invalidate(), and repaint() methods. You will learn more
about the repaint() method in the next chapter, “Graphics.”

1. a. Create a Mine Field game in which the user attempts to click 10 panels of a grid
before hitting the “bomb.” Set up a JFrame using BorderLayout, use the NORTH

region for a congratulatory message, and use the CENTER region for the game.
In the CENTER region, create a four-by-five grid using GridLayout and
populate the grid with JPanels. Set the background color for all the JPanels
to Color.BLUE. Randomly choose one of the panels to be the bomb; the other
19 panels are “safe.” Allow the player to click on grids. If the player chooses
a safe panel, turn the panel to Color.WHITE. If the player chooses the bomb
panel, turn the panel to Color.RED and turn all the remaining panels white. If
the user successfully chooses 10 safe panels before choosing the bomb, display
a congratulatory message in the NORTH JFrame region. Save the game as
MineField.java.

Exercises

855

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. Improve the Mine Field game by allowing the user to choose a difficulty level
before beginning. Place three buttons labeled “Easy”, “Intermediate”, and “Diffi-
cult” in one region of the JFrame, and place the game grid and congratulatory
message in other regions. Require the user to select a difficulty level before starting
the game, and then disable the buttons. If the user chooses “Easy”, the user must
select only five safe panels to win the game. If the user selects “Intermediate”,
require 10 safe panels, as in the original game. If the user selects “Difficult”, require
15 safe panels. Save the game as MineField2.java.

2. a. Create a game that helps new mouse users improve their hand-eye coordination.
Within a JFrame, display an array of 48 JPanels in a GridLayout using eight rows
and six columns. Randomly display an X on one of the panels. When the user
clicks the correct panel (the one displaying the X), remove the X and display it on a
different panel. After the user has successfully “hit” the correct panel 10 times,
display a congratulatory message that includes the user’s percentage (hits divided
by clicks). Save the file as JCatchTheMouse.java.

b. Review how to use the LocalDateTime class from Chapter 4, and then revise the
JCatchTheMouse game to conclude by displaying the number of seconds it takes
the user to click all 10 Xs. (For this program, assume that the user starts and
stops the game during the same hour. That way, you only have to compare the
minute and second values of the start and stop times.) Save the file as
JCatchTheMouseTimed.java.

If you were writing a professional timed game, you would test the timer’s accuracy regardless of when the
user decided to play, even if the game’s duration fell into different days or years. To make sure that the
game’s timer works correctly, you would either have to test it over the midnight hour on New Year’s Eve
(which is impractical), or you would have to reset your system’s clock to simulate New Year’s Eve. If you are
writing the programs in this book on a school’s computer network, you might be blocked by the administrator
from changing the date and time. Even if you are working on your own computer, do not attempt to change
the date and time unless you understand the impact on other installed applications. For example, your
operating system might assume that an installed virus-protection program is expired, or a financial program
might indicate that automatically paid bills are overdue.

3. The game Corner the King is played on a checkerboard. To begin, a checker is
randomly placed in the bottom row. The player can move one or two squares to the
left or upwards, and then the computer can move one or two squares left or up. The
first to reach the upper-left corner wins. Design a game in which the computer’s
moves are chosen randomly. When the game ends, display a message that indicates
the winner. Save the game as CornerTheKing.java.

4. Create a target practice game that allows the user to click moving targets and displays
the number of hits in a 10-second period. (In Chapter 4, you learned how to use the
LocalDateTime class to measure elapsed time.) Create a grid of at least 100 JPanels.
Randomly display an X on five panels to indicate targets. As the user clicks each X,
change the label to indicate a hit. When all five Xs have been hit, randomly display a
new set of five targets. Continue with as many sets as the user can hit in 10 seconds.
When the time is up, display a count of the number of targets hit. Save the file as
JTargetPractice.java.

C H A P T E R 1 5 Advanced GUI Topics

856

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. You set up the card game Concentration by placing pairs of cards face down in a
grid. The player turns up two cards at a time, exposing their values. If the cards
match, they are removed from the grid. If the cards do not match, they are turned
back over so their values are hidden again, and the player selects two more cards to
expose. Using the knowledge gained by the previously exposed cards, the player
attempts to remove all the pairs of cards from play. Create a Java version of this
game using a GridLayout that is four rows high and five columns wide. Randomly
assign two of the numbers 0 through 9 to each of 20 JPanels, and place each of the
20 JPanels in a cell of the grid. Initially, show only “backs” of cards by setting each
panel’s background to a solid color. When the user clicks a first card, change its
color and expose its value. After the user clicks a second card, change its color to
the same color as the first exposed card, expose the second card’s value, and keep
both cards exposed until the user’s mouse pointer exits the second card. If the two
exposed cards are different, hide the cards again. If the two turned cards match, then
“remove” the pair from play by setting their background colors to white. When the user
has matched all 20 cards into 10 pairs, display a congratulatory message. Save the game
as JConcentration.java.

6. Create a Mine Sweeper game by setting up a grid of rows and columns in
which “bombs” are randomly hidden. You choose the size and difficulty of the
game; for example, you might choose to create a fairly simple game by displaying a
four-by-five grid that contains four bombs. If a player clicks a panel in the grid
that contains a bomb, then the player loses the game. If the clicked panel is not a
bomb, display a number that indicates how many adjacent panels contain a bomb.
For example, if a user clicks a panel containing a 0, the user knows it is safe to click
any panel above, below, beside, or diagonally adjacent to the cell, because those cells
cannot possibly contain a bomb. If the player loses by clicking a bomb, display all
the numeric values as well as the bomb positions. If the player succeeds in clicking all
the panels except those containing bombs, the player wins and you should display a
congratulatory message. Figure 15-44 shows the progression of a typical game. In the
first screen, the user has clicked a panel, and the display indicates that no adjacent cells
contain a bomb. In the second screen, the user has clicked a second panel, and the
display indicates that one adjacent cell contains a bomb. In the last screen, the user has
clicked a bomb panel, and all the bomb positions are displayed. Save the game as
MineSweeper.java.

Exercises

857

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Create the game Lights Out using a BorderLayout. Place a five-by-five grid of panels
in one region, and reserve another region for a congratulatory message. Randomly set
each panel in the grid to a dark color or light color. The object of the game is to force
all the panels to be dark, thus turning the “lights out.” When the player clicks a panel,
turn all the panels in the same row and column, including the clicked panel, to the
opposite color. For example, if the user clicks the panel in the second row, third
column, then darken all the light-colored panels in the second row and third column,
and lighten all the dark-colored panels in that row and column. When all the panels
in the grid are dark, all the lights are out, so display a congratulatory message. Save
the game as LightsOut.java.

8. The game StopGate is played on a checkerboard with a set of dominoes; each domino
is large enough to cover two checkerboard squares. One player places a domino
horizontally on the checkerboard, covering any two squares. The other player then
places a domino vertically to cover any other two squares. When a player has no
more moves available, that player loses. Create a computerized version of the game in
which the player places the horizontal pieces and the computer randomly selects a
position for the vertical pieces. (Game construction will be simpler if you allow the
player to select only the left square of a two-square area and assume that the domino
covers that position plus the position immediately to the right.) Use a different color

Figure 15-44 Typical progression of MineSweeper game

C H A P T E R 1 5 Advanced GUI Topics

858

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

for the player’s dominoes and the computer’s dominoes. Display a message naming
the winner when no more moves are possible. Figure 15-45 shows a typical game
after the player (blue) and computer (black) have each made one move, and near the
end of the game when the player is about to win—the player has one move
remaining, but the computer has none. Save the file as StopGate.java.

Case Problems
1. In Chapter 14, you created an interactive GUI application for Carly’s Catering

that allows the user to enter a number of guests for an event and to choose an
entrée, two side dishes, and a dessert from groups of choices. Then, the application
displays the cost of the event and a list of the chosen items. Now, modify the
interface to include separate panels for the guest number entry, each group of
menu choices, and the output. Use at least two different layout managers and
at least two different colors in your application. Save the program as
JCarlysCatering.java.

2. In Chapter 14, you created an interactive GUI application for Sammy’s Seashore
Rentals that allows the user to enter a rental time in hours, an equipment type, and a
lesson option. Then, the application displays the cost of the rental and rental details.
Now, modify the interface to include separate panels for the hour entry, each group
of menu choices, and the output. Use at least two different layout managers and
at least two different colors in your application. Save the program as
JSammysSeashore.java.

Figure 15-45 A typical game of StopGate just after play begins and near the end of the game

Exercises

859

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 16
Graphics

In this chapter, you will:

Learn about rendering methods

Draw strings

Draw lines and shapes

Learn more about fonts

Draw with Java 2D graphics

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning About Rendering Methods
When you run a Java program that contains graphics, such as the JFrame applications in the
previous chapters, the display surface frequently must be displayed repeatedly, or rendered
and rerendered. Rendering and rerendering a surface also is called painting. Painting
operations fall into two broad categories based on what causes them:

System-triggered painting occurs when the system asks a component to render its
contents. This request happens when the component is first made visible, if it is resized, or
if it is damaged. For example, a component becomes damaged when another component
that covered part of it is moved, revealing a portion that was not visible.

Application-triggered painting occurs when a program requests it, usually because the
internal state of a component has changed. For example, you might want to change a
component’s text or color when a user clicks a button.

In Java, whether a paint request is triggered by the system or an application, a Component’s
paint() method is invoked. The header for the paint() method is:
public void paint(Graphics g)

The parameter to the method is a Graphics object. The Graphics class is an abstract class
that descends directly from Object and holds data about graphics operations and methods for
drawing shapes, text, and images. You learn more about this class later in this chapter.

You can override the paint() method in your programs if you want specific actions to take
place when components must be rendered. For example, a window might need to be updated
because it contains new images or you have moved a new object onto the screen. You don’t
usually call the paint() method directly. Instead, the repaint() method calls paint(). The
Java system calls the repaint() method automatically when it needs to update a window, or
you can call it yourself when you want painting to occur.

When a Swing object such as a JPanel calls the repaint() method, it not only calls
paint(), it calls three other methods named paintComponent(), paintBorder(), and
paintChildren(). Java’s creators recommend that classes that extend Swing components
should place all drawing code in a paintComponent() method that overrides the parent
class version of the method. You generally should not write your own versions of
paintBorder() or paintChildren(). The paintComponent() method where you place
drawing code has the following header:
public void paintComponent(Graphics g)

The first statement you place in this method is most often the following:
super.paintComponent(g);

This statement uses the Graphics object that is automatically created as a parameter to
paintComponent() and passes it up to the parent class version of the method, which makes
sure that the component is erased before new drawing occurs. If you omit this statement, the
component is not erased between updates and new output appears to “pile up” on top of
previous output.

C H A P T E R 1 6 Graphics

862

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 16-1 shows a class that demonstrates how component painting executes
automatically. The figure contains a class that extends JPanel. The constructor requires a
color parameter so that you can easily see the panel when it is eventually placed on a frame.
For simplicity, the constructor assumes that the color is either red or blue, and it assigns the
appropriate value to a string and sets the panel’s background color. The JColorPanel class
also contains a paintComponent() method that will be called automatically and that
overrides the JPanel version of the method. In it, count is incremented and displayed
so that you can keep track of the number of times the method has been called with each
object created from the class. Notice that the paintComponent() method is never called
from this class.

import javax.swing.*;
import java.awt.*;
import java.awt.Color;
public class JColorPanel extends JPanel
{

int count = 0;
String colorString;
public JColorPanel(Color color)
{

if(color.equals(Color.RED))
colorString = "red";

else
colorString = "blue";

setBackground(color);
}
@Override
public void paintComponent(Graphics g)
{

super.paintComponent(g);
++count;
System.out.println("In paintComponent() method −− " +

colorString + " " + count);
}

}

Figure 16-1 The JColorPanel class

Figure 16-2 shows a class that extends JFrame. Two JColorPanel objects are declared—a red
one and a blue one. The background of the frame is set to yellow and the blue and red panels
are added to different regions of the frame. The main() method simply declares a frame
object and sets its size and visibility. Notice that the paintComponent() method is not called
from this class either.

Learning About Rendering Methods

863

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
import java.awt.Color;
public class JDemoPaintComponent extends JFrame
{

JColorPanel p1 = new JColorPanel(Color.RED);
JColorPanel p2 = new JColorPanel(Color.BLUE);
public JDemoPaintComponent()
{

setLayout(new BorderLayout());
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
getContentPane().setBackground(Color.YELLOW);
add(p1, BorderLayout.EAST);
add(p2, BorderLayout.SOUTH);

}
public static void main(String[] args)
{

JDemoPaintComponent frame = new JDemoPaintComponent();
frame.setSize(150, 100);
frame.setVisible(true);

}
}

Figure 16-2 The JDemoPaintComponent class

Figure 16-3 shows a typical execution of the JDemoPaintComponent program. The frame
contains red and blue panels in its east and south regions, respectively, and the command line
displays output from multiple calls to the paintComponent() method, alternating between
the method associated with the blue panel and the red one. To create this sample output, the
user started the program and then minimized and restored the frame several times. Although
the paintComponent() method is never explicitly called in the program, it executes every
time the system decides the panels need to be rerendered, including multiple times before the
user takes any action on the frame. Each time the user resizes the frame by dragging its
borders or minimizes and restores the frame, the paintComponent() method executes
additional times for each panel.

Figure 16-3 Typical execution of the JDemoPaintComponent program

C H A P T E R 1 6 Graphics

864

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you want to call paintComponent() before the system calls it automatically, you
should call repaint() and let it call paintComponent(). For example, if you want to
change graphic output on a panel in response to a user’s mouse click, you would place a
call to repaint() in the actionPerformed() method. This technique is shown in a
program later in this chapter.

TWO TRUTHS & A LIE

Learning About Rendering Methods

1. In Java, painting can be system triggered or application triggered.

2. The parameter to paintComponent() is a Graphics object.

3. In a Java Swing program, graphics drawing instructions should be placed in a
method named paint().

. doht e m
)(tnenopmoCtniap eht ni gnol eb snoi t curt sni gni war D. 3# si t ne met at s esl af ehT

Drawing Strings
The drawString() method in the Graphics class allows you to draw a String on a JPanel or
other component. The drawString() method requires three arguments: a String, an x-axis
coordinate, and a y-axis coordinate. (You learned about the x- and y-axes in Chapter 15.
The x-axis represents horizontal position and the y-axis represents vertical position.)

When you use x- and y-coordinates with drawString(), the lower-left corner of the String

appears at the coordinates.

The drawString() method is an instance method in the Graphics class, so you need to use a
Graphics object to call it. For example, if you create a class that extends JPanel and
implement a method with the header public void paintComponent(Graphics brush), you
can draw a String within your method by using a statement such as:
brush.drawString("Hi ", 50, 80);

Figure 16-4 contains a class named JPanelWithButton that extends JPanel and contains a
JButton. The constructor sets the panel’s background color to red and activates the button.
The actionPerformed() method that executes when the user clicks the button sets the
panel’s color to blue if it is currently red and to red if it is blue. The paintComponent()

method that is automatically called when the panel needs repainting calls drawString(),
which displays the current color name at position 20, 80.

Drawing Strings

865

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.Color;
public class JPanelWithButton extends JPanel implements ActionListener
{

JButton button = new JButton("Press me");
Color color;
String colorString;
public JPanelWithButton()
{

color = Color.RED;
colorString = "red";
setBackground(color);
add(button);
button.addActionListener(this);

}
public void actionPerformed(ActionEvent e)
{

if(color.equals(Color.RED))
{

color = Color.BLUE;
colorString = "blue";

}
else
{

color = Color.RED;
colorString = "red";

}
setBackground(color);

}
public void paintComponent(Graphics g)
{

super.paintComponent(g);
g.drawString("The panel is " + colorString, 20, 80);

}
}

Figure 16-4 The JPanelWithButton program

The equals() method is overridden in the Color class to compare colors. Colors are equal only if their
red, green, blue, and alpha (transparency) values are all the same.

Figure 16-5 contains a short demonstration program that extends JFrame, adds a
JPanelWithButton object to it, and displays it. When you execute the program, the frame
looks like Figure 16-6. When the user clicks the button, the background color of the panel
changes from red to blue, and when the user clicks again, it changes from blue to red. The
string changes appropriately because the paintComponent() method executes automatically
in response to the color change.

C H A P T E R 1 6 Graphics

866

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
public class JDemoPanelWithButton extends JFrame
{

JPanelWithButton p1 = new JPanelWithButton();
public JDemoPanelWithButton()
{

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
add(p1, BorderLayout.CENTER);

}
public static void main(String[] args)
{

JDemoPanelWithButton frame = new JDemoPanelWithButton();
frame.setSize(200, 200);
frame.setVisible(true);

}
}

Figure 16-5 The JDemoPanelWithButton program

Interestingly, when you use the drawString()
method with a negative font size, the string appears
upside down. The coordinates then indicate the
lower-right corner of the string.

Repainting
In the JPanelWithButton program in Figure 16-4, the
paintComponent() method executed automatically
and displayed a string because the panel’s color
changed, creating a need for the panel to be
repainted. However, you might want to execute
paintComponent() even when no draw-triggering
changes have been made to a panel.

Consider the JPanelWithButton2 class in Figure 16-7. This class is similar to the
JPanelWithButton class, except that the color has been removed. When the user clicks
the button, a count variable is incremented and then displayed with the drawString()
method call in the paintComponent() method. Because the color doesn’t change, nothing in
this program calls paintComponent() automatically, so the shaded call to repaint() is
necessary. Without it, paintComponent() would never execute, and the new value of count
would not be displayed with each button press. Instead, it would be displayed only after the
next time the panel was repainted automatically—for example, after the application was
minimized and restored.

Figure 16-6 Typical execution of the
JDemoPanelWithButton program

Drawing Strings

867

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JPanelWithButton2 extends JPanel implements ActionListener
{

JButton button = new JButton("Press me");
int count = 0;
public JPanelWithButton2()
{

add(button);
button.addActionListener(this);

}
public void actionPerformed(ActionEvent e)
{

++count;
repaint();

}
@Override
public void paintComponent(Graphics g)
{

super.paintComponent(g);
g.drawString("The count is " + count, 20, 80);

}
}

Figure 16-7 The JPanelWithButton2 class

Figure 16-8 contains a program that extends JFrame and demonstrates the
JDemoPanelWithButton2 class. The only changes from the JDemoPanelWithButton class
in Figure 16-5 are the shaded additions of 2 to the class names.

import javax.swing.*;
import java.awt.*;
public class JDemoPanelWithButton2 extends JFrame
{

JPanelWithButton2 p1 = new JPanelWithButton2();
public JDemoPanelWithButton2()
{

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
add(p1, BorderLayout.CENTER);

}
public static void main(String[] args)
{

JDemoPanelWithButton2 frame = new JDemoPanelWithButton2();
frame.setSize(200, 200);
frame.setVisible(true);

}
}

Figure 16-8 The JDemoPanelWithButton2 application

C H A P T E R 1 6 Graphics

868

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 16-9 shows the frame after the user has clicked the
button three times. The display on the panel is rerendered
after each button click in response to the call to repaint()

in the button’s actionPerformed() method.

Setting a Font
You can improve the appearance of strings drawn using
Graphics objects by using the setFont() method. The
setFont() method requires a Font argument. (You
learned about the Font class in Chapter 14.) You can
instruct a Graphics object to use a font by inserting it as
the argument in a setFont() method call. For example, if a
Graphics object is named artist, its font can be set with
the following:

Font smallFont = new Font("Arial", Font.PLAIN, 8);
artist.setFont(smallFont);

Instead of creating a named Font object, you can use an anonymous object in the setFont()
method call, as in the following example:
artist.setFont(new Font("Arial", Font.PLAIN, 8);

Figure 16-10 shows a panel class that creates a Font object used to draw a string. Figure 16-11
is a frame application that displays the panel, and Figure 16-12 shows the output.

import javax.swing.*;
import java.awt.*;
public class JFontPanel extends JPanel
{

Font fancyFont = new Font("Serif", Font.ITALIC, 40);
@Override
public void paintComponent(Graphics g)
{

super.paintComponent(g);
g.setFont(fancyFont);
g.drawString("Hello", 20, 80);

}
}

Figure 16-10 The JFontPanel class

Figure 16-9 The
JDemoPanelWithButton2
program during execution

Drawing Strings

869

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
public class JDemoFontPanel extends JFrame
{

JFontPanel p1 = new JFontPanel();
public JDemoFontPanel()
{

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
add(p1);

}
public static void main(String[] args)
{

JDemoFontPanel frame = new JDemoFontPanel();
frame.setSize(200, 200);
frame.setVisible(true);

}
}

Figure 16-11 The JDemoFontPanel application

Using Color
You can improve the appearance of graphics
output by designating a Graphics object’s color
with the setColor() method. As you learned in
Chapter 15, the Color class contains 13
constants; you can use any of these constants as
an argument to the setColor() method. For
example, you can instruct a Graphics object
named g to produce green output by using the
following statement:
g.setColor(Color.GREEN);

Until you change the color, subsequent graphics
output appears in green.

Figure 16-12 Output of the
JDemoFontPanel class

C H A P T E R 1 6 Graphics

870

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Drawing Strings

1. The drawString() method requires three arguments: a String, an x-axis
coordinate, and a y-axis coordinate.

2. The upper-left corner of a String appears at the location indicated by the
x- and y-coordinate arguments to drawString().

3. The drawString() method is an instance method of the Graphics class.

. gnirtS eht f or enr octf el- r e wol eht et aci dni
)(gnirtSward ot st ne mugr a et ani dr ooc- y dna- x ehT. 2# si t ne met at s esl af ehT

You Do It

Using the drawString() Method

In the next steps, you write a class that extends JPanel and uses the drawString()

method.

1. Open a new file, and begin a definition for a JStringPanel class by typing the
following:
import javax.swing.*;
import java.awt.*;
import java.awt.Color;
public class JStringPanel extends JPanel
{

2. Declare five variables that can hold a string’s contents, font, color, and
horizontal and vertical positions:
String string;
Font font;
Color color;
int horizontal;
int vertical;

3. Add a constructor that assigns parameters to each of the panel’s properties
and sets the panel’s background color to white:

(continues)

Drawing Strings

871

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public JStringPanel(String s, Font f, Color c, int x, int y)
{

string = s;
font = f;
color = c;
horizontal = x;
vertical = y;
setBackground(Color.WHITE);

}

4. Type the following paintComponent() method that calls the JPanel class version
of the method and then sets the font and color of the Graphics parameter. Draw
a string at the position indicated, and add a closing curly brace for the class.

@Override
public void paintComponent(Graphics g)
{

super.paintComponent(g);
g.setFont(font);
g.setColor(color);
g.drawString(string, horizontal, vertical);

}
}

5. Save the file as JStringPanel.java, and then compile it and fix any errors.

Creating a JFrame to Hold JStringPanel Objects

Next, you create a JFrame that holds four JStringPanel objects so you can observe
how different string colors, fonts, and positions look.

1. Open a new file and write the first few lines of a class that creates a JFrame

that can hold four JStringPanel objects.
import javax.swing.*;
import java.awt.*;
import java.awt.Color;
public class JDemoStringPanels extends JFrame
{

2. The frame will have a grid layout, so create a constant to hold the gap
between the panels that will appear in the grid:
final int GAP = 15;

3. Instantiate a JStringPanel object. The constructor requires a string, a font, a
color, and x- and y-axis positions:
JStringPanel p1 = new JStringPanel("abc",

new Font("TimesRoman", Font.BOLD, 16), Color.BLACK, 20, 20);

(continues)

(continued)

C H A P T E R 1 6 Graphics

872

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Create three additional panels, each with different values:
JStringPanel p2 = new JStringPanel("def",

new Font("Arial", Font.ITALIC, 26), Color.RED, 20, 60);
JStringPanel p3 = new JStringPanel("ghi",

new Font("Boopee", Font.BOLD, 32), Color.BLUE, 20, 80);
JStringPanel p4 = new JStringPanel("jkl",

new Font("Serif", Font.PLAIN, 40), Color.MAGENTA, 20, 120);

5. Start the JFrame constructor, which contains statements to set the close
operation, set the layout to a 2-by-2 grid, and set the background color to
black. The background of the frame will appear in the gaps between sections
of the grid layout.
public JDemoStringPanels()
{

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLayout(new GridLayout(2, 2, GAP, GAP));
getContentPane().setBackground(Color.BLACK);

6. Next, add the four JStringPanel objects to the frame and include a closing
curly brace for the constructor.

add(p1);
add(p2);
add(p3);
add(p4);

}

7. Complete the class with a main() method that instantiates a
JDemoStringPanels JFrame and sets its size and visibility. Include
a closing curly brace for the class.

public static void main(String[] args)
{

JDemoStringPanels frame = new JDemoStringPanels();
frame.setSize(400, 400);
frame.setVisible(true);

}
}

8. Save the file as JDemoStringPanels.java, compile it, and execute it.
The program’s output appears in Figure 16-13. You can see the four panels that
are separated by the black gaps. You can see that different fonts, sizes, and
positions are used for the string in each panel. Although the figure is shown in black
and white in this book, notice that the strings on your screen are displayed in
different colors. The fonts that appear in your program might be different from
those shown in the figure, depending on your computer’s installed fonts. (Later in
this chapter, you will learn how to viewa list of all available fonts on your computer.)

(continued)

(continues)

Drawing Strings

873

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Close the JFrame to end the application.

Drawing Lines and Shapes
Much like you can draw strings using a Graphics object, Java provides you with several
methods for drawing a variety of lines and geometric shapes. Any line or shape is drawn in the
color you set with the setColor() method. When you do not set a color, lines are drawn
in black by default.

Drawing Lines
You can use the drawLine() method to draw a straight line between any two points on the
screen. The drawLine() method takes four arguments: the x- and y-coordinates of the line’s

(continued)

Figure 16-13 Output of the JDemoStringPanels program

C H A P T E R 1 6 Graphics

874

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

starting point and the x- and y-coordinates of the
line’s ending point. For example, if you create a
Graphics object named pen, the following statement
draws a straight line that slants down and to the right
from position 50, 50 to position 100, 200, as shown in
Figure 16-14.
pen.drawLine(50, 50, 100, 200);

Because you can start at either end when you draw
a line, an identical line would be created with the
following code:
pen.drawLine(100, 200, 50, 50);

Your downloadable student files contain a JDemoLine.java
file with a working program that draws the line shown in
Figure 16-14.

Drawing Unfilled and Filled Rectangles
You could draw a rectangle by drawing four lines. Alternatively, you can use the drawRect()
and fillRect() methods, respectively, to draw the outline of a rectangle or a solid, or filled,
rectangle. Each of these methods requires four arguments. The first two arguments represent
the x- and y-coordinates of the upper-left corner of the rectangle. The last two arguments
represent the width and height of the rectangle. For example, the following statement uses a
Graphics object named g to draw a short, wide rectangle that begins at position 20, 100 and is
200 pixels wide by 10 pixels tall:
g.drawRect(20, 100, 200, 10);

Drawing Clear Rectangles
The clearRect() method also requires four arguments and draws a rectangle. The
difference between using the drawRect() and fillRect() methods and the clearRect()

method is that the first two methods use the current drawing color, whereas the
clearRect() method draws what appears to be an empty or “clear” rectangle. A
rectangle created with the clearRect() method is not really clear; in other words, it is
not transparent. When you create a rectangle, you do not see objects that might be
hidden behind it. Instead, the clearRect() method clears anything drawn from view,
showing the original content pane.

For example, the program shown in Figure 16-15 displays several rectangles. In the
paintComponent() method, the background of the panel is set to blue, the Graphics object
is set to red, and a filled red rectangle is painted. Then, the Graphics object is changed to
yellow, and a larger filled rectangle is drawn further to the right and further down on the
panel. Then a clear rectangle is drawn overlapping the other two rectangles.

Figure 16-14 A line created
with drawLine(50, 50, 100, 200);

Drawing Lines and Shapes

875

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
import java.awt.Color;
public class JDemoRectangles extends JPanel
{

@Override
public void paintComponent(Graphics gr)
{

super.paintComponent(gr);
setBackground(Color.BLUE);
gr.setColor(Color.RED);
gr.fillRect(40, 40, 120, 120);
gr.setColor(Color.YELLOW);
gr.fillRect(80, 80, 160, 160);
gr.clearRect(50, 60, 50, 50);

}
public static void main(String[] args)
{

JFrame frame = new JFrame();
frame.add(new JDemoRectangles());
frame.setSize(300, 300);
frame.setVisible(true);

}
}

Figure 16-15 The JDemoRectangles class

Although you have seen several JPanel examples in
which a separate JFrame class was created to hold
one or more panels, a main() method that declares a
JFrame is included in the JDemoRectangles class for
convenience. This approach is frequently used to test
a JPanel class because all the code for the panel and a
frame that holds it is contained in a single file. In this
example, the main() method instantiates a JFrame

and adds a JDemoRectangles panel to it. The output
appears in Figure 16-16. You cannot see the
boundaries of the original rectangles in the “clear”
area of the figure—you simply see that portions of the
red and yellow filled rectangles have been removed
from the drawing.

Drawing Rounded Rectangles
The drawRoundRect() method creates rectangles with rounded corners. The method
requires six arguments. The first four arguments match the four arguments required to
draw a rectangle: the x- and y-coordinates of the upper-left corner, the width, and the

Figure 16-16 Output of the
JDemoRectangles program

C H A P T E R 1 6 Graphics

876

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

height. The two additional arguments represent the arc width and height associated with
the rounded corners. (An arc is a portion of a circle’s circumference.) If you assign zeros
to the arc coordinates, the rectangle is not rounded; instead, the corners are square. At
the other extreme, if you assign values to the arc coordinates that are at least the width
and height of the rectangle, the rectangle is so rounded that it is a circle. The
paintComponent() method in Figure 16-17 draws four rectangles with increasingly large
corner arcs. The first rectangle is drawn at coordinates 20, 40, and the horizontal
coordinate is increased by 100 for each subsequent rectangle. Each rectangle is the same
width and height, but each set of arc values becomes larger, producing rectangles that
are not rounded, slightly rounded, very rounded, and completely rounded in sequence.
Figure 16-18 shows the program’s output.

import javax.swing.*;
import java.awt.*;
public class JDemoRoundedRectangles extends JPanel
{

@Override
public void paintComponent(Graphics gr)
{

super.paintComponent(gr);
int x = 20;
int y = 40;
final int WIDTH = 80, HEIGHT = 80;
final int ARC_INCREASE = 20;
final int HORIZONTAL_GAP = 100;
for(int size = x; size <= HEIGHT; size += ARC_INCREASE)
{

gr.drawRoundRect(x, y, WIDTH, HEIGHT, size, size);
x += HORIZONTAL_GAP;

}
}
public static void main(String[] args)
{

JFrame frame = new JFrame();
frame.add(new JDemoRoundedRectangles());
frame.setSize(430, 180);
frame.setVisible(true);

}
}

Figure 16-17 The JDemoRoundedRectangles class

Drawing Lines and Shapes

877

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Java also contains a fillRoundRect() method that creates a filled rounded rectangle and a
clearRoundRect() method that creates a clear rounded rectangle.

Drawing Shadowed Rectangles
The draw3DRect() method is a minor variation on the drawRect() method. You use the
draw3DRect() method to draw a rectangle that appears to have dark “shadowing” on two of its
edges and light “highlights” on two others. The draw3DRect() method requires a fifth argument
in addition to the x- and y-coordinates, width, and height required by the drawRect() method.
The fifth argument is a Boolean value, which is true if you want the raised rectangle effect
(darker on the right and bottom) and false if you want the lowered rectangle effect (lighter on
the right and bottom). You see a rectangle that has shadowing on the bottom as it is raised
because objects are lit from the top when struck by sunlight in nature.

The fill3DRect() method creates filled three-dimensional (3D) rectangles; this method is
used in the program in Figure 16-19.

import javax.swing.*;
import java.awt.*;
import java.awt.Color;
public class JDemo3DRectangles extends JPanel
{

@Override
public void paintComponent(Graphics gr)
{

super.paintComponent(gr);
final int WIDTH = 60, HEIGHT = 80;
gr.setColor(Color.PINK);
gr.fill3DRect(20, 40, WIDTH, HEIGHT, true);
gr.fill3DRect(100, 40, WIDTH, HEIGHT, false);

}

Figure 16-18 Output of the JDemoRoundedRectangles program

Figure 16-19 The JDemo3DRectangles class (continues)

C H A P T E R 1 6 Graphics

878

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public static void main(String[] args)
{

JFrame frame = new JFrame();
frame.add(new JDemo3DRectangles());
frame.setSize(200, 180);
frame.setVisible(true);

}
}

Figure 16-19 The JDemo3DRectangles class

The program in Figure 16-19 creates two filled 3D
rectangles in pink. (The 3D methods work best with
lighter drawing colors.) You can see that the
shadowing effect on the output in Figure 16-20 is very
subtle; the shadowing is only one pixel wide.

Drawing Ovals
You can draw an oval using the drawRoundRect() or
fillRoundRect() method, but it is usually easier to use
the drawOval() and fillOval() methods. Both
methods draw ovals using the same four arguments that
rectangles use. When you supply drawOval() or
fillOval() with x- and y-coordinates for the upper-left
corner and width and height measurements, you can
picture an imaginary rectangle that uses the four
arguments. The oval is then placed within the rectangle
so the oval touches the center of each of the rectangle’s
sides. For example, suppose that you create a Graphics

object named tool and draw a rectangle with the
following statement:
tool.drawRect(50, 50, 100, 60);

Suppose that then you create an oval with the same
coordinates as follows:
tool.drawOval(50, 50, 100, 60);

The output appears as shown in Figure 16-21, with the
oval edges just skimming the rectangle’s sides.

Your downloadable student files contain a JDemoOval.java file that produces the frame in Figure 16-21.

(continued)

Figure 16-20 Output of the
JDemo3DRectangles() program

Figure 16-21 Demonstration of
the drawOval() method

Drawing Lines and Shapes

879

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you draw a rectangle with identical height and width, you draw a square. If you draw an oval
with identical height and width, you draw a circle.

Drawing Arcs
In Java, you can draw an arc using the Graphics drawArc() method. To use the drawArc()

method, you provide six arguments:

The x- and y-coordinates of the upper-left corner of an imaginary rectangle that
represents the bounds of the imaginary circle that contains the arc

The width and height of the imaginary rectangle that represents the bounds of the
imaginary circle that contains the arc

The beginning arc position and the arc angle

Arc positions and angles are measured in degrees;
there are 360 degrees in a circle. The 0° position for
any arc is the three o’clock position, as shown in
Figure 16-22. The other 359 degree positions
increase as you move counterclockwise around an
imaginary circle, so 90° is at the top of the circle in
the 12 o’clock position, 180° is opposite the starting
position at nine o’clock, and 270° is at the bottom of
the circle in the six o’clock position.

The arc angle is the number of degrees over
which you want to draw the arc, traveling
counterclockwise from the starting position. For
example, you can draw a half circle by indicating
an arc angle of 180° or a quarter circle by

indicating an arc angle of 90°. If you want to travel clockwise from the starting position,
you express the degrees as a negative number. Just as when you draw a line, you can
take one of two approaches when drawing an arc: either start at point A and travel to
point B, or start at point B and travel to point A. For example, if you create an arc
object using a Graphics object named g that looks like the top half of a circle, the
following statements produce identical results:
g.drawArc(x, y, w, h, 0, 180);
g.drawArc(x, y, w, h, 180, -180);

The first statement starts an arc at the three o’clock position and travels 180 degrees
counterclockwise to the nine o’clock position. The second statement starts at nine o’clock
and travels clockwise to three o’clock.

The fillArc() method creates a solid arc. The arc is drawn, and two straight lines
are drawn from the arc endpoints to the center of the imaginary circle whose
perimeter the arc occupies. For example, assuming you have declared a Graphics

180°

270°

90°

0°

Figure 16-22 Arc positions

C H A P T E R 1 6 Graphics

880

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

object named g, the following two statements together produce the output shown in
Figure 16-23:
g.fillArc(20, 50, 100, 100, 20, 320);
g.fillArc(60, 50, 100, 100, 340, 40);

Each of the two arcs is in a circle that has a size of
100 by 100. The first arc almost completes a full circle,
starting at position 20 (near two o’clock) and ending
320 degrees around the circle (at position 340, near
four o’clock). The second filled arc more closely
resembles a pie slice, starting at position 340 and
extending 40 degrees to end at position 20.

Your downloadable student files contain a program named
JDemoFilledArcs.java that produces Figure 16-23.

Creating Polygons
A polygon is a geometric figure with straight sides. A rectangle is a type of polygon with four
sides and all right angles. It’s easiest to draw a rectangle using the drawRect() method, but if
you want to create a shape that is more complex, you have the following options:

You can use a sequence of calls to the drawLine() method.

You can use the drawPolygon() method.

The drawPolygon() method requires three arguments: two integer arrays and a single
integer. The first integer array holds a series of x-coordinate positions, and the second array
holds a series of corresponding y-coordinate positions. These positions represent points that
are connected to form the polygon. The third integer argument is the number of pairs of
points you want to connect. If you don’t want to connect all the points represented by the
array values, you can assign the third argument a value that is smaller than the number of
elements in each array. An error occurs if the third argument has a greater value than the
available number of coordinate pairs.

For example, examine the code shown in Figure 16-24, which is a JPanel that draws a
star-shaped polygon.

Figure 16-23 Two filled arcs

Drawing Lines and Shapes

881

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
public class JStar extends JPanel
{

int xPoints[] = {42, 52, 72, 52, 60, 40, 15, 28, 9, 32, 42};
int yPoints[] = {38, 62, 68, 80, 105, 85, 102, 75, 58, 60, 38};
@Override
public void paintComponent(Graphics g)
{

super.paintComponent(g);
g.drawPolygon(xPoints, yPoints, xPoints.length);

}
public static void main(String[] args)
{

JFrame frame = new JFrame();
frame.add(new JStar());
frame.setSize(140, 160);
frame.setVisible(true);

}
}

Figure 16-24 The JStar class

In the JStar program, two parallel arrays are assigned
x- and y-coordinates. It is almost impossible to create a
program like this without sketching the desired shape on a
piece of graph paper to discover appropriate coordinate
values. The drawPolygon() method uses the two arrays
and the length of one array for the number of points. The
program’s output appears in Figure 16-25.

You can use the fillPolygon() method to draw a solid
shape. The major difference between the drawPolygon()
and fillPolygon() methods is that if the beginning
and ending points used with the fillPolygon()

method are not identical, the two endpoints are
connected by a straight line before the polygon is
filled with color.

Rather than providing the fillPolygon() method with three arguments, you can also
create a Polygon object and pass the constructed object as a single argument to the
fillPolygon() method. The Polygon constructor requires an array of x-coordinates, an
array of y-coordinates, and a size. For example, you can create a filled polygon using the
following statements:
Polygon someShape = new Polygon(xPoints, yPoints, xPoints.length);
gr.fillPolygon(someShape);

Figure 16-25 Output of the
JStar program

C H A P T E R 1 6 Graphics

882

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Polygon class also has a default constructor, so you can instantiate an empty Polygon

object (with no points) using the following statement:
Polygon someFutureShape = new Polygon();

Whether you use the default constructor or not, you can add points to a polygon after
construction. For example, you might want to add points that are determined by user input or
mathematical calculations. You use the addPoint() method in statements such as the
following to add points to the polygon after construction:
someFutureShape.addPoint(100, 100);
someFutureShape.addPoint(150, 200);
someFutureShape.addPoint(50, 250);

Points can be added to a polygon indefinitely.

Copying an Area
After you create a graphics image, you might want to create copies of the image. For
example, you might want a company logo to appear several times in an application. Of
course, you can redraw the picture, but you can also use the copyArea() method to
copy any rectangular area to a new location. The copyArea() method requires six
parameters:

The x- and y-coordinates of the upper-left corner of the area to be copied

The width and height of the area to be copied

The horizontal and vertical displacement of the destination of the copy

For example, the following line of code causes a Graphics object named gr to copy an area
20 pixels wide by 30 pixels tall from the upper-left corner of your JFrame (coordinates 0, 0)
to an area that begins 100 pixels to the right and 50 pixels down:
gr.copyArea(0, 0, 20, 30, 100, 50);

Using the paint() Method with JFrames
Java’s creators recommend that you create graphics on a JPanel (or other JComponent), but
you might see programs in which graphics are drawn on a JFrame. When you place graphics
on a JFrame, you should override the paint() method rather than the paintComponent()

method.

For example, Figure 16-26 shows a JFrameDrawingDemo class that extends JFrame. Its paint()
method calls the parent class paint() method, and then draws three shapes on the JFrame
surface. Figure 16-27 shows the output.

Drawing Lines and Shapes

883

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.awt.*;
import javax.swing.*;
public class JFrameDrawingDemo extends JFrame
{

final int SIZE = 40;
@Override
public void paint(Graphics g)
{

super.paint(g);
g.drawRect(50, 50, SIZE, SIZE);
g.drawOval(80, 80, SIZE, SIZE);
g.drawRect(110, 110, SIZE, SIZE);

}
public static void main(String[] args)
{

JFrameDrawingDemo frame = new JFrameDrawingDemo();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize(170, 210);
frame.setVisible(true);

}
}

Figure 16-26 The JFrameDrawingDemo class

Watch the video Drawing Lines and Shapes.

Figure 16-27 Output of the JFrameDrawingDemo class

C H A P T E R 1 6 Graphics

884

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Drawing Lines and Shapes

1. You can use the drawLine() method to draw a straight line between any
two points on the screen.

2. You can use methods named drawRect(), fillRect(), clearRect(),
drawOval(), and fillOval() to create a variety of shapes.

3. When you draw an arc, the zero-degree position is at 12 o’clock on an
imaginary clock, and the 90-degree position is at three o’clock.

. kcol c’ o 21t a si noi ti sop eer ged- 09 eht os, el cri c eer ged- 063 a
ni esi wkcol cr et nuoc evo muoy sa esaer cni seul av eer ged eht dna, kcol c’ o eer ht
t a si noi ti sop eer ged- or ez eht , cr a na war d uoy neh W. 3# si t ne met at s esl af ehT

You Do It

Creating a JPanel with a JButton and Graphics

In this section, you create a panel that alternates drawing a red circle and a blue
square in a series of positions from the top left to the bottom right in response to
each user button click.

1. Start a new program named JShapePanel as follows:
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.Color;
public class JShapePanel extends JPanel implements ActionListener
{

2. Instantiate a JButton, a Color object that holds the current drawing color, and
three integers to hold the horizontal and vertical position of each shape that
will be drawn and a count of the number of shapes drawn:
JButton button = new JButton("Press me");
Color color = Color.RED;
String shape = "circle";
int x = 0;
int y = 0;
int count = 0;

(continues)

Drawing Lines and Shapes

885

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Add three constants. The SIZE constant holds the width and height of each
circle and square that will be drawn. The INCREASE constant holds the value by
which the horizontal and vertical position variables will increase each time the
user clicks the panel’s button. The TIMES constant holds the number of times
the circles and squares will be drawn on the panel from the top left to the
bottom right before starting over again from the top left.
final int SIZE = 40;
final int INCREASE = 15;
final int TIMES = 14;

4. Add a constructor to the class. It sets the background color, adds the button
to the panel, and activates the button.
public JShapePanel()
{

setBackground(Color.WHITE);
add(button);
button.addActionListener(this);

}

5. Start the actionPerformed() method that will respond to button clicks.
Each time the user clicks the button, count is incremented. After 14 clicks,
shapes will have been drawn from the top left to the bottom right of the
panel, so the method sets the horizontal and vertical position for the next
drawing back to the top-left corner of the panel and resets the count of
clicks to 0.
public void actionPerformed(ActionEvent e)
{

++count;
if(count == TIMES)
{

x = 0;
y = 0;
count = 0;

}

6. If the current shape is a circle, change it to a blue square for the next
rendering. Otherwise, change it to a red circle.
if(shape.equals("circle"))
{

color = Color.BLUE;
shape = "rect";

}
(continues)

(continued)

C H A P T E R 1 6 Graphics

886

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

else
{

shape = "circle";
color = Color.RED;

}

7. Change the position where the next shape will be drawn—a little further right
and a little further down. Then, to render the new shape at its new position,
call repaint(), which calls paintComponent(). Add a closing curly brace for
the actionPerformed() method.

x += INCREASE;
y += INCREASE;
repaint();

}

8. The paintComponent() method calls the parent class’s version of the method,
then sets the painting color to the current color. If the current shape is a
circle, the method uses fillOval() to draw a circle at the current position.
Otherwise, it uses fillRect() to draw a square at the current position.
@Override
public void paintComponent(Graphics g)
{

super.paintComponent(g);
g.setColor(color);
if(shape.equals("circle"))

g.fillOval(x, y, SIZE, SIZE);
else

g.fillRect(x, y, SIZE, SIZE);
}

9. The main() method for the class instantiates a frame to hold the panel and sets
the close operation, size, and visibility. The class ends with a closing curly brace.

public static void main(String[] args)
{

JFrame frame = new JFrame();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.add(new JShapePanel());
frame.setSize(300, 300);
frame.setVisible(true);

}
}

10. Save the file as JShapePanel.java, and compile and execute it. The left side of
Figure 16-28 shows the application when it starts. The first shape displayed is a
red circle at position 15, 15. The image on the right shows the frame after the

(continues)

(continued)

Drawing Lines and Shapes

887

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

user has clicked the button one time. The shape becomes a blue square
at position 30, 30, slightly below and to the right of the red circle’s original
position.

11. Continue to click the button and observe
alternating circles and squares in new
positions on the panel. After the thirteenth
click, the frame looks like Figure 16-29.
With the fourteenth click, the shape
appears at the top of the panel again
and resumes its journey down and to
the right.

12. Close the application.

Observing the Effect of the
super.paintComponent() Call

Next, you will observe the effect of omitting
the call to the superclass paintComponent() method.

1. Locate the call to super.paintComponent() in the paintComponent() method
in the JShapePanel class. Comment out the statement by placing two forward
slashes at the start of its line.

(continues)

(continued)

Figure 16-28 Execution of the JShapePanel program before and after the JButton is clicked

Figure 16-29 Execution of the
JShapePanel program after the
button is clicked 13 times

C H A P T E R 1 6 Graphics

888

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Save the program, and then compile and execute it. With this version of the
class, the panel is not redrawn each time you click the button, so the shapes
“pile up” on top of each other. Additionally, an unwanted second version of the
button appears at the top of the panel. Figure 16-30 shows the output after
the user has clicked the button 10 times.

3. Restore the super.paintComponent() call to active status by removing the
comment slashes, and then compile and execute the program. Make sure it
works correctly again.

Copying an Area

Next, you learn how to copy an area containing a shape that you want to display several
times on a JPanel. By copying, you do not have to re-create the shape each time.

1. Open a new file, and then enter the beginning statements for a JPanel that
uses the copyArea() method:
import javax.swing.*;
import java.awt.*;
public class JCopyShape extends JPanel
{

(continued)

(continues)

Figure 16-30 Execution of the JShapePanel class after the call to the parent class
paintComponent() method is removed

Drawing Lines and Shapes

889

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Add the following statements, which create a polygon in the shape of a star:
int xPoints[] = {42, 52, 72, 52,

60, 40, 15, 28, 9, 32, 42};
int yPoints[] = {38, 62, 68, 80,

105, 85, 102, 75, 58, 60, 38};
Polygon aStar = new Polygon(xPoints, yPoints, xPoints.length);

3. Add the following paintComponent() method, which draws a star and then
draws four additional identical stars in different positions:
@Override
public void paintComponent(Graphics g)
{

super.paintComponent(g);
g.drawPolygon(aStar);
g.copyArea(0, 0, 75, 105, 80, 40);
g.copyArea(0, 0, 75, 105, 40, 150);
g.copyArea(0, 0, 75, 105, 170, 0);
g.copyArea(0, 0, 75, 105, 150, 110);

}

4. Add a main() method that instantiates a JFrame that holds a JCopyShape

panel and sets a close operation, size, and visibility. Add a closing brace to
end the class:

public static void main(String[] args)
{

JFrame frame = new JFrame();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.add(new JCopyShape());
frame.setSize(300, 300);
frame.setVisible(true);

}
}

5. Save the file as JCopyShape.java,
and then compile the program.
When you run the program, the
output looks like Figure 16-31.
Although the program lists point
coordinates for only one star,
five identical stars are drawn.

6. Close the frame to end the
application.

(continued)

Figure 16-31 Output of the
JCopyShape program

C H A P T E R 1 6 Graphics

890

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning More About Fonts
As you add more components in your GUI applications, positioning becomes increasingly
important. In particular, when you draw strings using different fonts, it is difficult to place
them correctly so they don’t overlap, making them difficult or impossible to read. In
addition, the number of available fonts varies greatly across operating systems, so even
when you define a font using a string argument such as “Arial” or “Courier”, you have no
guarantee that the font will be available on every computer that runs your application. If
a user’s computer does not have the requested font installed, Java chooses a default
replacement font, so you can never be completely certain how your output will look.
Fortunately, Java provides many useful methods for obtaining information about the
fonts you use.

You can discover which fonts are available on your system by using the
getAvailableFontFamilyNames() method, which is part of the GraphicsEnvironment

class defined in the java.awt package. The GraphicsEnvironment class describes the
collection of Font objects and GraphicsDevice objects available to a Java application on a
particular platform. The getAvailableFontFamilyNames() method returns an array of
String objects that are the names of available fonts. For example, the following statements
declare a GraphicsEnvironment object named ge, and then use the object with the method
to store the font names in a string array:
GraphicsEnvironment ge =

GraphicsEnvironment.getLocalGraphicsEnvironment();
String[] fontNames = ge.getAvailableFontFamilyNames();

Notice in the preceding example that you can’t instantiate the GraphicsEnvironment
object directly. Instead, you must get a reference object to the current computer
environment by calling the static getLocalGraphicsEnvironment() method. (This
technique is similar to the one you used when calling getRuntime() in Chapter 12 and
getContentPane() in Chapter 15.) Figure 16-32 shows a class that extends JPanel and
lists all the available font names on the computer on which the program is executed.
A GraphicsEnvironment object is created and the getAvailableFontFamilyNames()
method is used to retrieve the array of font names. Then, in the paintComponent()

method, the names are displayed using drawString() in a for loop. After each string is
drawn, the vertical position is increased by 10 so the next string will be a little lower
on the panel surface. After a column is full, the horizontal position is increased so the next
output appears in a new column. The panel is displayed in a JFrame. Typical output is
shown in Figure 16-33.

Learning More About Fonts

891

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
import java.awt.Color;
public class JFontList extends JPanel
{

int i, x, y;
final int VERTICAL_SPACE = 10;
final int HORIZONTAL_SPACE = 180;
final int NUM_IN_COLUMN = 63;
GraphicsEnvironment ge =

GraphicsEnvironment.getLocalGraphicsEnvironment();
String[] fontNames = ge.getAvailableFontFamilyNames();
public JFontList()
{

setBackground(Color.WHITE);
}
@Override
public void paintComponent(Graphics gr)
{

super.paintComponent(gr);
x = 10;
y = 20;
gr.setFont(new Font("Arial", Font.PLAIN, 10));
for(i = 0; i < fontNames.length; ++i)
{

gr.drawString(fontNames[i], x, y);
y += VERTICAL_SPACE;
if(y > VERTICAL_SPACE * NUM_IN_COLUMN)
{

x += HORIZONTAL_SPACE;
y = 20;

}
}

}
public static void main(String[] args)
{

JFrame frame = new JFrame();
frame.add(new JFontList());
frame.setSize(940, 680);
frame.setVisible(true);

}
}

Figure 16-32 The JFontList class

C H A P T E R 1 6 Graphics

892

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Discovering Screen Statistics
Frequently, before you can determine the best Font size to use, it is helpful to know more about
the screen on which the Font will be displayed. For example, you can discover the resolution
and screen size on your system by using programs that are part of the Toolkit class.

The getDefaultToolkit() method returns a Toolkit object that contains information
about the system in use. The getScreenResolution() method returns the number of pixels
as an integer. You can create a Toolkit object and get the screen resolution by using the
following code:
Toolkit tk = Toolkit.getDefaultToolkit();
int resolution = tk.getScreenResolution();

The Dimension class is useful for representing the width and height of a user interface
component, such as a JFrame or a JButton. The Dimension class has three constructors:

The Dimension() method creates an instance of Dimension with a width of 0 and a
height of 0.

Dimension(Dimension d) creates an instance of Dimension whose width and height equal
those in the Dimension argument.

Dimension(int width, int height) constructs a Dimension and initializes it to the
specified width and height.

Figure 16-33 Typical output of the JFontList program

Learning More About Fonts

893

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The getScreenSize() method returns an object of type Dimension, which specifies the width
and height of the screen in pixels. Knowing the number of pixels for the width and height of
your display is useful if you want to determine a component’s maximum size or place a
component at a specific position. The following code stores the width and height of a screen
in separate variables:
Toolkit tk = Toolkit.getDefaultToolkit();
Dimension screen = tk.getScreenSize();
int width = screen.width;
int height = screen.height;

Discovering Font Statistics
Typesetters and desktop publishers measure the height of every font in three parts:
ascent, descent, and leading. Ascent is the height of an uppercase character from a

baseline to the top of the character. Descent
measures the part of characters that “hang
below” the baseline, such as the tails on the
lowercase letters g and j. Leading (pronounced
ledding) is the amount of space between the
bottom of the descent of one line and the top
of the characters in the successive line of type.
The height of a font is the sum of the leading,
ascent, and descent. Figure 16-34 illustrates
each of these measurements.

You can discover a font’s statistics by using the Graphics class getFontMetrics() method to
return a FontMetrics object and then using one of the following FontMetrics class methods
with the object to return the information you want:

public int getLeading()

public int getAscent()

public int getDescent()

public int getHeight()

Another method, getLineMetrics(), is more complicated to use, but it returns similar font statistics.
For more details, see the Java Web site.

Each of these methods returns an integer value representing the font size in points of the
requested portion of the Font object. (One point measures 1/72 of an inch.) For example, if
you define a Font object named myFont and a Graphics object named paintBrush, you can
set the current font for the Graphics object by using the following statements:
paintBrush.setFont(myFont);
int heightOfFont = paintBrush.getFontMetrics().getHeight();

Then the heightOfFont variable holds the total height of myFont characters.

AscentHeight

Leading

Baseline

Descent

B y
Figure 16-34 Parts of a font’s height

C H A P T E R 1 6 Graphics

894

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you define a Font object, you use point size. However, when you use the FontMetrics get
methods, the sizes are returned in pixels.

A practical use for discovering the height of a font is to space Strings correctly as you display
them. For example, you could draw a series of Strings in a loop with a statement such as the
following:
g.drawString("Some string", x, y += INCREASE);

In this statement, g is a Graphics object and INCREASE is a numeric constant. Instead, you can
make the actual increase in the vertical position dependent on the font. If you code the
following, you are assured that each String has enough room, regardless of which font is
currently in use by the Graphics object:
pen.drawString("Some string",

x, y += pen.getFontMetrics().getHeight());

When you create a String, you know how many characters are in it. However, you cannot be
certain which font Java will use or substitute, and because fonts have different measurements,
it is difficult to know the exact width of the String that appears in a JFrame. Fortunately, the
FontMetrics class contains a stringWidth() method that returns the integer width of a
String argument. For example, if you create a String named myString, you can retrieve the
width of myString with the following code:
int width = g.getFontMetrics().stringWidth(myString);

Watch the video Font Methods.

TWO TRUTHS & A LIE

Learning More About Fonts

1. One reason for Java’s popularity is that its fonts are guaranteed to look the
same on all computers.

2. You can discover the resolution and screen size on your system by using the
getScreenResolution() and getScreenSize() methods, which are part of
the Toolkit class.

3. Ascent is the height of an uppercase character from a baseline to the top of
the character, and descent measures the part of characters that “hang below”
the baseline, such as the tail on the lowercase letter y.

. kool lli wt upt uor uoy woh
ni atr ec yl et el p moc ebr even nac uoy os,t nof t ne mecal per tl uaf ed a sesoohc avaJ
,t seuqer uoy t nof a evaht on seodr et up moc s’ r esu afI . 1# si t ne met at s esl af ehT

Learning More About Fonts

895

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Using FontMetrics Methods to Compare Fonts

Next, you write a program to demonstrate FontMetrics methods. You will create
three Font objects and display their metrics.

1. Open a new file, and then enter the first few lines of the JDemoFontMetrics

program. Include any movie quote you choose.
import javax.swing.*;
import java.awt.*;
public class JDemoFontMetrics extends JPanel
{

String movieQuote =
new String("Go ahead, make my day");

2. Type the following code to create a few fonts to use for demonstration
purposes:
Font courierItalic = new Font("Courier New", Font.ITALIC, 16),

timesPlain = new Font("Times New Roman", Font.PLAIN, 16),
scriptBold = new Font("Freestyle Script", Font.BOLD, 16);

3. Add the following code to define four integer variables that hold the four font
measurements and two integer variables to hold the horizontal and vertical
positions for output:
int ascent, descent, height, leading;
int x, y;

4. Create a paintComponent()method that calls the parent version of the method,
gives x and y starting values, sets the font to each of the declared fonts, and
passes the Graphics object to a method that displays the font statistics.
@Override
public void paintComponent(Graphics g)
{

super.paintComponent(g);
x = 20;
y = 30;
g.setFont(courierItalic);
displayMetrics(g);
g.setFont(timesPlain);
displayMetrics(g);
g.setFont(scriptBold);
displayMetrics(g);

}

(continues)

C H A P T E R 1 6 Graphics

896

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Start a displayMetrics() method with a Graphics parameter passed from the
paintComponent() method. Obtain values for the four font statistics fields.
public void displayMetrics(Graphics g)
{

leading = g.getFontMetrics().getLeading();
ascent = g.getFontMetrics().getAscent();
descent = g.getFontMetrics().getDescent();
height = g.getFontMetrics().getHeight();

6. Finish the displayMetrics()method by displaying the movie quote and statistics
about the current font. Each string is drawn at the appropriate increased vertical
distance based on the font’s height. After the statistics are displayed, increase
the vertical coordinate again so that double spacing will appear between each
font’s set of five statements. Include a closing curly brace for the method.

g.drawString(movieQuote, x, y += height);
g.drawString("Leading is " + leading,

x, y += height);
g.drawString("Ascent is " + ascent,

x, y += height);
g.drawString("Descent is " + descent,

x, y += height);
g.drawString("Height is " + height,

x, y += height);
y += height * 2;

}

7. To demonstrate the JPanel’s operation, write a main() method that declares
a JFrame and adds the JPanel to it. After you set the close operation, size,
and visibility of the JFrame, end the method and the class.

public static void main(String[] args)
{

JFrame frame = new JFrame();
frame.add(new JDemoFontMetrics());
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize(300, 460);
frame.setVisible(true);

}
}

8. Save the file as JDemoFontMetrics.java, and then compile it. When you run
the program, the output should look like Figure 16-35. Notice that even
though each Font object was constructed with a size of 16, the individual
statistics vary.

(continues)

(continued)

Learning More About Fonts

897

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Close the frame to end the program. Modify the program to use other fonts
and observe the results.

Drawing with Java 2D Graphics
Drawing operations earlier in this chapter were called using a Graphics object, but you can
also call drawing operations using an object of the Graphics2D class. The advantage of using
Java 2D objects is the higher-quality two-dimensional (2D) graphics, images, and text they
provide.

Features of some of the 2D classes include:

Fill patterns, such as gradients

Strokes that define the width and style of a drawing stroke

Anti-aliasing, a graphics technique for producing smoother screen graphics

(continued)

Figure 16-35 Output of the JDemoFontMetrics program

C H A P T E R 1 6 Graphics

898

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Graphics2D is found in the java.awt package. A Graphics2D object is produced by casting, or
converting and promoting, a Graphics object. For example, in a paintComponent()
method that automatically receives a Graphics object, you can cast the object to a
Graphics2D object using the following code:
public void paintComponent(Graphics pen)
{

Graphics2D newPen = (Graphics2D)pen;

The process of drawing with Java 2D objects includes:

Specifying the rendering attributes

Setting a drawing stroke

Creating objects to draw

Specifying the Rendering Attributes
The first step in drawing a 2D object is to specify how a drawn object is rendered. Drawings
that are not 2D can only use the attribute Color, but with 2D you can designate other
attributes, such as line width and fill patterns. You specify 2D colors by using the setColor()

method, which works like the Graphics method of the same name. Using a Graphics2D
object named g, you can set the color to black using the following code:
g.setColor(Color.BLACK);

Fill patterns control how a drawing object is filled in. In addition to using a solid color, 2D fill
patterns can be a gradient fill, a texture, or even a pattern that you devise. A fill pattern is
created by using the setPaint() method of Graphics2D with a fill pattern object as the only
argument. Classes from which you can construct a fill pattern include Color, TexturePaint,
and GradientPaint.

A gradient fill is a gradual shift from one color at one coordinate point to a different
color at a second coordinate point. If the color shift occurs once between the points—
for example, slowly changing from yellow to red—you are using an acyclic gradient,
one that does not cycle between the colors. If the shift occurs repeatedly, such as from
yellow to red and back to yellow again, you are using a cyclic gradient, one that cycles
between the colors.

Figure 16-36 shows an application that demonstrates acyclic and cyclic gradient fills. The
program operates as follows:

The first shaded setPaint() method call sets a gradient that begins at coordinates 20, 40
in LIGHT_GRAY and ends at coordinates 180, 100 in DARK_GRAY. The last argument to the
GradientPaint() constructor is false, indicating an acyclic gradient. After the
Graphics2D object’s paint is applied, a filled rectangle is drawn over the same area. These
statements produce the rectangle on the left in Figure 16-37, which gradually shifts from
light gray to dark gray, moving down and to the right.

Drawing with Java 2D Graphics

899

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The second shaded setPaint() statement in Figure 16-36 establishes a new gradient
beginning farther to the right. In this statement, the final argument to GradientPaint()
is true, creating a cyclic gradient. As you can see on the right side in Figure 16-37, this
rectangle’s shading changes gradually across its surface.

Later in this chapter, you will learn about the Rectangle2D.Double class used to create the rectangles
in this application.

import javax.swing.*;
import java.awt.*;
import java.awt.geom.*;
import java.awt.Color;
public class JGradient extends JPanel
{

int x, y, x2, y2;
public void paintComponent(Graphics gr)
{

super.paintComponent(gr);
x = 20;
y = 40;
x2 = 180;
y2 = 100;
Graphics2D gr2D = (Graphics2D)gr;
gr2D.setPaint(new GradientPaint(x, y, Color.LIGHT_GRAY,

x2, y2, Color.DARK_GRAY, false));
gr2D.fill(new Rectangle2D.Double(x, y, x2, y2));
x = 210;
gr2D.setPaint(new GradientPaint(x, y, Color.LIGHT_GRAY,

x2, y2, Color.DARK_GRAY, true));
gr2D.fill(new Rectangle2D.Double(x, y, x2, y2));

}
public static void main(String[] args)
{

JFrame frame = new JFrame();
frame.add(new JGradient());
frame.setSize(440, 200);
frame.setVisible(true);

}
}

Figure 16-36 The JGradient class

C H A P T E R 1 6 Graphics

900

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Setting a Drawing Stroke
All lines in non-2D graphics operations are drawn to be solid with square ends and to have a
line width of one pixel. With 2D methods, the drawing line is a stroke, which represents a
single movement as if you were using a drawing tool, such as a pen or a pencil. In Java 2D, you
can change a stroke’s width using the setStroke() method. Stroke is actually an interface;
the class that defines line types and implements the Stroke interface is named BasicStroke.
A BasicStroke constructor takes three arguments:

A float value representing the line width

An int value that determines the type of cap decoration at the end of a line

An int value that determines the style of juncture between two line segments

BasicStroke class variables determine the endcap and juncture style arguments. Endcap
styles apply to the ends of lines that do not join with other lines, and include CAP_BUTT,
CAP_ROUND, and CAP_SQUARE. Juncture styles, for lines that join, include JOIN_MITER,
JOIN_ROUND, and JOIN_BEVEL.

The following statements create a BasicStroke object and make it the current stroke:
BasicStroke aLine = new BasicStroke(1.0f,

BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND);

Figure 16-38 shows a program that draws a rectangle using a very wide stroke.

Figure 16-37 Output of the JGradient application

Drawing with Java 2D Graphics

901

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
import java.awt.geom.*;
public class JStroke extends JPanel
{

public void paintComponent(Graphics gr)
{

super.paintComponent(gr);
Graphics2D gr2D = (Graphics2D)gr;
BasicStroke aStroke = new BasicStroke(15.0f,

BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND);
gr2D.setStroke(aStroke);
gr2D.draw(new Rectangle2D.Double(20, 20, 100, 100));

}
public static void main(String[] args)
{

JFrame frame = new JFrame();
frame.add(new JStroke());
frame.setSize(160, 180);
frame.setVisible(true);

}
}

Figure 16-38 The JStroke class

The shaded statement in the JStroke class sets the
BasicStroke width to 15 pixels using round endcap and
juncture parameters. Notice that the line width value is
followed by an f, making the value a float instead of a
double. Figure 16-39 shows the rectangle.

Creating Objects to Draw
After you have created a Graphics2D object and specified the
rendering attributes, you can create different objects to draw.
Objects that are drawn in Java 2D are first created by defining
them as geometric shapes using the java.awt.geom package
classes. You can define the shapes of lines, rectangles, ovals, and
arcs; after you define a shape, you can use it as an argument to
the draw() or fill() method. The Graphics2D class does not
have different methods for each shape you can draw.

Lines
Lines are created using the Line2D.Float class or the Line2D.Double class. Each of these
classes has a constructor that takes four arguments, which are the x- and y-coordinates of the
line endpoints. For example, to create a line from the endpoint 60, 5 to the endpoint 13, 28,
you could write the following:
Line2D.Float line = new Line2D.Float(60F, 5F, 13F, 28F);

Figure 16-39 Output of
the JStroke program

C H A P T E R 1 6 Graphics

902

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can also create lines based on points. You can use the Point2D.Float or Point2D.Double
class to create points that have both x- and y-coordinates. For example, you could create
two Point2D.Float points using the following code:
Point2D.Float pos1 = new Point2D.Float(60F, 5F);
Point2D.Float pos2 = new Point2D.Float(13F, 28F);

Then the code to create a line might be:
Line2D.Float line = new Line2D.Float(pos1, pos2);

Rectangles
You can create rectangles by using a Rectangle2D.Float or a Rectangle2D.Double
class. As with the Line and Point classes, the two rectangle classes are distinguished by the
type of argument used to call their constructors: float or double. Both Rectangle2D.Float

and Rectangle2D.Double can be created using four arguments representing the x-coordinate,
y-coordinate, width, and height. For example, the following code creates a Rectangle2D.Float

object named rect at 10, 10 with a width of 50 and height of 40:
Rectangle2D.Float rect = new Rectangle2D.Float(10F, 10F, 50F, 40F);

In this example, the F following each argument is optional because the integers would be
promoted to floats automatically.

Ovals
You can create Oval objects with the Ellipse2D.Float or Ellipse2D.Double class.
The Ellipse2D.Float constructor requires four arguments representing the x-coordinate,
y-coordinate, width, and height. The following code creates an Ellipse2D.Float object
named ell at 10, 73 with a width of 40 and height of 20:
Ellipse2D.Float ell = new Ellipse2D.Float(10F, 73F, 40F, 20F);

Arcs
You can create arcs with the Arc2D.Float or Arc2D.Double class. The Arc2D.Float
constructor takes seven arguments. The first four arguments represent the x-coordinate,
y-coordinate, width, and height that apply to the ellipse of which the arc is a part. The
remaining three arguments are as follows:

The starting position of the arc

The number of degrees it travels

An integer field indicating how it is closed

The starting position is expressed in degrees, in the same way it is in the Graphics class
drawArc() method; for example, 0 is the three o’clock position. The number of degrees
traveled by the arc is specified in a counterclockwise direction using positive numbers.
The final argument uses one of the three class fields:

Arc2D.PIE connects the arc to the center of an ellipse and looks like a pie slice.

Drawing with Java 2D Graphics

903

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Arc2D.CHORD connects the arc’s endpoints with a straight line.

Arc2D.OPEN is an unclosed arc.

The following statement creates an Arc2D.Float object named ac at position 10, 133. Its
width is 30 and its height is 33. The starting degree is 30, and the arc travels for 120 degrees
using the variable Arc2D.PIE.
Arc2D.Float ac = new Arc2D.Float(10F, 133F, 30F, 33F, 30F, 120F, Arc2D.PIE);

Polygons
You create a Polygon object by defining movements from one point to another. The
movement that creates a polygon is a GeneralPath object; the GeneralPath class is found in
the java.awt.geom package.

You can instantiate a GeneralPath object with a statement such as the following:
GeneralPath poly = new GeneralPath();

Then you use the moveTo() method to define the beginning point of a polygon. For example,
the following statement starts a polygon at the coordinates 10, 100.
poly.moveTo(10F, 100F);

The lineTo() method is used to create a line that ends at a new point. After the preceding
moveTo() statement, the following statement draws a connecting line from 10, 100 to 50, 200:
poly.lineTo(50F, 200F);

You can use as many lineTo() statements as you need to create the shape you want. For
a closed shape, the lineTo() method can help you connect the line to the original point.
Alternatively, you can use the closePath() method without any arguments to complete the
shape. You will create a polygon in the next “You Do It” section.

TWO TRUTHS & A LIE

Drawing with Java 2D Graphics

1. The advantage of using Java 2D objects is the higher-quality 2D graphics,
images, and text they provide.

2. With Java’s 2D graphics, you can designate attributes such as color, line
width, and fill patterns.

3. With Java’s 2D methods, the drawing line is a brush that represents a single
movement as if you were using a drawing tool, such as a pen or a pencil.

.li cnep a r o nep a sa
hcus,l oot gni war d a gni su er e wuoy fi sat ne mevo mel gni s a st neser per t aht

ekort s a si enil gni war d eht , sdoht e mD2 s’ avaJ hti W. 3# si t ne met at s esl af ehT
C H A P T E R 1 6 Graphics

904

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Using Drawing Strokes

Next, you create a line with a drawing stroke to illustrate how it can have different end
types and juncture types where lines intersect.

1. Open a new file, and then enter the first few lines of a J2DLine class that
extends JPanel. (Note that you are importing the java.awt.geom package.)
import javax.swing.*;
import java.awt.*;
import java.awt.geom.*;
public class J2DLine extends JPanel
{

2. Start a paintComponent() method by calling the superclass version of the
method and declaring a Graphics2D object. Then declare points for the
beginning and end of the line.
@Override
public void paintComponent(Graphics gr)
{

super.paintComponent(gr);
Graphics2D gr2D = (Graphics2D)gr;
Point2D.Float pos1 = new Point2D.Float(80, 20);
Point2D.Float pos2 = new Point2D.Float(20, 100);

3. Create a BasicStroke object, and then create a drawing stroke named
aStroke. Note that the line width is set to 15 pixels, and the endcap style and
juncture style are set to CAP_ROUND and JOIN_MITER, respectively.
BasicStroke aStroke = new BasicStroke(15.0f,

BasicStroke.CAP_ROUND, BasicStroke.JOIN_MITER);
gr2D.setStroke(aStroke);

4. Add the following code to create a line between the points pos1 and pos2, and
draw the line. Add a closing curly brace for the method.

gr2D.setStroke(aStroke);
Line2D.Float line = new Line2D.Float(pos1, pos2);
gr2D.draw(line);

}

(continues)

Drawing with Java 2D Graphics

905

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Add a main() method and the closing curly brace for the class:
public static void main(String[] args)
{

JFrame frame = new JFrame();
frame.add(new J2DLine());
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize(90, 160);
frame.setVisible(true);

}
}

6. Save the file as J2DLine.java, and then
compile and execute it. Your output should
look like Figure 16-40.

7. Experiment by making the JFrame

larger and adding more lines to create
an interesting design.

Working with Shapes

Next, you use the Java 2D drawing object
types to create a JFrame that illustrates sample
rectangles, ovals, arcs, and polygons.

1. Open a new file, and then enter the first few lines of a JShapes2D program:
import javax.swing.*;
import java.awt.*;
import java.awt.geom.*;
public class JShapes2D extends JPanel
{

2. Enter the following statements to start a paintComponent() method and
call its parent. Create a Graphics environment gr, and cast the Graphics

environment to a Graphics2D environment gr2D:
public void paintComponent(Graphics gr)
{

super.paintComponent(gr);
Graphics2D gr2D = (Graphics2D)gr;

3. Create two Rectangle2D.Float objects named rect and rect2. Draw the
rect object and fill the rect2 object:

(continues)

(continued)

Figure 16-40 Output of the
J2DLine program

C H A P T E R 1 6 Graphics

906

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Rectangle2D.Float rect =
new Rectangle2D.Float(20F, 40F, 40F, 40F);

Rectangle2D.Float rect2 =
new Rectangle2D.Float(20F, 70F, 40F, 40F);

gr2D.draw(rect);
gr2D.fill(rect2);

4. Create two Ellipse2D.Float objects named ellipse and ellipse2. Draw the
ellipse object and fill the ellipse2 object:
Ellipse2D.Float ellipse = new

Ellipse2D.Float(20F, 120F, 40F, 40F);
Ellipse2D.Float ellipse2 = new

Ellipse2D.Float(20F, 170F, 40F, 40F);
gr2D.draw(ellipse);
gr2D.fill(ellipse2);

5. Create two Arc2D.Float objects named ac and ac2. Draw the ac object and
fill the ac2 object:
Arc2D.Float ac = new

Arc2D.Float(20F, 220F, 50F, 50F, 30F, 120F, Arc2D.PIE);
Arc2D.Float ac2 = new

Arc2D.Float(20F, 270F, 50F, 50F, 30F, 120F, Arc2D.PIE);
gr2D.draw(ac);
gr2D.fill(ac2);

6. Create a new GeneralPath object named pol. Set the starting point of
the polygon and create two additional points. Use the closePath() method to
close the polygon by connecting the current point to the starting point. Draw
the pol object, and then end the method with a curly brace:

GeneralPath pol = new GeneralPath();
pol.moveTo(20F, 300F);
pol.lineTo(40F, 360F);
pol.lineTo(100F, 380F);
pol.closePath();
gr2D.draw(pol);

}

7. Add a main() method and the final curly brace for the class:
public static void main(String[] args)
{

JFrame frame = new JFrame();
frame.add(new JShapes2D());
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize(100, 430);
frame.setVisible(true);

}
} (continues)

(continued)

Drawing with Java 2D Graphics

907

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Save the file as JShapes2D.java, and compile
and execute the program.

Your output should look like Figure 16-41. When
you are ready, close the window, and then
experiment with making changes to the program
to produce different shapes.

Creating an Interactive Program that Draws Lines

In this section, you create a sketch pad that draws
lines on a panel in response to a user’s mouse
movements.

1. Open a new file and start a program that allows
a user to draw 2D lines on a JPanel. The program
implements MouseListener and MouseMotionListener

so it can respond to both clicks and drags.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
public class SketchPad extends JPanel implements MouseListener,

MouseMotionListener
{

2. Add the following fields to the class: horizontal and vertical positions for each
end of the line the user will draw and a BasicStroke object.
int xStart, yStart;
int xStop, yStop;
BasicStroke aStroke = new BasicStroke(5.0f,

BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND);

3. The constructor makes the JPanel respond to mouse events:
public SketchPad()
{

addMouseListener(this);
addMouseMotionListener(this);

}

4. Each time the mouse is pressed, store its coordinates in the horizontal and
vertical start positions.
public void mousePressed(MouseEvent e)
{

xStart = e.getX();
yStart = e.getY();

} (continues)

(continued)

Figure 16-41 Output of
the JShapes2D program

C H A P T E R 1 6 Graphics

908

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Each time the mouse is dragged, store its coordinates in the horizontal and
vertical end positions and call repaint() to draw a line between the start and
stop positions. Then update the start coordinates to hold the current end
coordinates so the next line will start where the last one ended.
public void mouseDragged(MouseEvent e)
{

xStop = e.getX();
yStop = e.getY();
repaint();
xStart = xStop;
yStart = yStop;

}

6. Implementing MouseListener and MouseMotionListener requires the coding
of five additional methods as follows:
public void mouseClicked(MouseEvent e)
{
}
public void mouseEntered(MouseEvent e)
{
}
public void mouseExited(MouseEvent e)
{
}
public void mouseReleased(MouseEvent e)
{
}
public void mouseMoved(MouseEvent e)
{
}

7. The paintComponent() method casts the Graphics object parameter to a 2D
object. A Line2D.Float object is declared using the stored stop and start
coordinates. Notice that each coordinate is cast to a float for clarity; if no
cast was performed, the integers would be promoted to floats automati-
cally. Also notice that, unlike other programs in this chapter, this program
does not call the superclass paintComponent() method—the lines the user
creates should not be erased with each new paintComponent() call.
public void paintComponent(Graphics g)
{

Graphics2D gr2D = (Graphics2D)g;
Line2D.Float line = new Line2D.Float((float)xStart,

(float)yStart, (float)xStop, (float)yStop);
gr2D.setStroke(aStroke);
gr2D.draw(line);

}

(continued)

(continues)

Drawing with Java 2D Graphics

909

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Add a main() method that declares a frame and adds the SketchPad panel to
it. Set the frame attributes, and after the closing brace for the main()

method, add a closing curly brace for the class.
public static void main(String[] args)
{

JFrame frame = new JFrame();
frame.add(new SketchPad());
frame.setSize(400, 400);
frame.setVisible(true);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

9. Save the file as SketchPad.java, and
compile and execute it. Figure 16-42
shows a typical execution. You can drag
your mouse across the panel surface
and draw any number of lines.

10. Dismiss the frame. Experiment with the
program by adding the panel to new
frames that allow the user to choose
options such as color and line thickness,
and to erase a sketch and start over.

Don’t Do It
Don’t forget to call super.paintComponent() as the first statement in the
paintComponent() method when you write a class that uses graphics and extends
JPanel and you want the panel erased before each new graphical output.

Don’t forget that the lower-left corner of a String is placed at the coordinates used when
you call drawString().

Don’t forget that the name of the Graphics method that draws rectangles is drawRect()
and not drawRectangle().

(continued)

Figure 16-42 Typical execution of
the SketchPad application

C H A P T E R 1 6 Graphics

910

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms
To render a drawing is to paint or display it.

To rerender a drawing is to repaint or redisplay it.

Painting is the act of redisplaying a surface.

System-triggered painting occurs when the system asks a component to render its contents.

Application-triggered painting occurs when a program requests it, usually because the
internal state of a component has changed.

An arc is a portion of a circle’s circumference.

A polygon is a geometric figure with straight sides.

Ascent is one of three measures of a Font’s height; it is the height of an uppercase character
from a baseline to the top of the character.

Descent is one of three measures of a Font’s height; it measures the part of characters that
“hang below” the baseline, such as the tails on the lowercase letters g and j.

Leading is one of three measures of a Font’s height; it is the amount of space between the
bottom of the descent of one line and the top of the characters in the successive line of type.

The height of a font is the sum of its leading, ascent, and descent.

Fill patterns control how a drawing object is filled in.

A gradient fill is a gradual shift from one color at one coordinate point to a different color at a
second coordinate point.

An acyclic gradient is a fill pattern in which a color shift occurs once between two points.

A cyclic gradient is a fill pattern in which a shift between colors occurs repeatedly between
two points.

A stroke is a line-drawing feature in Java 2D that represents a single movement as if you were
using a drawing tool, such as a pen or a pencil.

Endcap styles apply to the ends of lines that do not join with other lines, and include
CAP_BUTT, CAP_ROUND, and CAP_SQUARE.

Juncture styles, for lines that join, include JOIN_MITER, JOIN_ROUND, and JOIN_BEVEL.

Chapter Summary
Painting operations can be triggered by the system or the application. Java’s
creators recommend that you create most graphics on a JPanel by overriding the
paintComponent() method and using the automatically supplied Graphics parameter
to render output.

Chapter Summary

911

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The drawString() method allows you to draw a String using a Graphics object. The
method requires three arguments: a String, an x-axis coordinate, and a y-axis coordinate.
You can improve the appearance of strings drawn with Graphics objects by using the
setFont() and setColor() methods.

Java provides several methods for drawing a variety of lines and geometric shapes, such
as drawLine(), drawRect(), drawOval(), and drawPolygon(). You can also use the
copyArea() method to copy any rectangular area to a new location.

If a user’s computer does not have a requested font, Java chooses a default
replacement font. You can discover which fonts are available on your system by
using the getAvailableFontFamilyNames() method, which is part of the
GraphicsEnvironment class. You can discover the resolution and screen size on your
system by using the getScreenResolution() and getScreenSize() methods, which
are part of the Toolkit class. The height of every font is the sum of three parts:
ascent, descent, and leading.

Graphics2D objects provide high-quality 2D graphics, images, and text. With 2D you can
designate attributes such as line width and fill patterns.

Review Questions
1. In Java, repainting of a visible surface is triggered by .

a. the operating system
b. the application

c. either of these
d. none of these

2. The method where you should place drawing code for Swing objects
is .

a. callPaint()

b. paint()

c. requestPaint()

d. paintComponent()

3. The paintComponent() method header requires a(n) argument.

a. Graphics

b. int

c. String

d. Color

4. The three arguments to the drawString() method represent .

a. a String and horizontal and vertical positions
b. a String, a Color, and a Font

c. a Graphics object, a String, and a Point position
d. a JPanel, a Graphics object, and a Font

5. The statement g.drawString(someString, 50, 100); places
someString’s corner at position 50, 100.

a. upper-left
b. lower-left

c. upper-right
d. lower-right

C H A P T E R 1 6 Graphics

912

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. If you use the setColor() method to change a Graphics object’s color to
yellow, .

a. only the next output from the object appears in yellow
b. all output from the object for the remainder of the method always appears in

yellow
c. all output from the object for the remainder of the application always appears in

yellow
d. all future output from the object appears in yellow until you change the color

7. In the statement x.drawString greeting("Hi ", 10, 10);, x is a
object.

a. Graphics

b. String

c. JPanel

d. Font

8. The statement g.drawRoundRect(100, 100, 100, 100, 0, 0); draws a shape that
looks most like a .

a. square
b. round-edged rectangle

c. circle
d. straight line

9. If you draw an oval with the same value for width and height, you draw
a(n) .

a. circle
b. square

c. rounded square
d. ellipsis

10. The zero-degree position for any arc is at the o’clock position.

a. three
b. six

c. nine
d. twelve

11. The method you use to create a solid arc is .

a. solidArc()

b. fillArc()

c. arcSolid()

d. arcFill()

12. You use the method to copy any rectangular area to a new
location.

a. copyRect()

b. copyArea()

c. repeatRect()

d. repeatArea()

13. The measurement of an uppercase character from the baseline to the top of the
character is its .

a. ascent
b. descent

c. leading
d. height

Review Questions

913

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14. To be certain that a vertical series of Strings drawn with object g has enough room
to appear on a JPanel, which of the following expressions should you use for the
vertical coordinate?

a. y += g.getFontMetrics().getHeight();

b. y += g.getFontMetrics().getLeading();

c. g.getFontMetrics().getAscent();

d. y += g.getFontMetrics().getDescent();

15. You can discover which fonts are available on your system by using
the .

a. getAvailableFontFamilyNames() method of the GraphicsEnvironment class
b. getFonts() method of the Graphics class
c. getMyFonts() method of the GraphicsFonts class
d. getAllFonts() method of the Fonts class

16. The data types returned by the getScreenResolution() and getScreenSize()
methods are .

a. both ints
b. an int and an object of type Dimension

c. both objects of type Dimension

d. both doubles

17. A Graphics2D object can be produced by .

a. calling setGraphics2D()

b. calling getGraphics2D()

c. casting a Graphics2D object
d. casting a Graphics object

18. The process of drawing with Java 2D objects includes .

a. specifying the rendering attributes
b. setting a drawing stroke
c. both of the above
d. none of the above

19. A gradient fill is a gradual change in .

a. color
b. font size

c. drawing style
d. line thickness

20. With 2D methods, the drawing line is known as a .

a. brush
b. stroke

c. belt
d. draw

C H A P T E R 1 6 Graphics

914

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

Programming Exercises

1. Write an application that extends JPanel and displays a phrase in every font size from
6 through 20. Save the file as JFontSizesPanel.java.

2. a. Write an application that extends JPanel and displays a phrase in a large font.
Each time the user clicks a JButton, display the same phrase in a different color,
a little further to the right, and in a slightly smaller font. Allow only three clicks.
Save the file as JChangeSizeAndColorPanel.java.

b. Modify the JChangeSizeAndColorPanel application so that it continuously
changes the size, color, and location of a phrase as long as the user continues to
click the button. Save the application as JChangeSizeAndColorPanel2.java.

3. Write an application that extends JPanel and displays a phrase. Each time the user
clicks a button, alternate between displaying the phrase upside down and right-side
up. Save the application as JUpsideDownPanel.java.

4. Write an application that extends JPanel and displays eight nested rectangles, like
those in the first panel in Figure 16-43. You may use only one drawRect() statement
in the program. (Hint: Use it in a loop.) Save the file as JNestedBoxesPanel.java.

5. Write an application that extends JPanel and displays 15 nested circles, like those in
the center panel in Figure 16-43. You may use only one drawOval() statement in the
program. Save the file as JNestedCirclesPanel.java.

6. Write an application that extends JPanel and displays diagonal lines in a square, like
those in the last panel in Figure 16-43. Save the file as JDiagonalLinesPanel.java.

7. a. Write an application that extends JPanel and displays a yellow smiling face on the
screen. Save the file as JSmileFacePanel.java.

b. Add a JButton to the JSmileFacePanel program so the smile changes to a frown
and then back to a smile each time the user clicks the JButton. Save the file as
JSmileFacePanel2.java.

Figure 16-43 Output of the programs described in exercises 4, 5, and 6

Exercises

915

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Use polygons and lines to create a graphics image that looks like a fireworks display.
Write an application that extends JPanel and displays the fireworks. Save the file as
JFireworksPanel.java.

9. a. Write an application that extends JPanel and displays your name. Place boxes
of different colors around your name at intervals of 10, 20, 30, and 40 pixels. Save
the file as JBorderPanel.java.

b. Modify the JBorderPanel program so that when the user enters any name in a
JTextField, the name is displayed with borders at intervals of 10, 20, 30, and
40 pixels. Save the file as JBorderPanel2.java.

10. Write an application that extends JPanel and uses the Graphics2D environment to
create a GeneralPath object. Use the GeneralPath object to create the outline of
your favorite state. Display the state’s name at the approximate center of its
boundaries. Save the file as JStatePanel.java.

Debugging Exercises
1. Each of the following files in the Chapter16 folder of your downloadable student

files has syntax and/or logic errors. In each case, determine the problem and fix
the program. After you correct the errors, save each file using the same
filename preceded with Fix. For example, DebugSixteen1.java will become
FixDebugSixteen1.java.

a. DebugSixteen1.java
b. DebugSixteen2.java

c. DebugSixteen3.java
d. DebugSixteen4.java

Game Zone
1. a. In Chapter 9, you created a Tic Tac Toe game in which you used a 2D array of

characters to hold Xs and Os for a player and the computer. Now create a JPanel
that uses an array of nine JButtons to represent the Tic Tac Toe grid. When
the user clicks a button that has not already been taken, place an X on the
button and then allow the computer to place an O on a different button.
Announce the winner when either the computer or the player achieves three
marks in sequence, or announce that the game was a tie. Figure 16-44 shows
a typical game in progress and after the player has won. Save the game as
JTicTacToe.java.

C H A P T E R 1 6 Graphics

916

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. Add a graphic that displays a large letter representing the winning player of the
JTicTacToe game. Draw a large X, O, or, in case of a tie, an overlapping X and O in
different colors. Save the game as JTicTacToe2.java.

2. Create an application that plays a card game named Lucky Seven. In real life, the
game can be played with seven cards, each containing a number from 1 through 7.
The cards are shuffled and dealt number-side down. To start the game, a player turns
over any card. The exposed number on the card determines the position (reading
from left to right) of the next card that must be turned over. For example, if the player
turns over the first card and its number is 7, the next card turned must be the seventh
card (counting from left to right). If the player turns over a card whose number
denotes a position that was already turned, the player loses the game. If the player
succeeds in turning over all seven cards, the player wins.

Instead of cards, you will use seven buttons on a JPanel. The buttons are labeled
1 through 7 from left to right. Randomly associate one of the seven values 1 through 7
with each button. (In other words, the associated value might or might not be
equivalent to the button’s labeled value.) When the player clicks a button, reveal
the associated hidden value. If the value represents the position of a button already
clicked, the player loses. If the revealed number represents an available button, force
the user to click it; that is, do not take any action until the user clicks the correct button.
After a player clicks a button, remove the button from play.

For example, a player might click Button 7, revealing a 4. Then the player clicks
Button 4, revealing a 2. Then the player clicks Button 2, revealing a 7. The player loses
because Button 7 was already used. Save the game as JLuckySeven.java.

3. a. In Chapters 7 and 8, you created a game named Secret Phrase in which the user
guesses a randomly selected secret phrase by entering one letter at a time. Now
create a GUI application that plays the game, allowing users to choose a letter by
selecting one of 26 buttons. (Hint: Consider creating an array of buttons rather
than 26 individually named buttons.)

Figure 16-44 Typical execution of the JTicTacToe program

Exercises

917

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Disable a letter button once it has been guessed, and after the puzzle is complete,
disable all the letters. Figure 16-45 shows a typical execution after the user has
guessed an E, which is in the phrase. Save the file as JSecretPhrase.java.

b. Make the JSecretPhrase game more like the traditional letter-guessing game
Hangman by drawing a “hanged” person piece by piece with each missed letter.
For example, when the user chooses a correct letter, place it in the appropriate
position or positions in the phrase, but the first time the user chooses a letter
that is not in the target phrase, draw a head for the “hanged” man. The second
time the user makes an incorrect guess, add a torso. Continue with arms and
legs. If the complete body is drawn before the user has guessed all the letters in
the phrase, display a message indicating that the player has lost the game. If the
user completes the phrase before all the body parts are drawn, display a message
that the player has won. Save the game as JSecretPhrase2.java.

Case Problems
1. In Chapters 14 and 15, you developed an interactive GUI application for Carly’s

Catering. Now, design a JPanel that uses graphics to display a logo for the company,
and modify the GUI application to include it. Save the JPanel class as
JCarlysLogoPanel.java, and save the GUI application as JCarlysCatering.java.

2. In Chapters 14 and 15, you developed an interactive GUI application for
Sammy’s Seashore Rentals. Now, design a JPanel that uses graphics to display
a logo for the company, and modify the GUI application to include it. Save
the JPanel class as JSammysLogoPanel.java, and save the GUI application
as JSammysSeashore.java.

Figure 16-45 Typical execution of the JSecretPhrase program

C H A P T E R 1 6 Graphics

918

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A P P E N D I X A
Working with the Java
Platform

In this appendix, you will:

Learn about the Java SE Development Kit

Configure Windows to work with the JDK

Compile and execute a Java program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning about the Java SE Development Kit
Several versions of Java are available for free at the Java Web site (www.oracle.com/
technetwork/java/index.html). The official name of the most recent version is Java Platform,
Standard Edition 8, often called Java SE 8 for short. Two version numbers (for example, 1.8.0
and 8) are used to identify each release of the Java Platform. Version 8 is the product version,
and 1.8.0 is the developer version. The number 8 is used to reflect Java’s evolving level of
maturity. As updates to existing versions emerge or entirely new versions containing
advanced features are released, you can download them. For example, a recent update as this
book was being written is Java SE 8u11, which is short for version 8, update 11.

Java’s Web site was http://java.sun.com before Java was purchased by Oracle. Now the Web site is
http://www.oracle.com/technetwork/java/index.html. However, the shorter URL redirects you to the longer
one, so you can use the shorter address if it is more convenient. Traditionally, each new version of Java has
had a code name. The code names for versions 5, 6, and 7 were Tiger, Mustang, and Dolphin, respectively.
With version 8, code names have been discontinued, but some Java developers refer to it as Spider.

Over the years, Java has been inconsistent in numbering new versions. Before version 6, the standard
editions were called JDK 1.0.3, JDK 1.1.2 through 1.1.8, J2SE 1.2.0 through 1.4.2, and J2SE 5.0. With
versions 6, 7, and 8, Java is attempting to simplify the name and number changes. Java sometimes adds a
“half step” for minor revisions in a version, such as JDK 1.8.0_05.

The different names for Java configurations are somewhat confusing and frequently misused.
If you download Java to use with this book, you want to acquire the Java Standard Edition (SE)
Development Kit, also known as the JDK. Java also supports the Java Enterprise Edition (EE),
which includes all of the classes in the Java SE, plus a number of classes that are more useful
to programs running on servers than on workstations. The Java EE Development Kit is known
as SDK. The names of the development kits have changed frequently; originally, JDK meant
“Java Development Kit,” but that interpretation was used with the earliest Java versions and is
no longer used officially.

The Java Micro Edition (ME) is another Java platform, which is used for devices such as cell phones and
other small consumer appliances.

Configuring Windows to Use the JDK
To configure your Windows operating system with the JDK, you must add the Java bin
directory to the command path of your operating system (OS). That way, your OS will know
where to look for the Java commands that you use.

One way to update the OS path for Windows is to edit or set the OS path in the autoexec.bat
file. This file is automatically executed every time you start your computer. A simpler and less
error-prone alternative is to type two commands at the OS prompt when you want to begin a
session of working on Java programs. (These two commands are described later in this
appendix.)

You do not need to be an operating system expert to issue operating system commands.
Learning just a few commands allows you to create and run all the examples in this book.

A P P E N D I X A Working with the Java Platform

920

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Finding the Command Prompt
To locate the command prompt on your Windows 8.1 computer, you can swipe from the right
of the screen, click Search, and start to type Command Prompt. When Command Prompt
appears in the list, click it. Alternately, you can select the Win and X keys together to bring up
the Power User Menu, and then click Command Prompt. With older Windows versions, you
can click Start, point to Programs, point to Accessories, and then click Command Prompt.

In earlier versions of Windows, the console window was called the MS-DOS (Microsoft Disk Operating System)
prompt, or more simply, the DOS prompt. Many people still use this term instead of command prompt.

Command Prompt Anatomy
The Windows command prompt contains at least a disk drive name followed by a colon, a
backslash, and a greater-than sign (for example, C:\>). You might also see folder or directory
names within the command prompt just before the greater-than sign, as shown in the
following examples:

C:\Documents and Settings>

C:\Documents and Settings\Administrator>

Each directory in the path is separated by a backslash.

Changing Directories
You can back up one directory level by typing cd for “change directory,” followed by two periods:
cd..

For example, if your OS prompt contains C:\Users\<your name> and you type cd.., the
command prompt changes to C:\Users>. If you type cd.. again, the prompt changes to C:\>,
indicating the root directory.

When you have multiple directories to back through, it is easier to use the following
command:
cd\

This takes you immediately to the root directory instead of backing up one level at a time.

At the command prompt, you can change the directory by typing cd followed by the name of
the directory. For example, if you have a folder named Java and it contains a folder named
Chapter.01, you can change the command prompt to the Chapter.01 folder by backing up to
the root directory and typing the following:
cd Java
cd Chapter.01

After these commands, the command prompt reads C:\Java\Chapter.01>. When you compile and
execute your Java programs, you should start from the command prompt where the files are stored.

When your command prompt display is filled with commands, it can look confusing. If you
want, you can type cls (for Clear Screen) to remove old commands.

Configuring Windows to Use the JDK

921

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Setting the class and classpath Variables
When you start a Java session, you might need to set the class and classpath options. These
settings tell the operating system where to find the Java compiler and your classes. If you or
someone else has altered your autoexec.bat file to contain these commands, you do not need
to type them. Otherwise, every time you want to compile and execute Java programs, you
need to type statements similar to the following:
path = c:\program files\java\jdk1.8.0\bin
set classpath=.

After you have typed the class and classpath statements, you can compile and run as many
Java programs as you want without typing these commands again. You must type them again
if you close the Command Prompt window or restart your computer.

The first statement sets the path and allows the OS to recognize the javac command you use
when compiling programs. Consider the following example:
path = c:\program files\java\jdk1.8.0\bin

This example assumes that you are using JDK 1.8.0 and that it is stored in the java folder in
the program files folder. These are the defaults when you download Java from the Java Web
site; if you installed Java in a different location, you need to alter the command accordingly.

The command set classpath=. tells Java to find your compiled classes in the current
directory when you execute your applications. There must be no space between classpath
and the equal sign, or between the equal sign and the period.

After you set the path correctly, you should be able to use the javac command. If you attempt
to compile a Java class and see an error message that javac is not a recognized command,
either Java was not properly installed or the path command was incorrect. If classes compile
successfully but do not execute, you might have entered the classpath command incorrectly.

Changing a File’s Name
When working through the examples in this book, you will often find it convenient to change
the name of an existing file—for example, when you want to experiment with altering code
without losing the original version, or if you find that when you previously saved a file, you
mistyped a filename so that it did not match the class name within the .java file you created.
You can take at least three approaches:

Open the existing file using the appropriate software application (for example, Notepad),
click File on the menu bar, and then click Save As. Select the folder you want, then type a
new filename for the file. Now you have two versions—one with the old name and one
with the new.

Open the folder where the file is located and find the misnamed file. Select the file and
then click the filename. (Do not double-click the filename unless you want to open the
file.) You can then edit the filename by using a combination of the Backspace, Delete, and
character keys. Press Enter when the filename is correct. Alternately, you can right-click
the filename and choose Rename from the menu that appears.

A P P E N D I X A Working with the Java Platform

922

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

At the command prompt, use the rename command. You type rename, a space, the old filename,
another space, and the new filename. For example, to change a file named xyz.java to abc.java,
type the following at the command prompt for the directory containing the existing file:
rename xyz.java abc.java

Compiling and Executing a Java Program
At the command prompt, change from the default drive prompt to the drive where your
application is stored. Then change the directory (or folder) to the directory that holds your
application.

To compile an application, you type the javac command to start the Java compiler, then type a
space and the complete name of the .java file—for example, First.java. If the application doesn’t
compile successfully, the path might not be set correctly to the Java JDK bin directory where the
javac.exe file is located. Also, you might have failed to use the same spelling as the Java filename.

When you compile a .java file correctly, the Java compiler creates a .class file that has the
same filename as the .java file. Thus, a successful compilation of the First.java file creates a file
named First.class. To run a Java application, you use the java command and the class name
without the .class extension. For example, after an application named First.java is compiled,
producing First.class, you execute the program using the following command:
java First

After the program executes, control is returned to the command prompt. If a program does
not end on its own, or you want to end it prematurely, you can press Ctrl+C to return to the
command prompt.

After you compile a Java program, you can execute it as many times as you want without
recompiling. If you change the source code, you must save and compile again before you can
see the changed results in an executed application.

When you are testing a Java program, you often issue the commands to compile and execute it many times
before you are satisfied with the results. If you press the Up Arrow key at the command line, the previous
commands appear in reverse succession. When you find the command you want to repeat, just press Enter.

Key Terms
Java SE 8 is the most recent version of Java. The full, official name is Java Platform, Standard
Edition 8.

The JDK is the Java Standard Edition Development Kit.

The Java Enterprise Edition (EE) includes all of the classes in the Java SE, plus a number of
classes that are more useful to programs running on servers.

The SDK is the Java EE Development Kit.

The Java Micro Edition (ME) is a Java platform used for small devices such as cell phones.

Key Terms

923

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A P P E N D I X B
Data Representation

In this appendix, you will:

Work with numbering systems

Learn how numeric values are represented

Learn how character values are represented

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Numbering Systems
You can use devices such as computers, cell phones, microwave ovens, and automobiles
without understanding how they work internally. Likewise, you can write many Java pro-
grams without understanding how the data items they use are represented internally. How-
ever, once you learn how data items are stored, you gain a deeper understanding of computer
programming in general and Java in particular. You also can more easily troubleshoot some
types of problems that arise in your programs.

The numbering system you know best is the decimal numbering system, which is based
on 10 digits, 0 through 9. When you use the decimal system, no other symbols are
available; if you want to express a value larger than 9, you must use multiple digits from
the same pool of 10, placing them in columns. Decimal numbers are also called base 10
numbers.

When you use the decimal system, you analyze a multicolumn number by mentally
assigning place values to each column. The value of the rightmost column is 1, the value of
the next column to the left is 10, the next column’s value is 100, and so on; you multiply the
column value by 10 as you move to the left. There is no limit to the number of columns you
can use; you simply add them to the left as you need to express higher values. For example,
Figure B-1 shows how the value 305 is represented in the decimal system. You simply
multiply the digit in each column by the value of the column, and then add the values
together.

The binary numbering system works in
the same way as the decimal numbering
system, except that it uses only two
digits, 0 and 1. When you use the binary
system and you want to express a value
greater than 1, you must use multiple
columns because no single symbol
represents any value other than 0 or 1.
Instead of each new column to the left

being 10 times greater than the previous column, each new binary column is only two times
the value of the previous column. Binary numbers are called base 2 numbers.

For example, Figure B-2 shows
how the decimal number 9 is
represented in the binary sys-
tem. Notice that both the bin-
ary and decimal systems allow
you to create numbers with 0
in one or more columns. As
with the decimal system, the
binary system has no limit to
the number of columns—you

100s 10s 1s

3 0 5

Value is

 3 3 100 = 300

 0 3 10 = 0

 5 3 1 = 5

305

Figure B-1 Representing 305 in the decimal system

8s

1

4s

0

2s

0

1s

1

Value is

1 3 8 = 8

0 3 4 = 0

0 3 2 = 0

1 3 1 = 1

9

Figure B-2 Representing decimal value 9 in the binary system

A P P E N D I X B Data Representation

926

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

can use as many as it
takes to express a value.
For example, Figure B-3
shows that the decimal
number 50 requires six
binary system columns.

A computer stores every
piece of data it uses as a
set of 0s and 1s. Each 0
or 1 is known as a bit,
which is short for binary
digit. Every computer
uses 0s and 1s because all
its values are stored as

electronic signals that are either on or off. This two-state system is most easily
represented using just two digits.

Representing Numeric Values
In Chapter 2, you learned that a floating-point number contains decimal positions. The term
floating point comes from the fact that the decimal point can be at any location in the stored
value, allowing a much larger range of possible values to be stored in the same amount of
memory. For example, assume that a computer could store only four digits and that the decimal
point had to fall after the first two. The positive values that could be stored would then range
from 00.00 through 99.99. However, if the decimal point could fall anywhere, the values could
range from .0000 through 9999. Computers use more storage for each value, and store negative
values as well, but the principle is the same.

Because of the binary nature of computers, representing floating-point numbers is imprecise.
For example, suppose you want to represent the value 1/10 (0.10). You could try using each of
the following techniques:

If you use two bits to store the value, only four combinations are available (00, 01, 10, and
11), so they can only represent 0/4, 1/4, 2/4 (or 1/2), and 3/4. None of these is exactly 1/10,
but 0/4 is the closest.

Suppose you use three bits. This allows twice as many combinations, or eight, and the
closest to 1/10 is 1/8. The approximation is closer than with two bits, but still not exact.

Suppose you use four bits, which allows 16 combinations. The closest value to 1/10 is 2/
16. This value is no closer to 1/10 than you could achieve with three bits.

Suppose you use eight bits. Now, there are 256 bit combinations from 0/256 through 255/
256. The value of 26/256, at 0.1015625, is closer than any of the other values so far, but it’s
still not exact.

No matter how many bits you add to the representation, doubling the number of
combinations each time, you can never express 0.1 exactly.

4s 2s 1s

01 1 0 0 1

8s32s 16s

Value is

 1 3 32 = 32

 1 3 16 = 16

 0 3 8 = 0

 0 3 4 = 0

 1 3 2 = 2

 0 3 1 = 0

50

Figure B-3 Representing decimal value 50 in the binary system

Representing Numeric Values

927

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Although you cannot store 0.1 exactly, you can still display it. For example, the following two
lines of code display 0.1 as expected:
double oneTenth = 0.1;
System.out.println(oneTenth);

When Java displays a floating-point number, it always displays at least one digit after the
decimal. After that, it uses only as many digits as necessary to distinguish the number from
the nearest floating-point value it can represent.

However, when you use 0.1 in an arithmetic statement, the imprecision becomes evident.
Figure B-4 shows a simple program that declares two variables named oneTenth and
threeTenths; the variables contain the values 0.1 and 0.3, respectively. Figure B-5 shows the
result of summing oneTenth three times and of comparing that sum to threeTenths. Because
of floating-point imprecision, the first value is calculated to be slightly more than 0.3, so the
comparison of oneTenth + oneTenth + oneTenth to threeTenths is false.

import java.util.Scanner;
public class FloatingPointTest
{

public static void main(String[] args)
{

double oneTenth = 0.1;
double threeTenths = 0.3;
System.out.println(oneTenth + oneTenth + oneTenth);
System.out.println(oneTenth + oneTenth + oneTenth ==

threeTenths);
}

}

Figure B-4 The FloatingPointTest class

For many purposes, you do not
care about the small imprecisions
generated by floating-point calcu-
lations, but sometimes they can
make a difference. For example,
several popular movies have used
the idea that small amounts of
extra money can be sliced off bank
balances when compounding

interest and then siphoned to a criminal’s account. Many programmers recommend that you
use the Java class BigDecimal when working with monetary or scientific values where
precision is important. Additionally, be aware that when you test two floating-point values for
equivalency, you might not get the expected results.

When precision is not an issue, but better-looking output is important, you can format the output
to eliminate the small imprecisions that occur far to the right of the decimal point. Appendix C
teaches you many techniques for formatting output to a desired number of decimal places.

Figure B-5 Output of the FloatingPointTest program

A P P E N D I X B Data Representation

928

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Representing Character Values
The characters used in Java are represented in Unicode, which is a 16-bit coding scheme
for characters. For example, the letter A actually is stored in computer memory as a set of
16 zeros and ones as 0000 0000 0100 0001 (a space is inserted after each set of four digits for
readability). Because 16-digit numbers are difficult to read, programmers often use a
shorthand notation called the hexadecimal numbering system, or base 16. The
hexadecimal system uses 16 values, 0 through 9 and A through F, to represent the decimal
values 0 through 15. In hexadecimal shorthand, 0000 becomes 0, 0100 becomes 4, and
0001 becomes 1, so the letter A is represented in hexadecimal as 0041. You tell the compiler
to treat the four-digit hexadecimal 0041 as a single character by preceding it with the
\u escape sequence. Therefore, each of the following declarations stores the character A:
char letter = 'A';
char letter = '\u0041';
char letter = 65;

Two-digit, base 16 numbers can be converted to base 10 numbers by multiplying the left digit by 16 and
adding the right digit. For example, hexadecimal 41 is 4 times 16 plus 1, or 65.

The options that use hexadecimal and decimal values are more difficult and confusing to use
than the first method, so it is not recommended that you store letters of the alphabet using
numeric values. However, you can produce some interesting output using the Unicode
format. For example, the sequence ‘\u0007’ produces a bell-like noise if you send it to output.
Letters from foreign alphabets that use characters instead of letters (Greek, Hebrew, Chinese,
and so on) and other special symbols (foreign currency symbols, mathematical symbols,
geometric shapes, and so on) are available using Unicode, but not on a standard keyboard, so
it may be important that you know how to use Unicode characters. For more information
about Unicode, go to www.unicode.org.

In the United States, the most widely used character set traditionally has been ASCII
(American Standard Code for Information Interchange). The ASCII character set contains
128 characters. You can create any Unicode character by adding eight 0s to the beginning of
its ASCII character equivalent. This means that the decimal value of any ASCII character is
the same as that of the corresponding Unicode character. For example, B has the value 66 in
both character sets. The decimal values are important because they allow you to show
nonprintable characters, such as a carriage return, in decimal codes. Also, the numeric values
of the coding schemes are used when a computer sorts numbers and strings. When you sort
characters in ascending order, for example, numbers are sorted first (because their Unicode
values begin with decimal code 48), followed by capital letters (starting with decimal 65) and
then lowercase letters (starting with decimal 97).

Chapter 2 contains a list of Unicode values for some commonly used characters. For a complete
list, see www.unicode.org/charts. There you will find Greek, Armenian, Hebrew, Tagalog,
Cherokee, and a host of other character sets. Unicode also contains characters for mathematical
symbols, geometric shapes, and other unusual characters. The ASCII character set is more
limited than Unicode; it contains only letters and symbols used in the English language.

Representing Character Values

929

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms
The decimal numbering system is based on 10 digits, 0 through 9, in which each column
represents a value 10 times higher than the column to its right.

The binary numbering system is based on two digits, 0 and 1, in which each column
represents a value two times higher than the column to its right.

A bit is each binary digit, 0 or 1, used to represent computerized values.

Unicode is a 16-bit coding scheme for representing characters.

The hexadecimal numbering system is based on 16 digits, 0 through F, in which each
column represents a value 16 times higher than the column to its right.

ASCII (American Standard Code for Information Interchange) is a character set widely used
to represent computer data.

A P P E N D I X B Data Representation

930

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A P P E N D I X C
Formatting Output

In this appendix, you will:

Round numbers

Use the printf() method

Use the DecimalFormat class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Rounding Numbers
In Chapter 2 and Appendix B, you learned about the imprecision of floating-point numbers.
For example, if you write a program that subtracts 2.00 from 2.20, the result is not 0.20—it is
0.20000000000000018. To eliminate odd-looking output and nonintuitive comparisons
caused by imprecise calculations in floating-point numbers, you can take the approach shown
in the class in Figure C-1. If you want to round a number to two decimal places, note the
shaded steps in the figure:

Multiply the value by 100. So, for example, 0.20000000000000018 becomes
20.000000000000018.

Add 0.5. This increases a value’s whole number part by 1 if the fractional part is 0.5 or
greater. For example, 41.6 would become 42.1. In this case, 20.000000000000018 becomes
20.500000000000018.

Cast the value to an integer. In this case, 20.500000000000018 becomes 20.

Divide by 100. In this case, the value becomes 0.20.

public class RoundingDemo1
{

public static void main(String[] args)
{

double answer = 2.20 - 2.00;
boolean isEqual;
isEqual = answer == 0.20;
System.out.println("Before conversion");
System.out.println("answer is " + answer);
System.out.println("isEqual is " + isEqual);
answer = answer * 100;
answer = answer + 0.5;
answer = (int) answer;
answer = answer / 100;
isEqual = answer == 0.20;
System.out.println("After conversion");
System.out.println("answer is " + answer);
System.out.println("isEqual is " + isEqual);

}
}

Figure C-1 The RoundingDemo1 class

Figure C-2 shows the output of the program. Without rounding, the displayed difference
between 2.20 and 2.00 is 0.2000000000000000018. However, after applying the rounding
technique, the result is displayed as 0.2 as expected.

As an alternative, you can use the round() method that is supplied with Java’s Math class. The
round() method returns the nearest long value. Figure C-3 shows a program that multiplies
the double answer by 100, rounds it, and then divides by 100.0. The output is identical to that
shown in Figure C-2.

A P P E N D I X C Formatting Output

932

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class RoundingDemo2
{

public static void main(String[] args)
{

double answer = 2.20 - 2.00;
boolean isEqual;
isEqual = answer == 0.20;
System.out.println("Before conversion");
System.out.println("answer is " + answer);
System.out.println("isEqual is " + isEqual);
answer = answer * 100;
long roundedAnswer = Math.round(answer);
answer = roundedAnswer / 100.0;
isEqual = answer == 0.20;
System.out.println("After conversion");
System.out.println("answer is " + answer);
System.out.println("isEqual is " + isEqual);

}
}

Figure C-3 The RoundingDemo2 class

Using the printf() Method
When you display numbers using the println() method in Java applications, it sometimes
is difficult to make numeric values appear as you want. For example, in the output in
Figure C-2, the difference between 2.20 and 2.00 is displayed as 0.2. By default, Java
eliminates trailing zeros when floating-point numbers are displayed because they do not add
any mathematical information. You might prefer to see 0.20 because the original numbers
were both expressed to two decimal places, or, in particular, if the values represent currency.

Additionally, you frequently want to align columns of numeric values. For example, Figure C-4
shows a NumberList application that contains an array of floating-point values. The
application displays the values using a for loop, but as the output in Figure C-5 shows, the
numbers are not aligned by the decimal point as you usually would want numbers to be

Figure C-2 Output of the RoundingDemo1 program

Using the printf() Method

933

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

aligned. Because the println() method displays values as Strings, the displayed values
are left-aligned, just as series of words would be. The numeric values are accurate; they just
are not attractively arranged.

public class NumberList
{

public static void main(String[] args)
{

double[] list = {0.20, 2.00, 2.20, 22.22,
22.20, 222.00, 222.22};

int x;
for(x = 0; x < list.length; ++x)

System.out.println(list[x]);
}

}

Figure C-4 The NumberList application

The System.out.printf() method is
used to format numeric values. It is a
newer Java feature that was first
included in the Formatter class in
Java 1.5.0. (This is the internal version
number of the Java Development Kit;
the external version number is 5.0.)
Because this class is contained in the
java.util package, you do not need
to include any import statements to
use it. The printf() method allows
you to format numeric values in two
useful ways:

By specifying the number of decimal places to display

By specifying the field size in which to display values

The Formatter class contains many formats that are not covered here. To view the details of formatting
data types such as BigDecimal and Calendar, visit the Java Web site.

C programmers use a printf() function that is very similar to Java’s printf() method. Although the
printf() method is used in these examples, in Java, you can substitute System.out.format() for
System.out.printf(). There is no difference in the way you use these two methods.

Figure C-5 Output of the NumberList application

A P P E N D I X C Formatting Output

934

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When creating numeric output, you can specify a number of decimal places to display by
using the printf() method with two types of arguments that represent the following:

A format string

A list of arguments

A format string is a string of characters; it includes optional text (that is displayed literally)
and one or more format specifiers. A format specifier is a placeholder for a numeric value.
Within a call to printf(), you include one argument (either a variable or a constant) for each
format specifier.

The format specifiers for general, character, and numeric types contain the following ele-
ments, in order:

A percent sign (%), which indicates the start of every format specifier

An optional argument index, which is an integer indicating the position of the argument
in the argument list. The integer is followed by a dollar sign. You will learn more about
this option later in this appendix.

Optional flags that modify the output format. The set of valid flags depends on the data
type you are formatting. You can find more details about this feature at the Java Web site.

An optional field width, which is an integer indicating the minimum number of characters
to be written to the output. You will learn more about this option later in this appendix.

An optional precision factor, which is a decimal point followed by a number and typically
used to control the number of decimal places displayed. You will learn more about this
option in the next section.

The required conversion character, which indicates how its corresponding argument
should be formatted. Java supports a variety of conversion characters, but the three you
want to use most frequently are d, f, and s, the characters that represent decimal (base
10 integer), floating-point (float and double), and string values, respectively.

Other conversion characters include those used to display hexadecimal numbers and scientific notation. If
you need these display formats, you can find more details at the Java Web site.

For example, you can use the ConversionCharacterExamples class in Figure C-6 to display a
declared integer and double. The main() method of the class contains three printf() state-
ments. The three calls to printf() in this class each contain a format string; the first two calls
contain a single additional argument, and the last printf() statement contains two arguments
after the string. None of the format specifiers in this class use any of the optional parameters—
only the required percent sign and conversion character. The first printf() statement uses %d
in its format string as a placeholder for the integer argument at the end. The second printf()

statement uses %f as a placeholder for the floating-point argument at the end. The last printf()
statement uses both a %d and %f to indicate the positions of the integer and floating-point values
at the end, respectively. If you attempt to use a conversion character that is invalid for the data
type, the program will compile, but it will throw an exception during execution when it
encounters the wrong conversion character for the value being displayed.

Using the printf() Method

935

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class ConversionCharacterExamples
{

public static void main(String[] args)
{

int age = 23;
double money = 123.45;
System.out.printf("Age is %d\n", age);
System.out.printf("Money is $%f\n", money);
System.out.printf

("Age is %d and money is $%f\n", age, money);
}

}

Figure C-6 The ConversionCharacterExamples application

Figure C-7 shows the output of the program, in which the values are inserted in the
appropriate places in their strings. Note that floating-point values are displayed with six
decimal positions by default.

Notice that in the
ConversionCharacterExamples

class, the output appears on
three separate lines only
because the newline character
(‘\n’) has been included at the
end of each printf() format
string. Unlike the println()

statement, printf() does not
include an automatic new
line.

Specifying a Number of Decimal Places to Display with printf()
You can control the number of decimal places displayed when you use a floating-point value
in a printf() statement by adding the optional precision factor to the format specifier.
Between the percent sign and the conversion character, you can add a decimal point and the
number of decimal positions to display. For example, the following statements produce the
output “Money is $123.45”, displaying the money value with just two decimal places instead of
six, which would occur without the precision factor:
double money = 123.45;
System.out.printf("Money is $%.2f\n", money);

Figure C-7 Output of the ConversionCharacterExamples
application

A P P E N D I X C Formatting Output

936

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Similarly, the following statements display 8.10. If you use the println() equivalent with
amount, only 8.1 is displayed; if you use a printf() statement without inserting the .2
precision factor, 8.100000 is displayed.
double amount = 8.1;
System.out.printf("%.2f",amount);

When you use a precision factor on a value that contains more decimal positions than you
want to display, the result is rounded. For example, the following statements produce 100.457
(not 100.456), displaying three decimals because of the precision factor.
double value = 100.45678;
System.out.printf("%.3f",value);

You cannot use the precision factor with an integer value; if you do, your program will throw
an IllegalFormatConversionException.

Specifying a Field Size with printf()
You can indicate a field size in which to display output by using an optional integer as the field
width. For example, the NumberList2 class in Figure C-8 displays each array element in a field
with a size of 6, using two decimal places. Figure C-9 shows the output of the application.
Each value is displayed right-aligned in its field; for example, 0.20 is preceded by two blank
spaces, and 22.20 is preceded by one blank space. If a numeric value contains more positions
than you indicate for its printf() field size, the field size is ignored, and the entire value is
displayed.

public class NumberList2
{

public static void main(String[] args)
{

double[] list = {0.20, 2.00, 2.20, 22.22,
22.20, 222.00, 222.22};

int x;
for(x = 0; x < list.length; ++x)

System.out.printf("%6.2f\n", list[x]);
}

}

Figure C-8 The NumberList2 class

Using the printf() Method

937

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Throughout this book, you have been encour-
aged to use named constants for numeric
values instead of literal constants, so that your
programs are clearer. In the program in Figure
C-9, you could define constants such as:
final int DISPLAY_WIDTH = 6;
final int DISPLAY_DECIMALS = 2;

Then the printf() statement would be:
System.out.printf("%" + DISPLAY_WIDTH + "." +

DISPLAY_DECIMALS + "f\n", list[x]);

Another, perhaps clearer alternative is to define a
format string such as the following:
final String FORMAT = "%6.2f\n";

Then the printf() statement would be:
System.out.printf(FORMAT, list[x]);

You can specify that a value be left-aligned in a field instead of right-aligned by inserting a
negative sign in front of the width. Although you can do this with numbers, most often
you choose to left-align strings. For example, the following code displays five spaces followed
by “hello” and then five spaces followed by “there”. Each string is left-aligned in a field with a
size of 10.
String string1 = "hello";
String string2 = "there";
System.out.printf("%-10s%-10s", string1, string2);

Using the Optional Argument Index with printf()
The argument index is an integer that indicates the position of an argument in the argument
list of a printf() statement. To separate it from other formatting options, the argument
index is followed by a dollar sign ($). The first argument is referenced by "1$", the second by
"2$", and so on.

For example, the printf() statement in the following code contains four format specifiers
but only two variables in the argument list:
int x = 56;
double y = 78.9;
System.out.printf("%1$6d%2$6.2f%1$6d%2$6.2f", x, y);

The printf() statement displays the value of the first argument, x, in a field with a size of 6, and
then it displays the second argument, y, in a field with a size of 6 with two decimal places. Then,
the value of x is displayed again, followed by the value of y. The output appears as follows:
56 78.90 56 78.90

Figure C-9 Output of the
NumberList2 class

A P P E N D I X C Formatting Output

938

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the DecimalFormat Class
The DecimalFormat class provides ways to easily convert numbers into strings, allowing
you to control the display of leading and trailing zeros, prefixes and suffixes, grouping
(thousands) separators, and the decimal separator. You specify the formatting properties of
DecimalFormat with a pattern String. The pattern String is composed of symbols that
determine what the formatted number looks like; it is passed to the DecimalFormat class
constructor.

The symbols you can use in a pattern String include:

A pound sign (#), which represents a digit

A period (.), which represents a decimal point

A comma (,), which represents a thousands separator

A zero (0), which represents leading and trailing zeros when it replaces the pound sign

The pound sign is typed using Shift+3 on standard computer keyboards. It also is called an octothorpe, a
number sign, a hash sign, square, tic-tac-toe, gate, and crunch.

For example, the following lines of code result in value being displayed as 12,345,678.90.
double value = 12345678.9;
DecimalFormat aFormat = new DecimalFormat("#,###,###,###.00");
System.out.printf("%s\n", aFormat.format(value));

A DecimalFormat object is created using the pattern #,###,###,###.00. When the object’s
format() method is used in the printf() statement, the first two pound signs and the
comma between them are not used because value is not large enough to require those
positions. The value is displayed with commas inserted where needed, and the decimal
portion is displayed with a trailing 0 because the 0s at the end of the pattern indicate that they
should be used to fill out the number to two places.

When you use the DecimalFormat class, you must use the import statement
import java.text.*;. Figure C-10 shows a class that creates a String pattern that it
passes to the DecimalFormat constructor to create a moneyFormat object. The class displays
an array of values, each in a field that is 10 characters wide. Some of the values require
commas, and some do not. Figure C-11 shows the output.

Using the DecimalFormat Class

939

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.text.*;
public class DecimalFormatTest
{

public static void main(String[] args)
{

String pattern = "###,###.00";
DecimalFormat moneyFormat = new DecimalFormat(pattern);
double[] list = {1.1, 23.23, 456.249, 7890.1, 987.5678, 65.0};
int x;
for(x = 0; x < list.length; ++x)

System.out.printf("%10s\n", moneyFormat.format(list[x]));
}

}

Figure C-10 The DecimalFormatTest class

Key Terms
A format string in a printf() statement is a string of characters; it includes optional text
(that is displayed literally) and one or more format specifiers.

A format specifier in a printf() statement is a placeholder for a numeric value.

The argument index in a printf() statement is an integer that indicates the position of an
argument in the argument list.

A pattern String is composed of symbols that determine what a formatted number looks
like.

An octothorpe is a pound sign.

Figure C-11 Output of the DecimalFormatTest program

A P P E N D I X C Formatting Output

940

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A P P E N D I X D
Generating Random
Numbers

In this appendix, you will:

Understand computer-generated random numbers

Use the Math.random() method

Use the Random class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Computer-Generated Random Numbers
A random number is a number whose value cannot be predicted. Many types of programs
use random numbers. For example, simulations that predict phenomena such as urban
traffic patterns, crop production, and weather systems typically use random numbers. You
might want to use random numbers to change your screen’s appearance; for example,
screen savers often use random numbers to define graphics so that a changing pattern
remains interesting.

Random numbers are also used in many computer game applications. When you play games
with human opponents, their choices are often unpredictable (and sometimes even irra-
tional). Computers usually are predictable and rational, so when you play a game against a
computer opponent, you frequently need to generate random numbers. For example, a
guessing game would not be very interesting if you were asked to guess the same number
every time you played.

Most computer programming languages, including Java, come with built-in methods that
generate random numbers. The random numbers are calculated based on a starting value,
called a seed. The random numbers generated using these methods are not truly random;
they are pseudorandom in that they produce the same set of numbers whenever the seed is
the same. Therefore, if you seed a random-number generator with a constant, you always
receive the same sequence of values. Many computer programs use the time of day as a
random number-generating seed. For game applications, this method works well, as a player
is unlikely to reset his computer’s clock and attempt to replay a game beginning at exactly the
same moment in time.

For applications in which randomness is more crucial than in game playing, you can use other methods
(such as using the points in time at which a radioactive source decays) to generate truly random
starting numbers.

There are two approaches to generating random numbers in Java. Both techniques are
explained in this appendix and summarized in Table D-1.

Method/Class Advantages

Math.random() method You do not need to create an object

You do not need to understand constructors and multiple methods

Random class and its methods You can generate numbers in the format you need without
arithmetic manipulation

You can create reproducible results if necessary

Table D-1 Generating random numbers in Java

A P P E N D I X D Generating Random Numbers

942

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Math.random() Method
Java’s Math class provides a random() method that returns a double value in the range of 0.0
up to, but not including, 1.0. For example, the application in Figure D-1 generates three
random numbers and displays them. Figure D-2 shows three successive executions of the
program.

public class SomeRandomNumbers
{

public static void main (String[] args)
{

double ran;
ran = Math.random();
System.out.println(ran);
ran = Math.random();
System.out.println(ran);
ran = Math.random();
System.out.println(ran);

}
}

Figure D-1 The SomeRandomNumbers class

The values displayed in Figure D-2
appear to be random, but they are not
typical of the values you need in a game-
playing program. Usually, you need a
relatively small number of whole values.
For example, a game that involves a coin
flip might only need two values to
represent heads or tails, and a dice game
might need only six values to represent
rolls of a single die. Even in a compli-
cated game in which 40 types of space
aliens might attack the player, you need
only 40 whole numbers generated to
satisfy the program requirements.

For example, suppose you need a
random number from 1 to 10. To
change any value generated by the
Math.random() method to fall between
0 and 10, you can multiply the generated

number by 10. For example, the last three numbers in Figure D-2 would become approxi-
mately 2.53, 1.86, and 9.07. Then, you can eliminate the fractional part of each number by
casting it to an int; after this step, every generated number will be a value from 0 to 9

Figure D-2 Three executions of the
SomeRandomNumbers program

Using the Math.random() Method

943

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

inclusive. Finally, you can add 1 to a value so it falls in the range from 1 to 10 instead of 0 to 9.
In short, the following statement generates a random number from 1 through 10 inclusive,
and assigns it to ran:
int ran = 1 + (int)(Math.random() * 10);

Suppose that, instead of 1 through 10, you need random numbers from 1 through 13. (For
example, standard decks of playing cards have 13 values from which you might want to
select.) When you use the modulus operator (%) to find a remainder, the remainder is always
a value from 0 to one less than the number. For example, if you divide any number by 4, the
remainder is always a value from 0 through 3. Therefore, to find a number from 1 through 13,
you can use a statement like the following:
int ranCardValue = ((int)(Math.random() * 100) % 13 + 1);

In this statement, a randomly generated value (for example, 0.447) is multiplied by 100
(producing 44.7). The result is converted to an int (44). The remainder after dividing
by 13 is 5. Finally, 1 is added so the result is 1 through 13 instead of 0 through 12 (giving 6).
In short, the general format for assigning a random number to a variable is:
int result = ((int)(Math.random() * 100) %

HIGHEST_VALUE_WANTED + LOWEST_VALUE_WANTED);

Instead of using 100 as the multiplier, you might prefer to use a higher value such as 1,000 or 10,000. For
most games, the randomness generated using 100 is sufficient.

Using the Random Class
The Random class provides a generator that creates a list of random numbers. To use this class,
you must use one of the following import statements:
import java.util.*;
import java.util.Random;

You also must instantiate a random-number generator object using one of the following
constructors:

Random(), in which the seed comes from the operating system; this constructor sets the
seed of the random-number generator to a value that is probably distinct from any other
invocation of this constructor

Random(long seed), in which you provide a starting seed so that your results are
reproducible

After you create a random-number generator object, you can use any of the methods in
Table D-2 to get the next random number from the generator.

A P P E N D I X D Generating Random Numbers

944

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, Figure D-3 contains an application that declares a Random generator named
ran, using the version of the constructor that takes no arguments. This ensures that the
results are different each time the application runs. The program then defines LIMIT as 10,
and calls ran.nextInt(LIMIT) three times, displaying the results (see Figure D-4).

import java.util.*;
public class SomeRandomNumbers2
{

public static void main(String[] args)
{

Random ran = new Random();
final int LIMIT = 10;
System.out.print(ran.nextInt(LIMIT) + " ");
System.out.print(ran.nextInt(LIMIT) + " ");
System.out.println(ran.nextInt(LIMIT));

}
}

Figure D-3 The SomeRandomNumbers2 class

Method Explanation

nextInt(int n) Returns a pseudorandom int value between 0 (inclusive) and the specified
value n (exclusive), drawn from the random-number generator’s sequence

nextInt() Returns a pseudorandom int value between 0 (inclusive) and 1.0 (exclusive),
drawn from the random-number generator’s sequence

nextLong() Returns the next pseudorandom long value from the generator’s sequence

nextFloat() Returns the next pseudorandom float value between 0.0 and 1.0 from the
generator’s sequence

nextDouble() Returns the next pseudorandom double value between 0.0 and 1.0 from the
generator’s sequence

nextBoolean() Returns the next pseudorandom boolean value from the generator’s sequence

Table D-2 Selected Random class methods

Using the Random Class

945

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure D-4, each displayed value falls between 0 and LIMIT. (Of course, to select values
between 1 and LIMIT inclusive, you could add 1 to each result.)

Figure D-5 shows a class using the version of the Random constructor that takes an argument
(shaded). In this example, a value between 0 and 6 inclusive is generated 15 times. Figure D-6
shows the output when the program is run three times. Although the 15 numbers displayed
for each execution constitute a random list, the list is identical in each program execution.
You use a seed when you want random but reproducible results. For games, you usually want
to use the no-argument version of the Random constructor.

import java.util.*;
public class SomeRandomNumbers3
{

public static void main(String[] args)
{

Random ran = new Random(129867L);
final int TIMES = 15;
final int LIMIT = 7;
for(int x = 0; x < TIMES; ++x)

System.out.print(ran.nextInt(LIMIT) + " ");
System.out.println();

}
}

Figure D-5 The SomeRandomNumbers3 class

Figure D-4 Three executions of the SomeRandomNumbers2 program

A P P E N D I X D Generating Random Numbers

946

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms
A random number is a number whose value cannot be predicted.

A seed is a starting value.

Pseudorandom numbers appear to be random, but are the same set of numbers whenever the
seed is the same.

Figure D-6 Three executions of the SomeRandomNumbers3 program

Key Terms

947

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A P P E N D I X E
Javadoc

In this appendix, you will:

Learn about the Javadoc documentation generator

Understand Javadoc comment types

Generate Javadoc documentation

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Javadoc Documentation Generator
Javadoc is a documentation generator created by Sun Microsystems that allows you to
generate Application Programming Interface (API) documentation in HTML (Hypertext
Markup Language) format. HTML is a relatively simple language used to create Web pages;
you can also use it to create Java documentation from source code. In Chapter 1, you
learned that you can place both line and block comments anywhere in a program to provide
documentation that can be useful both to yourself and others. A Javadoc comment is a
special form of block comment that provides a standard way to document Java code. After
you write Javadoc comments, they can be interpreted by special utility programs that
generate an HTML document. The resulting HTML document provides an attractive
format for the documentation when you open it in a browser. Most class libraries, both
commercial and open source, provide Javadoc documents. If you have visited the Java Web
site to research how to use a class, you most likely have viewed documentation created by
the Javadoc utility.

In Chapter 1, you learned that block comments start with /* and end with */, that Javadoc
comments start with /** and end with */, and that both comment types can span as many lines
as necessary. For symmetry, many developers end their Javadoc comments with **/. By
convention, asterisks start intermediate lines in a Javadoc comment. This is not required, but
it helps you more easily distinguish comments from code.

Javadoc comments can contain tags. A Javadoc tag is a keyword within a comment that the
Javadoc tool can process. Tags begin with an at-sign (@) and use a limited vocabulary of
keywords. Some commonly used Javadoc tags include:

@author: Describes the author of a document

@param: Describes a parameter of a method or constructor

@return: Describes the return type of a method

@throws: Describes an exception a method may throw

@exception: Describes an exception

Javadoc Comment Types
There are two types of Javadoc comments:

Class-level comments that provide a description of a class

Member-level comments that describe the purposes of class members

Class-level Javadoc comments provide a description of a class; you place class-level
comments above the code that declares a class. Class-level comments frequently contain
author tags and a description of the class. Figure E-1 shows a shaded class-level comment in a
class.

A P P E N D I X E Javadoc

950

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

/**
* @author Joyce Farrell.
* The Employee class contains data about one employee.
* Fields include an ID number and an hourly pay rate.
*/
public class Employee
{

private int idNum;
private double hourlyPay;
public Employee(int id, double pay)
{

idNum = id;
hourlyPay = pay;

}
int getIdNum()
{

return idNum;
}
void setIdNum(int id)
{

idNum = id;
}

}

Figure E-1 An Employee class with class-level comments

Member-level Javadoc comments describe the fields, methods, and constructors of a class.
Method and constructor comments may contain tags that describe the parameters, and
method comments may also contain return tags. Figure E-2 shows a class with some shaded
member-level comments.

/**
* @author Joyce Farrell.
* The Employee2 class contains data about one employee.
* Fields include an ID number and an hourly pay rate.
*/
public class Employee2
{

/**
* Employee ID number
*/
private int idNum;
/**
* Employee hourly pay
*/

Figure E-2 An Employee2 class with class-level and member-level comments (continues)

Javadoc Comment Types

951

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

private double hourlyPay;
/**
* Sole constructor for Employee2
*/
public Employee2(int id, double pay)
{

idNum = id;
hourlyPay = pay;

}
/**
* Returns the Employee2 ID number
*
* @return int
*/
int getIdNum()
{

return idNum;
}
/**
* Sets the Employee2 ID number
*
* @param id employee ID number
*/
void setIdNum(int id)
{
idNum = id;

}
}

Figure E-2 An Employee2 class with class-level and member-level comments

Like all program comments, Javadoc comments can contain anything. However, you
should follow the conventions for Javadoc comments. For example, developers expect all
Javadoc comments to begin with an uppercase letter, and they recommend that method
comments start with a verb such as “Returns” or “Sets.” For more information, go to the
Java Web site.

Generating Javadoc Documentation
To generate the Javadoc documentation from your class, you should do the following:

1. Create a folder in which to store your class. For example, you might store the
Employee2.java file in a folder named Employee2.

2. Within the folder, you can create a Documents subfolder to hold the documentation
that you generate. However, if you omit this step and use the syntax described in
Step 3, the folder is created for you automatically.

(continued)

A P P E N D I X E Javadoc

952

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Go to the command prompt and navigate to the directory that holds the Employee2.
java file. (See Appendix A for information on finding the command prompt and
changing directories.) From the command prompt, run the following command:

javadoc -d Documents *.java

The –d is the directory option. If you omit it, all the generated files are saved in the current
directory. By including this option, you indicate that the files should be saved in the
Documents directory.

To see the author’s name in the resulting documentation, change the Javadoc command to the following:
javadoc -d Documents -author *.java

If you are using the jGRASP development environment to create your Java programs, you can execute the
Javadoc command with a button click. You can download the jGRASP program from http://jGRASP.org.

4. Navigate to the Documents folder. You will see a number of generated files, as shown
in Figure E-3. The list includes HTML documents with information about all the
constants in your class, all the deprecated methods in your class, and so on. (The
Employee2 class has no constants or deprecated methods, but you can open the files
and view the format that the contents would take if they existed.)

Figure E-3 Contents of the Employee2 Documents folder in File Explorer

Generating Javadoc Documentation

953

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

On your computer, you might see a different name for the file type for HTML documents, depending on how
your default options have been set.

The index.html file provides an index of all class interface, constructor, field, and method
names; when you double-click it, the file opens in your default browser. Figure E-4 shows how
the first part of the index.html file for Employee2 appears in Internet Explorer. If you have
searched the Java Web site for documentation, the format of the page in Figure E-4 is familiar
to you. The class name and other information appear in a font and style consistent with other
classes in the Java API. You can see information about the class constructor and the notes
that you added in your comments. You see inheritance information—Employee2 descends
directly from Object. The format of this documentation is familiar to users, making it much
easier for them to find what they need than if each developer created documentation formats
independently.

The Javadoc tool will run on .java source files that are stub files with no method bodies. This means you can
write documentation comments and run the Javadoc tool when you are first designing classes, before you
have written implementations for the class’s methods.

Writing acceptable Javadoc comments requires adherence to some style standards. For
example, professionals recommend that multiple @author tags should be listed in chron-
ological order, with the creator of the class listed at the top, and that multiple @param tags

Figure E-4 The Employee2 class documentation in Internet Explorer

A P P E N D I X E Javadoc

954

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

should be listed in argument-declaration order. Additionally, Javadoc comments can provide
hyperlinks that allow navigation from one document to another. For example, when a class
contains a field that is an object of another class, you might want to link to the other class’s
documentation. For more information, see the recommendations from Java developers at the
Java Web site.

Specifying Visibility of Javadoc Documentation
By default, Javadoc documents only public and protected members of an API. In other
words, even if you write Javadoc comments for private members, the comments do not
appear in the generated documentation unless you take special action to make them visible.
Although the index.html file contains details about the Employee2 class’s constructor and
methods, there is no information about the private fields idNum and hourlyPay. To generate
that documentation, you must specify private visibility by using the following javadoc

command:
javadoc -d Documents -private *.java

Figure E-5 shows the documentation generated by this command. You can see that the newly
generated documentation includes a Field Summary section. It lists the fields in alphabetical
order preceded by their access specifiers and data types. Each field identifier is followed by the
appropriate description that was provided in the Javadoc comment in the source code.

Figure E-5 The Employee2 class documentation when private members are included

Generating Javadoc Documentation

955

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can specify four types of visibility:

public—Displays public members only

protected—Displays public and protected members only. This is the default option.

package—Displays package classes and members in addition to public and protected

members

private—Displays all members

Key Terms
Javadoc is a documentation generator created by Sun Microsystems that allows you to
generate Application Programming Interface (API) documentation in HTML format from
Java source code.

HTML (Hypertext Markup Language) is a relatively simple language used to create Web
pages.

A Javadoc comment is a special form of block comment that provides a standard way to
document Java code.

A Javadoc tag is a keyword within a comment that the Javadoc tool can process.

Class-level Javadoc comments provide a description of a class.

Member-level Javadoc comments describe the fields, methods, and constructors of a class.

A P P E N D I X E Javadoc

956

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Glossary

A
absolute path—a complete file path that
does not require any other information to
locate a file on a system.
abstract class—a class from which no
concrete objects can be instantiated, but
which can serve as a basis for inheritance.
Abstract classes usually have one or more
empty abstract methods. Contrast with
concrete class.
abstract data type—a type whose
implementation is hidden and accessed
through its public methods.
abstract method—a method declared with
the keyword abstract and that has no
body; a subclass must override each base
class abstract method.
Abstract Windows Toolkit (AWT)—a set of
GUI components that predates Swing and
is less portable than the set of Swing
components.
abstraction—the programming feature
that allows a method name to encapsulate
multiple statements.
accelerator—a key combination that
causes a menu item to be chosen, whether
or not the menu item is visible.
access modifier—defines the circumstances
under which a class can be accessed; often
used interchangeably with access specifier.

access specifier—defines the
circumstances under which a class can be
accessed; often used interchangeably with
access modifier.
accessor methods—methods that return
information about an object.
accumulating—the process of repeatedly
increasing a value by some amount to
produce a total.
action key—a keyboard key that does not
generate a character.
actual parameters—the arguments in a
method call. Contrast with formal
parameters.
acyclic gradient—a fill pattern in which
a color shift occurs once between two
points.

adapter class—a class that implements all
the methods in an interface, providing an
empty body for each method.

add and assign operator—an operator
that alters the value of the operand on the
left by adding the operand on the right to it;
it is composed of a plus sign and an equal
sign (+=).

ad-hoc polymorphism—polymorphism
that occurs when a single method name can
be used with a variety of data types because
various implementations exist; it is another
name for method overloading.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

aggregation—a type of composition in
which a class contains one or more
members of another class that would
continue to exist without the object that
contains them.

algorithm—a process or set of steps that
solves a problem.

Allman style—the indent style in which
curly braces are aligned and each occupies
its own line; it is named for Eric Allman, a
programmer who popularized the style.
Contrast with K & R style.

alpha value—the level of a color’s
transparency.

ambiguous—describes a situation in which
the compiler cannot determine which
method to use.

anonymous classes—nested, local classes
that have no identifier.

anonymous object—an unnamed object.

applet—a Java program that is called from
within another application, frequently a
Web page.

application files—files that store software
instructions.

application software—programs that
perform tasks for users. Contrast with
system software.

application-triggered painting—describes
a painting operation that occurs when a
program requests it, usually because the
internal state of a component has changed.
Contrast with system-triggered painting.

arc—a portion of a circle’s circumference.

architecturally neutral—describes the
feature of Java that allows a program to run
on any platform.

argument index—in a printf()

statement, an integer that indicates the

position of an argument in the argument
list.

arguments—data items sent to methods in
a method call.

arithmetic operators—operators used to
perform calculations with values.

array—a named list of data items that all
have the same type.

ascending order—the order of objects
arranged from lowest to highest value. See
also descending order.

ascent—one of three measures of a Font’s
height; it is the height of an uppercase
character from a baseline to the top of the
character. See also leading and descent.

ASCII—an acronym for American Standard
Code for Information Interchange, a
character set widely used to represent
computer data.

assertion—a Java language feature that can
help detect logic errors and debug a program.

assignment—the act of providing a value
for a variable.

assignment operator—the equal sign (=);
any value to the right of the equal sign is
assigned to the variable on the left of the
equal sign.

associativity—describes the order in which
operands are used with operators.

at run time—describes the period of time
during which a program executes.

attributes—the characteristics that define
an object as part of a class.

B
back buffer—the offscreen image during
double buffering.

base class—a class that is used as a basis
for inheritance.

958

G L O S S A R Y

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

batch processing—processing that
involves performing the same tasks with
many records, one after the other.

binary files—files that contain data that
has not been encoded as text; their contents
are in binary format.

binary numbering system—a numbering
system based on two digits, 0 and 1, in
which each column represents a value two
times higher than the column to its right.

binary operators—operators that require
two operands.

bit—a binary digit, 0 or 1, used to represent
computerized values.

black box—a device that can be used solely
in terms of input and output without regard
to how it works internally.

blank final—a final variable that has
not yet been assigned a value.

block—the code between a pair of curly
braces.

block comments—comments that start
with a forward slash and an asterisk (/*) and
end with an asterisk and a forward slash (*/).
Block comments can appear on a line by
themselves, on a line before executable code,
or on a line after executable code. Block
comments can also extend across as many
lines as needed. Contrast with line
comments.

block line transfer or blitting—the act of
copying contents from one surface to
another.

Boolean values—true or false values; every
computer decision results in a Boolean
value.

boolean variable—a variable of the
boolean data type that can hold only one of
two values—true or false.

border layout manager—a layout manager
that divides a container into regions.

bubble sort—a type of sort that operates by
comparing pairs of items and swapping
them if they are out of order so that the
smallest items “bubble” to the top of the list,
eventually creating a sorted list.

buffer—a memory location that holds data
temporarily—for example, when creating a
StringBuilder object or during input and
output operations.

bug—a flaw or mistake in a computer
program.

button—a GUI component typically used
to trigger an action or make a selection
when the user clicks it.

button group—a GUI component that
groups other components, such as check
boxes, so a user can select only one at a time.

byte—the data type that holds very small
integers, from –128 to 127.

bytecode—programming statements that
have been compiled into binary format.

C
call a procedure—to invoke a method.

call stack—the memory location where the
computer stores the list of memory
locations to which the system must return
when methods end.

called method—a term used to describe
the relationship between two methods; a
method that is invoked by another.

calling method—a term used to describe
the relationship between two methods; a
method that invokes another.

camel casing—a naming style in which an
identifier begins with a lowercase letter and
subsequent words within the identifier are
capitalized. Contrast with Pascal casing.

959

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

capacity—an attribute of an ArrayList

whose value is the number of items it can
hold without having to increase its size.
Also, with a StringBuilder object, the
actual length of the buffer, as opposed to
that of the string contained in the buffer.

cast operator—an operator that performs
an explicit type conversion; it is created by
placing the desired result type in
parentheses before the expression to be
converted.

catch block—a segment of code that can
handle an exception that might be thrown
by the try block that precedes it.

catch or specify requirement—the Java
rule that checked exceptions require
catching or declaration.

char—the data type that holds any single
character.

character—any letter, number, or special
symbol (such as a punctuation mark) that
comprises data.

Character class—a class whose
instances can hold a single character value.
This class also defines methods that can
manipulate or inspect single-character data.

check box—a GUI element with a label
and a clickable square that is frequently
used to turn an option on or off.

checked exceptions—exceptions that a
programmer should plan for and from
which a program should be able to recover.
Contrast with unchecked exceptions.

child class—a derived class.

class—a group or collection of objects with
common properties.

class body—the set of data items and
methods between the curly braces that
follow the class header.

class client—an application or class that
instantiates objects of another class. See
also class user.

class definition—a description of attributes
and methods of objects instantiated from a
class.

class diagram—a visual tool that provides
an overview of a class. It consists of a
rectangle divided into three sections—the
top section contains the name of the class,
the middle section contains the names and
data types of the attributes, and the bottom
section contains the methods.

class methods—static methods that do
not have a this reference (because they
have no object associated with them).

class user—an application or class that
instantiates objects of another prewritten
class. See also class client.

class variables—static variables that are
shared by every instantiation of a class.

class-level Javadoc comments—Javadoc
comments that provide a description of a
class.

clean build—a compilation that is created
after deleting all previously compiled
versions of a class.

client method—a method that calls
another method.

close the file—to make a file no longer
available to an application.

closer in scope—a term that describes the
status of a local variable over others that it
shadows.

collision—describes a class naming
conflict.

combo box—a GUI component that
combines a display area showing a default
option and a list box containing additional
options.

960

G L O S S A R Y

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

comes into scope—describes what
happens to a variable when it is declared.
Contrast with goes out of scope.

comma-separated values (CSV)—fields
that are separated with a comma.

commands—program statements.

comment out—the technique of turning a
program statement into a comment so the
compiler will not execute its command.

comparison operator—a relational
operator.

compiler—a program that translates
language statements into machine code.
A compiler translates an entire program
before executing it. Contrast with
interpreter.

compile-time error—an error for which
the compiler detects a violation of language
syntax rules and is unable to translate the
source code to machine code.

composition—describes the relationship
between classes when an object of one class
is a data field within another class. See also
has-a relationship.

compound Boolean expression—an
expression that contains an AND or OR
operator.

compound condition—the condition that
is tested in a compound Boolean
expression.

computer file—a collection of stored
information in a computer system.

computer program—a set of instructions
that tells a computer what to do; software.

computer simulations—programs that
attempt to mimic real-world activities so
that their processes can be improved or so
that users can better understand how the
real-world processes operate.

concatenated—describes values that are
added onto the end of another value.

concatenation—the process of joining a
variable to a string to create a longer string.

concrete class—a nonabstract class from
which objects can be instantiated. Contrast
with abstract class.

conditional operator—an operator that
requires three expressions separated with
a question mark and a colon; the operator
is used as an abbreviated version of the
if...else structure.

confirm dialog box—a window that can be
created using the showConfirmDialog()
method in the JOptionPane class and that
displays the options Yes, No, and Cancel.

console applications—programs that
support character or text output to a
computer screen.

constant—describes values that cannot be
changed during the execution of an
application.

constructor—a method that establishes an
object.

consume—to retrieve and discard an entry
without using it.

container—a type of component that holds
other components so they can be treated as
a single entity.

containment hierarchy—a tree of
components that has a top-level container
as its root (that is, at its uppermost level).

content pane—a component that contains
all the visible components in a top-level
container’s user interface.

counted loop—a definite loop.

counter-controlled loop—a definite loop.
Contrast with event-controlled loop.

961

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

counting—the process of continually
incrementing a variable to keep track of the
number of occurrences of some event.

crash—a premature, unexpected, and
inelegant end to a program.

cyclic gradient—a fill pattern in which a
shift between colors occurs repeatedly
between two points.

D
data fields—data variables declared in a
class outside of any method.

data files—files that consist of related
records that contain facts and figures, such
as employee numbers, names, and salaries.

data type—describes the type of data that
can be stored in a variable, how much
memory the item occupies, and what types
of operations can be performed on the data.

dead code—unreachable statements.

debugging—the process of locating and
repairing a program’s error.

decimal numbering system—the
numbering system based on 10 digits, 0
through 9, in which each column value is 10
times the value of the column to its right.

decision structure—a logical structure
that involves choosing between alternative
courses of action based on some value
within a program.

declaration—another name for a method
header; also, the statement that assigns a
data type and identifier to a variable.

decrementing—the act of subtracting 1
from a variable.

default constructor—a constructor that
requires no arguments.

default package—the unnamed package
in which a class is placed if no package is
specified.

definite loop—a loop that executes a
predetermined number of times; a counted
loop. Contrast with indefinite loop.

derived class—a class that inherits from a
base class.

descending order—the order of objects
arranged from highest to lowest value. See
also ascending order.

descent—one of three measures of a Font’s
height; it measures the part of characters
that “hang below” the baseline, such as the
tails on the lowercase letters g and j. See
also ascent and leading.

development environment—a set of tools
that helps programmers by providing such
features as displaying a language’s keywords
in color.

dialog box—a GUI object resembling a
window that displays messages.

direct access files—random access files.

directories—elements in a storage
organization hierarchy. See also folders.

divide and assign operator—an operator
that alters the value of the operand on the
left by dividing the operand on the right
into it; it is composed of a slash and an
equal sign (/=).

documentation comments—comments
that automatically generate well-formatted
program documentation.

do-nothing loop—a loop that performs no
actions other than looping.

do...while loop—a loop that executes
a loop body at least one time; it checks the
loop control variable at the bottom of
the loop after one repetition has occurred.

double—a data type that can hold a
floating-point value of up to 14 or 15
significant digits of accuracy. Contrast with
float.

962

G L O S S A R Y

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

double buffering—the default buffering
strategy in which JPanels are drawn
offscreen when they are updated and
displayed only when complete.

double-precision floating-point number—
a type of value that is stored in a double.

dual-alternative selection—a selection
that results in one of two possible courses of
action.

dummy values—values the user enters that
are not “real” data, but just signals to stop
data entry.

dynamic method binding—the ability of
an application to select the correct subclass
method when the program executes. See
also late method binding.

dynamically resizable—describes an
object whose size can change during
program execution.

E
echoing the input—the act of repeating the
user’s entry as output so the user can
visually confirm the entry’s accuracy.

editable—describes a component that can
accept keystrokes.

element—one variable or object in an array.

else clause—the part of an if...else
statement that executes when the evaluated
Boolean expression is false.

else...if clause—a format used in
nested if statements in which each
instance of else and its subsequent if are
placed on the same line.

empty body—a block with no statements
in it.

empty statement—a statement that
contains only a semicolon.

encapsulation—the act of hiding data and
methods within an object.

endcap styles—styles applied to the ends
of lines that do not join with other lines;
they include CAP_BUTT, CAP_ROUND, and
CAP_SQUARE.

enhanced for loop—a language construct
that cycles through an array without
specifying the starting and ending points for
the loop control variable.

enum constants—the allowed values for an
enumerated data type.

enumerated data type—a programmer-
created data type with a fixed set of values.

enumeration—a data type that consists of
a list of values.

equivalency operator—the operator
composed of two equal signs that compares
values and returns true if they are equal.

escape sequence—a sequence that begins
with a backslash followed by a character;
the pair frequently represents a nonprinting
character.

event—a result when a user takes action on
a component.

event-controlled loop—an indefinite loop
in which the number of executions is
determined by user actions. Contrast with
counter-controlled loop.

event-driven program—a program in
which the user might initiate any number of
events in any order.

event handler—a method that executes
because it is called automatically when an
appropriate event occurs.

exception—in object-oriented
terminology, an unexpected or error
condition.

exception handling—an object-oriented
technique for managing or resolving
errors.

963

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

exception specification—the practice of
using the keyword throws followed by an
Exception type in the method header. An
exception specification is required when a
method throws a checked Exception that it
will not catch but will be caught by a
different method.

executing—the act of carrying out a
program statement or program.

explicit conversion—the data type
transformation caused by using a cast
operator.

extended—describes classes that have
descended from another class.

extends—a keyword used to achieve
inheritance in Java.

F
factory methods—methods that assist in
object creation.

FAQs—frequently asked questions.

fault-tolerant—describes applications that
are designed so that they continue to
operate, possibly at a reduced level, when
some part of the system fails.

field—a data variable declared in a class
outside of any method. In reference to storage,
a group of characters that has some meaning.

file channel—an object that is an avenue
for reading and writing a file.

fill patterns—patterns that describe how
drawing objects are filled in.

final—the keyword that precedes named
constants, that describes superclass
methods that cannot be overridden in a
subclass, and describes classes in which all
methods are final.

finally block—a block of code that
executes at the end of a try...catch

sequence.

fixed method binding—the opposite of
dynamic method binding; it occurs when a
subclass method is selected while the
program compiles rather than while it is
running. See also static method binding.

flag—a variable that holds a value (often
true or false) to indicate whether some
condition has been met.

float—a data type that can hold a floating-
point value of up to six or seven significant
digits of accuracy. Contrast with double.

floating-point—describes a number that
contains decimal positions.

floating-point division—the operation in
which two values are divided and either or
both are floating-point values.

flowchart—a tool that helps programmers
plan a program’s logic by writing the steps
in diagram form, as a series of shapes
connected by arrows.

flow layout manager—a layout manager
that places components in rows; when any
row is filled, additional components
automatically spill into the next row.

flushing—an operation to clear bytes that
have been sent to a buffer for output but
that have not yet been output to a hardware
device.

folders—elements in a storage organization
hierarchy. See also directories.

font—the size, weight, and style of a
typeface.

for loop—a loop that can be used when a
definite number of loop iterations is
required.

foreach loop—the enhanced for loop.

formal parameters—the variables in a
method declaration that accept the values
from actual parameters. Contrast with
actual parameters.

964

G L O S S A R Y

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

format specifier—in a printf()

statement, a placeholder for a numeric
value.

format string—in a printf() statement, a
string of characters that includes optional
text (that is displayed literally) and one or
more format specifiers.

fragile—describes classes that are prone to
errors.

frame—a GUI component that is similar to
a window, but that has a title bar and border.

fully qualified identifier—describes a
filename that includes the entire hierarchy
in which a class is stored.

function—a method with no side effect, in
some programming languages.

fundamental classes—basic classes
contained in the java.lang package that
are automatically imported into every
program. Contrast with optional classes.

G
garbage value—the unknown value stored
in an uninitialized variable.

generic programming—a feature of
languages that allows methods to be used
safely with multiple data types.

glass pane—a pane that resides above the
content pane in a container. It can contain
tool tips.

goes out of scope—describes what
happens to a variable at the end of the block
in which it is declared. Contrast with comes
into scope.

gradient fill—a gradual shift from one
color at one coordinate point to a different
color at a second coordinate point.

graphical user interfaces (GUIs)—
environments that allow users to interact
with a program in a graphical environment.

GUI components—graphical user interface
components, such as buttons and text
fields, with which the user can interact.

H
hardware—the general term for computer
equipment.

has-a relationship—a relationship based
on composition.

hash code—a calculated number used to
identify an object.

header—the first line of a method; its
declaration.

heavyweight components—components
that require interaction with the local
operating system. Contrast with lightweight
components.

height of a font—the sum of its leading,
ascent, and descent.

hexadecimal numbering system—a
numbering system based on 16 digits, 0
through F, in which each column
represents a value 16 times higher than the
column to its right.

high-level programming language—a
language that uses a vocabulary of
reasonable terms, such as read, write, or
add, instead of referencing the sequences of
on and off switches that perform these
tasks. Contrast with low-level programming
language.

HTML (Hypertext Markup Language)—a
simple language used to create Web pages.

I
identifier—the name of a program
component such as a class, object, or variable.

if clause—the part of an if...else

statement that executes when the evaluated
Boolean expression is true.

965

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

if...else statement—a statement that
provides the mechanism to perform one
action when a Boolean expression evaluates as
true, and to perform a different action when a
Boolean expression evaluates as false.

if statement—a single-alternative
selection statement.

immutable—describes objects that cannot
be changed.

implementation—the actions that execute
within a method; the method body.

implementation hiding—a principle of
object-oriented programming that
describes the encapsulation of method
details within a class.

implicit conversion—the automatic
transformation of one data type to another.
Also called promotion.

import statement—a Java statement that
allows access to a built-in Java class that is
contained in a package.

inclusion polymorphism—the situation in
which a single method implementation can
be used with a variety of related objects
because they are objects of subclasses of the
parameter type. See also pure polymorphism.

incrementing—the act of adding 1 to a
variable.

indefinite loop—a loop in which the final
number of iterations is unknown. Contrast
with definite loop.

index—a subscript.

infinite loop—a loop that never ends.

information hiding—the object-oriented
programming principle used when
creating private access for data fields; a
class’s private data can be changed or
manipulated only by a class’s own
methods, and not by methods that belong
to other classes.

inheritance—a mechanism that enables
one class to inherit, or assume, both the
behavior and the attributes of another class.

initialization—the act of making an
assignment at the time of variable
declaration.

initialization list—a series of values
provided for an array when it is declared.

inlining—an automatic process that
optimizes performance by replacing calls to
methods with implementations.

inner block—a block contained in an outer
block.

inner classes—nested classes that require
an instance. See also nonstatic member
classes.

inner loop—a loop that is contained
entirely within another loop.

input dialog box—a GUI object that asks a
question and provides a text field in which
the user can enter a response.

insertion sort—a sorting algorithm that
operates by comparing each list element
with earlier ones and, if the element is out
of order, opening a spot for it by moving all
subsequent elements down the list.

instance—an existing object of a class.

instance methods—methods used with
object instantiations. See also nonstatic
methods.

instance variables—the data components
of a class.

instant access files—random access files.

instantiation—the process of creating an
object.

int—the data type used to declare
variables and constants that store integers
in the range of –2,147,483,648 to
+2,147,483,647.

966

G L O S S A R Y

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

integer—a whole number without decimal
places.

integer division—the operation in which
one integer value is divided by another; the
result contains no fractional part.

interactive program—a program in which
the user makes direct requests.

interface—a construct similar to a class,
except that all of its methods must be abstract
and all of its data (if any) must be static

final; it declares method headers, but not
the instructions within those methods. Also
used to describe the part of a method that a
client sees and uses—it includes the method’s
return type, name, and arguments.

interpreter—a program that translates
language statements into machine code. An
interpreter translates and executes one
statement at a time. Contrast with compiler.

invoke—to call or execute a method.

is-a relationship—the relationship
between an object and the class of which it
is a member.

iteration—one loop execution.

J
Java—an object-oriented programming
language used both for general-purpose
business applications and for interactive,
World Wide Web-based Internet
applications.

Java API—the application programming
interface, a collection of information about
how to use every prewritten Java class.

Java applications—stand-alone Java
programs.

Java ARchive (JAR) file—a file that
compresses the stored data.

Java Enterprise Edition (EE)—a Java
edition that includes all of the classes in the

Java SE, plus a number of classes that are
more useful to programs running on
servers.

Java Foundation Classes (JFC)—selected
classes from the java.awt package,
including Swing component classes.

Java interpreter—the program that
checks bytecode and communicates with
the operating system, executing the
bytecode instructions line by line within the
Java Virtual Machine.

Java Micro Edition (ME)—a Java platform
that is used for small devices such as cell
phones.

Java SE 8—the most recent version of Java.
The full, official name is Java Platform,
Standard Edition 8.

Java Virtual Machine (JVM)—a
hypothetical (software-based) computer on
which Java runs.

java.lang—the package that is implicitly
imported into every Java program and that
contains the fundamental classes.

Javadoc—a documentation generator that
creates Application Programming Interface
(API) documentation in Hypertext Markup
Language (HTML) format from Java source
code.

Javadoc comment—a special form of
block comment that provides a standard
way to document Java code.

Javadoc tag—a keyword within a
comment that the Javadoc tool can process.

JDK—the Java Standard Edition
Development Kit.

jGRASP—a development environment and
source code editor.

juncture styles—styles applied to lines that
join; they include JOIN_MITER, JOIN_ROUND,
and JOIN_BEVEL.

967

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

K
K & R style—the indent style in which the
opening brace follows the header line; it is
named for Kernighan and Ritchie, who
wrote the first book on the C programming
language. Contrast with Allman style.

key field—the field in a record that makes
the record unique from all others.

keyboard buffer—a small area of memory
where keystrokes are stored before they are
retrieved into a program. Also called the
type-ahead buffer.

keywords—the words that are part of a
programming language.

L
label—an uneditable GUI component that
is most often used to provide information
for a user.

late method binding—the ability of an
application to select the correct subclass
method when the program executes. See
also dynamic method binding.

layout manager—a class that controls
component positioning in a UI
environment.

leading—one of three measures of a Font’s
height; it is the amount of space between
baselines. See also ascent and descent.

leaf menu item—a menu item that does
not bring up another menu; in other words,
it is at the end of a branch.

lexicographical comparison—a
comparison based on the integer Unicode
values of characters.

library of classes—a folder that provides a
convenient grouping for classes.

lightweight components—components
written completely in Java that do not have
to rely on the code written to run in the

local operating system. Contrast with
heavyweight components.

line comments—comments that start with
two forward slashes (//) and continue to the
end of the current line. Line comments can
appear on a line by themselves or at the end
of a line following executable code.
Contrast with block comments.

listener—an object that is interested in and
reacts to an event.

literal constant—a value that is taken literally
at each use. See also unnamed constant.

literal string—a series of characters that
appear exactly as entered. Any literal string in
Java appears between double quotation marks.

local classes—nested classes that are local
to a block of code.

local variable—a variable known only
within the boundaries of a method.

logic—describes the order of program
statements that produce correct results.

logic error—a programming bug that
allows a source program to be translated to
an executable program successfully, but
that produces incorrect results.

logical AND operator—an operator used
between Boolean expressions to determine
whether both are true. The AND operator
is written as two ampersands (&&).

logical OR operator—an operator used
between Boolean expressions to determine
whether either expression is true. The OR
operator is written as two pipes (||).

long—the data type that holds very large
integers, from –9,223,372,036,854,775,808
to 9,223,372,036,854,775,807.

look and feel—the elements of design,
style, and functionality in a user interface.

loop—a structure that allows repeated
execution of a block of statements.

968

G L O S S A R Y

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

loop body—the block of statements that
executes when the Boolean expression that
controls the loop is true.

loop control variable—a variable whose
value determines whether loop execution
continues.

loop fusion—the technique of combining
two loops into one.

lossless conversion—a data type
conversion in which no data is lost.

lossy conversion—a data type conversion
in which some data is lost.

low-level programming language—a
language that corresponds closely to a
computer processor’s circuitry. Contrast
with high-level programming language.
Compare with machine language.

lvalue—an expression that can appear on
the left side of an assignment statement.
Contrast with rvalue.

M
machine code—machine language.

machine language—circuitry-level
language; a series of on and off switches.
Compare with low-level programming
language.

magic number—a value that does not have
immediate, intuitive meaning or a number
that cannot be explained without additional
knowledge. Unnamed constants are magic
numbers.

matrix—a two-dimensional array.

member-level Javadoc comments—
Javadoc comments that describe the fields,
methods, and constructors of a class.

menu bar—a horizontal strip that is placed
at the top of a container and that contains
user options.

menus—lists of user options.

method—a program module that contains
a series of statements that carry out a task.

method body—the set of statements
between curly braces that follow the
method header and carry out the method’s
actions.

method header—the declaration or first
line of a method that contains information
about how other methods interact with it.

method’s type—the method’s return type.

mission critical—a term that describes any
crucial process in an organization.

mnemonic—a key that causes an already
visible menu item to be chosen.

modulus operator—the percent sign; when
it is used with two integers, the result is an
integer with the value of the remainder after
division takes place. Also called the remainder
operator; sometimes called just mod.

multidimensional arrays—arrays that
contain two or more dimensions.

multiple inheritance—the capability to
inherit from more than one class; Java does
not support multiple inheritance.

multiply and assign operator—an
operator that alters the value of the operand
on the left by multiplying the operand on
the right by it; it is composed of an asterisk
and an equal sign.

mutator methods—methods that set field
values.

N
named constant—a named memory
location whose value cannot change during
program execution.

NaN—a three-letter abbreviation for Not a
Number.

nanosecond—one-billionth of a second.

969

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

nested—describes the relationship of
statements, blocks, or classes when one
contains the other.

nested classes—classes contained in other
classes.

nested if statements—describes if

statements when one is contained within
the other.

new operator—an operator that allocates
the memory needed to hold an object.

nonabstract method—a method that is
inherited.

nonstatic member classes—nested
classes that require an instance. See also
inner classes.

nonstatic methods—methods used with
object instantiations. See also instance
methods.

nonvolatile storage—storage that does not
require power to retain information.
Contrast with volatile storage.

NOT operator (!)—the operator that
negates the result of any Boolean
expression.

null String—an empty String created
by typing a set of quotes with nothing
between them.

numeric constant—a number whose value
is taken literally at each use.

O
object—an instance of a class.

Object class—a class defined in the
java.lang package that is imported
automatically into every Java program; every
Java class descends from the Object class.

object-oriented programs—programs
that use a style of programming that
involves creating classes, creating objects
from those classes, and creating

applications that use those objects.
Contrast with procedural programming.

octothorpe—the pound sign.

one-dimensional array—an array that
contains one column of values and whose
elements are accessed using a single
subscript. See also single-dimensional array.

open a file—the action that creates an object
and associates a stream of bytes with it.

operand—a value used in an arithmetic
statement.

operator precedence—the rules for the
order in which parts of a mathematical
expression are evaluated.

optional classes—classes that reside in
packages that must be explicitly imported into
programs. Contrast with fundamental classes.

out of bounds—describes a subscript that
is not within the allowed range for an array.

outer block—a block that contains a nested
block.

outer loop—a loop that contains another
loop.

overloading—describes using one term to
indicate diverse meanings, or writing
multiple methods with the same name but
with different arguments.

override—to use the child class’s version of
a field or method instead of the parent’s.

override annotation—a directive that
notifies the compiler of the programmer’s
intention to override a parent class method
in a child class.

P
package—a named collection or library of
classes. See also library of classes.

painting—the act of displaying or
redisplaying a surface.

970

G L O S S A R Y

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

panel—a plain, borderless surface that can
hold other GUI components.

parallel array—an array with the same
number of elements as another, and for
which the values in corresponding elements
are related.

parameters—data items received by a
method.

parent class—a base class.

parsing—the process of breaking
something into its component parts.

Pascal casing—the style of using an
uppercase letter to begin an identifier and
to start each new word in an identifier.
Contrast with camel casing. Compare to
upper camel casing.

passed by reference—describes what
happens when a reference (address) is passed
to a method. Contrast with passed by value.

passed by value—describes what happens
when a variable is passed to a method and a
copy is made in the receiving method.
Contrast with passed by reference.

passing arguments—the act of sending
arguments to a method.

path—the complete list of the disk drive
plus the hierarchy of directories in which a
file resides.

path delimiter—the character used to
separate path components.

pattern String—an argument composed
of symbols that determine what a formatted
number looks like.

permanent storage devices—hardware
storage devices that retain data even when
power is lost.

pixels—the picture elements, or tiny dots
of light, that make up the image on a video
monitor.

polygon—a geometric figure made of
straight lines.

polymorphism—the feature of languages
that allows the same word to be interpreted
correctly in different situations based on the
context; the act of using the same method
name to indicate different implementations.

populating an array—the act of providing
values for all of the elements in an array.

postfix ++ or the postfix increment
operator—an operator that is composed by
placing two plus signs to the right of a
variable; it evaluates the variable, then adds
1 to it. Contrast with prefix ++.

posttest loop—a loop in which the loop
control variable is tested after the loop body
executes. Contrast with pretest loop.

preferred size—a Component’s default size.

prefix ++ or the prefix increment
operator—an operator that is composed
by placing two plus signs to the left of a
variable; it adds 1 to the variable, then
evaluates it. Contrast with postfix ++.

prefix and postfix decrement operators—
operators that subtract 1 from a variable
before and after evaluating it, respectively.

pretest loop—a loop in which the loop
control variable is tested before the loop
body executes. Contrast with posttest loop.

primary key—a unique identifier for data
within a database.

primary surface—the visible screen
surface during double buffering.

priming read or priming input—the first
input statement prior to a loop that will
execute subsequent input statements for
the same variable.

primitive type—a simple data type. Java’s
primitive types are byte, short, int,

long, float, double, char, and boolean.

971

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

private access—describes a field or
method that no other classes can access.

procedural programming—a style of
programming in which sets of operations
are executed one after another in sequence.
Contrast with object-oriented programming.

procedures—sets of operations performed
by a computer program.

program—a set of written computer
instructions.

program comments—nonexecuting
statements added to a Java file for the
purpose of documentation.

program files—files that store software
instructions.

program statements—similar to English
sentences; they carry out the tasks that
programs perform.

programmer-defined data type—a type
that is created by a programmer and not
built into the language; a class.

promotion—an implicit conversion.

prompt—a message that requests and
describes user input.

property—an instance variable, field, or
attribute of a class.

protected access—describes an
intermediate level of security between
public and private; a class’s protected
members can be used by a class and its
descendants, but not by outside classes.

pseudocode—a tool that helps
programmers plan a program’s logic by
writing plain English statements.

pseudorandom—describes numbers that
appear to be random, but are the same set
of numbers whenever the seed is the same.

public access—describes a field or method
that outside classes can access.

pure polymorphism—the situation in
which a single method implementation can
be used with a variety of related objects
because they are objects of subclasses of the
parameter type. See also inclusion
polymorphism.

R
ragged array—a two-dimensional array
that has rows of different lengths.

random access files—files in which
records can be located in any order.

random access memory (RAM)—
temporary, volatile storage.

random number—a number whose value
cannot be predicted.

range check—a series of statements that
determine within which of a set of ranges a
value falls.

range match—the process of comparing a
value to the endpoints of numerical ranges
to find a category in which the value
belongs.

real-time—describes applications that
require a record to be accessed immediately
while a client is waiting.

record—a collection of fields that contain
data about an entity.

redeclare a variable—to attempt to
declare a variable twice—an illegal action.

reference—a variable that holds a memory
address.

reference to an object—the name for a
memory address where the object is
held.

reference types—data types that hold
memory addresses where values are stored.

register—to sign up an object as an event
listener.

972

G L O S S A R Y

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

relational operator—an operator that
compares two items; an expression that
contains a relational operator has a Boolean
value.

relative path—a path that depends on
other path information to be complete.

remainder and assign operator—an
operator that alters the value of the operand
on the left by assigning the remainder when
the left operand is divided by the right
operand; it is composed of a percent sign
and an equal sign (%=).

remainder operator—the percent sign;
when it is used with two integers, the result
is an integer with the value of the remainder
after division takes place. Also called the
modulus operator.

render—to paint or display a drawing.

rerender—to repaint or redisplay a
drawing.

return a value—to send a data value from a
called method back to the calling method.

return statement—a statement that ends
a method, and frequently sends a value
from a called method back to the calling
method.

return type—the type of data that, upon
completion of a method, is sent back to its
calling method.

robustness—describes the degree to which
a system is resilient to stress, maintaining
correct functioning.

root directory—the main directory of a
storage device, outside any folders.

runtime error—an error that occurs when
a program compiles successfully but does
not execute.

runtime exceptions—unplanned
exceptions that occur during a program’s
execution. The term is also used more

specifically to describe members of the
RuntimeException class.

rvalue—an expression that can appear only
on the right side of an assignment
statement. Contrast with lvalue.

S
scalar—describes simple, primitive
variables, such as int, double, or char.

scientific notation—a display format that
more conveniently expresses large or small
numeric values; a multidigit number is
converted to a single-digit number and
multiplied by 10 to a power.

scope—the part of a program in which a
variable exists and can be accessed using its
unqualified name.

scope level—in Java, a variable’s block. See
also scope.

scroll pane—a GUI object that provides
scroll bars along the side or bottom of a
pane, or both, so that the user can scroll
initially invisible parts of the pane into view.

SDK—a software development kit, or a set
of tools useful to programmers; the Java EE
Development Kit.

searching an array—the process of
comparing a value to a list of values in an
array, looking for a match.

seed—a starting value.

seekable—describes a file channel in
which operations can start at any specified
position.

semantic errors—the type of errors that
occur when a correct word is used in the
wrong context in program code.

sentinel—a value that stops a loop.

sequence structure—a logical structure in
which one step follows another
unconditionally.

973

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

sequential access file—a data file that
contains records that are accessed one after
the other in the order in which they were
stored.

shadowing—the action that occurs when a
local variable hides a variable with the same
name that is further away in scope.

short—the data type that holds small
integers, from –32,768 to 32,767.

short-circuit evaluation—describes the
feature of the AND and OR operators in
which evaluation is performed only as far as
necessary to make a final decision.

showInputDialog() method—a
method that creates an input dialog box.

side effect—any action in a method other
than returning a value.

signature—a method’s name and the
number, types, and order of arguments.

significant digits—refers to the
mathematical accuracy of a value.

single-alternative selection—a decision
structure that performs an action, or not,
based on one alternative.

single-dimensional array—an array that
contains one column of values and whose
elements are accessed using a single
subscript. See also one-dimensional array.

single-precision floating-point number—
a type of value that is stored in a float.

software—the general term for computer
programs.

sorting—the process of arranging a series
of objects in some logical order.

source—a component on which an event is
generated.

source code—programming statements
written in a high-level programming
language.

stack trace history list, or more simply
stack trace—a list that displays all the
methods that were called during program
execution.

standard arithmetic operators—
operators that are used to perform
common calculations.

standard input device—normally the
keyboard.

standard output device—normally the
monitor.

state—the values of the attributes of an
object.

static—a keyword that means a method
is accessible and usable even though no
objects of the class exist.

static import feature—a feature in Java
that allows you to use static constants
without their class name.

static member class—a type of nested
class that has access to all static methods
of its top-level class.

static method binding—the opposite of
dynamic method binding; it occurs when a
subclass method is selected while the
program compiles rather than while it is
running. See also fixed method binding.

stream—a pipeline or channel through
which bytes flow into and out of an
application.

String class—a class used to work with
fixed-string data—that is, unchanging data
composed of multiple characters.

String variable—a named object of the
String class.

stroke—a line-drawing feature in Java 2D
that represents a single movement using a
drawing tool similar to a pen or pencil.

974

G L O S S A R Y

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

strongly typed language—a language in
which all variables must be declared before
they can be used.

stub—a method that contains no
statements; programmers create stubs as
temporary placeholders during the
program development process.

subclass—a derived class.

subscript—an integer contained within
square brackets that indicates one of an
array’s variables, or elements.

subtract and assign operator—an
operator that alters the value of the operand
on the left by subtracting the operand on
the right from it; it is composed of a minus
sign and an equal sign (–=).

subtype polymorphism—the ability of one
method name to work appropriately for
different subclasses of a parent class.

super—a Java keyword that always refers
to a class’s immediate superclass.

superclass—a base class.

Swing—a set of GUI elements such as
dialog boxes and buttons that is newer and
more portable than the set in the AWT;
their names usually begin with J.

switch statement—a statement that uses
up to four keywords to test a single variable
against a series of exact integer or character
values. The keywords are switch, case,
break, and default.

symbolic constant—a named constant.

syntactic salt—describes a language
feature designed to make it harder to write
bad code.

syntactic sugar—describes aspects of a
computer language that make it “sweeter,”
or easier, for programmers to use.

syntax—the rules that define how language
elements are used together correctly to
create usable statements.
syntax error—a programming error that
occurs when a program contains typing
errors or incorrect language use; a program
containing syntax errors cannot be
translated into an executable program.
system software—the set of programs that
manage the computer. Contrast with
application software.
system-triggered painting—describes a
painting operation that occurs when the
system asks a component to render its
contents. Contrast with application-
triggered painting.

T
table—a two-dimensional array; a matrix.

ternary operator—an operator that needs
three operands.

text field—a GUI component into which
the user can type a single line of text data.

text files—files that contain data that can
be read in a text editor because the data has
been encoded using a scheme such as
ASCII or Unicode.

this reference—a reference to an object
that is passed to any object’s nonstatic class
method.

threads of execution—units of processing
that are scheduled by an operating system
and that can be used to create multiple
paths of control during program execution.

throw statement—a statement that sends
an Exception out of a block or a method so
it can be handled elsewhere.
throws clause—an exception
specification in a method header.

TOCTTOU bug—an acronym that describes
an error that occurs when changes take

975

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

place from Time Of Check To Time Of
Use.

token—a unit of data; the Scanner class
separates input into tokens.

tool tips—popup windows that can help a
user understand the purpose of
components in an application; a tool tip
appears when a user hovers a mouse
pointer over the component.

top-level class—the containing class in
nested classes.

top-level container—a container at the top
of a containment hierarchy. The Java top-
level containers are JFrame, JDialog, and
JApplet.

try block—a block of code that a
programmer acknowledges might generate
an exception.

two-dimensional array—an array that
contains two or more columns of values
and whose elements are accessed using
multiple subscripts. Contrast with one-
dimensional array.

type-ahead buffer—the keyboard buffer.

type casting—an action that forces a value
of one data type to be used as a value of
another type.

type conversion—the process of
converting one data type to another.

type-safe—describes a data type for which
only appropriate behaviors are allowed.

type-wrapper classes—a method that can
process primitive type values.

U
unary cast operator—a more complete
name for the cast operator that performs
explicit conversions.

unary operator—an operator that uses
only one operand.

unchecked exceptions—exceptions that
cannot reasonably be expected to be
recovered from while a program is executing.
Contrast with checked exceptions.

Unicode—an international system of
character representation.

Unified Modeling Language (UML)—a
graphical language used by programmers
and analysts to describe classes and object-
oriented processes.

unifying type—a single data type to which
all operands in an expression are converted.

uninitialized variable—a variable that has
been declared but that has not been
assigned a value.

unnamed constant—a constant value that
has no identifier associated with it. See also
literal constant.

unreachable statements—statements that
cannot be executed because the logical path
can never encounter them; in some languages,
including Java, an unreachable statement
causes a compiler error. See also dead code.

upcast—to change an object to an object of
a class higher in its inheritance hierarchy.

upper camel casing—Pascal casing.

V
validating data—the process of ensuring
that a value falls within a specified range.

variable—a named memory location
whose contents can be altered during
program execution.

variable declaration—a statement that
reserves a named memory location.

viewport—the viewable area in a
JScrollPane.

virtual classes—the name given to abstract
classes in some other programming
languages, such as C++.

976

G L O S S A R Y

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

virtual key codes—codes that represent
keyboard keys that have been pressed.

virtual keyboard—a computer keyboard
that appears on the screen. A user operates
it by using a mouse to point to and click
keys; if the computer has a touch screen,
the user touches keys with a finger or stylus.

virtual method calls—method calls in
which the method used is determined when
the program runs, because the type of the
object used might not be known until the
method executes.

void—a keyword that, when used in a
method header, indicates that the
method does not return any value when
it is called.

volatile storage—memory that requires
power to retain information. Contrast with
nonvolatile storage.

W
while loop—a construct that executes a
body of statements continually as long as
the Boolean expression that controls entry
into the loop continues to be true.

whitespace—any combination of
nonprinting characters; for example, spaces,
tabs, and carriage returns (blank lines).

wildcard symbol—a symbol used to
indicate that it can be replaced by any set of
characters. In a Java import statement, the
wildcard symbol is an asterisk.

window—a rectangular container that can
hold GUI components.

window decorations—the icons and
buttons that are part of a window or
frame.

windowed applications—programs that
create a graphical user interface (GUI) with
elements such as menus, toolbars, and
dialog boxes.

wrapped—to be encompassed in another
type.

wrapper—a class or object that is “wrapped
around” a simpler element.

“write once, run anywhere” (WORA)—a
slogan developed by Sun Microsystems to
describe the ability of one Java program
version to work correctly on multiple
platforms.

X
x-axis—an imaginary horizontal line that
indicates screen position.

x-coordinate—a position value that
increases from left to right across a window.

Y
y-axis—an imaginary vertical line that
indicates screen position.

y-coordinate—a position value that
increases from top to bottom across a window.

977

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index
Note: Page numbers in boldface refer to definitions of key terms.

Special Characters
& (ampersand), 263, 263–265, 266–269, 273
<> (angle brackets), 40, 70, 71, 361
* (asterisk), 33, 94, 95, 223, 314
\ (backslash), 75, 667, 678
: (colon), 280–281, 283
{} (curly braces), 18, 22, 40
“ (double quotation mark), 75
= (equal sign), 55, 70, 71, 248, 249, 250, 251
! (exclamation point), 70, 71, 251, 283
/ (forward slash), 33, 94, 95, 314, 667
- (minus sign), 94, 95, 314, 493
() (parentheses), 40, 125–126
% (percent sign), 94, 95, 314
| (pipe), 265, 267, 273
+ (plus sign), 59, 94, 95, 314, 367, 493
? (question mark), 280–281, 283
‘ (single quotation mark), 75
[] (square brackets), 40

A
abs(x) method, 222
absolute paths, 669

converting relative paths to, 670–671
abstract classes, 538, 538–547
abstract data types (ADTs), 163
abstract keyword, 539
abstract methods, 538
abstraction, 121
accelerators, 843
access modifiers, 124. See also access specifiers
access specifiers, 17, 123–124
accessory methods, 147
accumulating, 314
accurate range checks, 269–272
action keys, 828
ActionEvents, 756, 824, 825

listener and handler, 827
ActionListener class, 756, 757, 765, 766

actionPerformed() method, 757, 763–764,
865, 866, 868

CardLayout manager, 804
FlowLayout manager, 800–801

actual parameters, 135
acyclic gradients, 899, 899
adapter classes, 826
add and assign operator (+=), 314
add()method, 468, 739, 739–740, 792–793, 794, 798–799, 813, 816
addActionListener() method, 757, 765
addItem() method, 773, 774
addItemListener() method, 765
addition operator (+), 94, 95, 283
addPoint() method, 883
addSeparator() method, 843
ad-hoc polymorphism, 549
AdjustmentEvents, listener and handler, 827
AdjustmentListener, 765, 766
ADTs (abstract data types), 163
aggregation, 495
algorithms, 440

bubble sort, 440, 440–447
insertion sort, 448–451

Allman, Eric, 19
Allman style, 19
ambiguity, 199, 199–200
American Standard Code for Information Interchange (ASCII), 929
ampersand (&&), logical AND operator, 263, 263–265, 266–269,

273, 283–284
AND operator, 263–265, 266–269, 273, 283–284
angle brackets (<>), 40
anonymous classes, 232
anonymous objects, 359
API. See Application Programming Interface (API); Java API
append() method, 377
applet(s), 12, 52
application(s)

console. See console applications
fault-tolerant, 598
real-time, 694
running, 29–30
windowed, 12, 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

application classes, 144
application files, 666
Application Programming Interface (API). See also Java API

Swing containers, 819
application software, 2. See also application(s)
application-triggered painting, 862
arc(s), 880–881

drawing, 880–881, 903–904
architectural neutrality, 11
Arc2D.Float class, 903, 904
args identifier, String objects, 20
argument index, 938
argument(s), 14, 129

order, 133
passing, 14, 20
print and println statements, 62, 68
setDefaultCloseOperation() method, 734
superclass constructors requiring, 508–509

arithmetic, floating-point, 100
arithmetic operators, shortcut, 314–319
arithmetic statements, efficient, 96
ArithmeticException argument, 609–613
ArithmeticException class, 596, 609, 610, 611, 612, 617, 625, 630
array(s), 393–429, 394, 439–479

declaring, 394–399
enumerations, 472–479
initializing, 399–401
multidimensional. See multidimensional
objects, 406–414
one-dimensional (single-dimensional), 452
parallel, 414–418, 415
passed by reference, 424
passing to and returning from methods, 422–428
populating, 400
ragged, 456
searching, 414, 414–422
Strings, manipulating, 408–409
subclass objects, 551–554
subscripts (indexes), 395, 395–396
using parts, 406–407
variable subscripts, 402–406
wrapped, 694

array elements, 395
passed by value, 424, 424–425
sorting using bubble sort algorithm, 440–447
sorting using insertion sort algorithm, 448–451

ArrayIndexOutOfBoundsException, 625, 628
ArrayList class, 467, 467–472
Arrays class, 459, 459–467
ascending order, 440
ascent, 894
ASCII (American Standard Code for Information Interchange), 929
asin(x) method, 220
assert statements, 634, 634–635
assertion(s), 634, 634–638
AssertionError, 634, 637
assignment, 55
assignment operator (=), 55, 283

associativity, 55
improper use, 250

arithmetic operators, 95
asterisk (*)

comments, 33
multiplication operator, 94, 95, 283
multiply and assign operator, 314
wildcard symbol, 223

at run time, 3
atan(x) method, 220
atan2(x, y) method, 220
attributes, 7
automatic type conversion, 101–102
automatically imported constants and methods, 220–221
AWTEvent class, 824, 825, 830–832

B
back buffer, 815
backslash (\)

escape characters, 678
escape sequences, 75
path delimiter, 667

base classes, 495
BasicFileAttributes object, 674
BasicStroke class, 901–902
batch processing, 693, 693–694
binary digit, 927
binary files, 666
binary numbering system, 2, 926
binary operators, 93
binarySearch() method, 460, 462, 463
bit, 927
black boxes, 129, 142
blank finals, 56
blitting, 815
block(s), 184, 184–192

inside (inner), 184, 185
nested, 184
of code, 58
outside (outer), 184

block comments, 33
block line transfer, 815
Boole, George, 70, 247
boolean arrays, 400
Boolean operators. See also AND operator; NOT operator;

OR operator
precedence, 282–284

Boolean values, 247
boolean variables, 70, 70–71
BorderLayout, 743, 743–744, 798–799, 798, 806–809, 815–816
border layout manager, 743
BoxLayout manager, 797, 805
break keyword, 275, 276
bubble sort algorithm, 440–447, 440
bubbleSort() method, 444
buffer(s), 375, 680

back, 815
double buffering, 815
keyboard, 82
type-ahead, 82

BufferedInputStream class, 681

980

I N D E X

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

BufferedOutputStream class, 681, 683, 684
BufferedReader class, 682, 686, 687, 690–692
BufferedWriter class, 682, 688, 698
ButtonGroup class, 771, 771–772
byte array, 682
byte data type, 64, 65

type conversion, 102–103
ByteBuffers, 694–695
bytecode, 11

C
calendar(s), Gregorian and Julian, 223
call stack, 626

tracing exceptions, 626–630
called methods, 120
calling

constructors during inheritance, 507–513
methods, 120, 130–131
procedures, 6

camel casing, 55
capacity, 467

StringBuilder objects, 375
capacity() method, 376
CardLayout manager, 797, 803, 803–805, 811–813
case keyword, 275, 276, 277
case sensitivity, Java terms, 15
cast operators, 102
casting, implicit and explicit, 104–106
catch blocks (catch clauses), 599, 599–604, 617, 618

multiple exceptions, 609, 610–615
catch or specify requirement, 623
ceil(x) method, 220
ChangeListener interface, 766
char arrays, 400
char data type, 72, 72–77

type conversion, 102–103
character(s), 678
Character class, 355

manipulating characters, 355–358
character values, 929
charAt() method, 78, 365, 365–366, 378, 462
checkAccess() method, 671–672
check-digits, 156
checked exceptions, 623
child classes, 495
class(es), 7. See also specific classes

abstract, 538, 538–547
adapter, 826
anonymous, 232
application, 144
as data types, 163–167
base, 495
body, 145
child, 495
comments, 32–35
compiled, modifying, 30–31
compiling, 23–29
concept, 142–144
concrete, 538

confirming storage location, 30
containing instance fields and methods, creating, 153
creating, 145–146
declaring, 154
defining, 15–16
derived, 495
extended, 145
extending, 496–502
fragile, 518
fundamental, 220
headers, 145
identifiers, 15, 15–16
illegal names, 16, 17
inner, 232
libraries of, 220
local, 232
method placement within, 121
methods. See method(s); specific methods
nested, 232, 232–233
nonstatic member, 232
objects and instantiations of, 143
optional, 221
organizing, 150–152
parameters accepted by methods, 130
parent, 495
parts, 17–18
prewritten, importing, 220–221
saving, 21
static member, 232
subclasses, 495, 500–501
superclasses. See superclasses
top-level, 232
type-wrapper, 89, 90
unconventional names, 16, 17
valid names, 16, 17
virtual, 538

class body, 18
class clients, 144
class definitions, 7
class diagrams, 492, 492–494
class headers, 17
class-level Javadoc comments, 950, 951
class keyword, 17
class methods, 213, 214
class users, 144
class variables, 214
classpath settings, 224
clean builds, 31
clearRect() method, 875–876
clearRoundRect() method, 878
client(s), class, 144
client methods, 120
clone() method, 555
close() method, 682, 687, 689
closePath() method, 904
closer in scope, 190
closing files, 679
collisions, 576
colon (:), conditional operator, 280–281, 283

981

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Color class, 795, 795–797
comes into scope, 184
Command Prompt, 921
command(s), 2
comma-separated values (CSVs), 679
comment(s), 32–35

block, 33
line, 33

commenting out, 33
compareTo() method, 363, 473, 474, 676
comparison

lexicographical, 362
String objects, 354–355, 359–364

comparison operators, 70
compilers, 3

method ambiguity, 199, 199–200
compile-time errors, 25
compiling, 23–29
component(s)

JPanels, 813–816
Component class, 730, 740, 795

FlowLayout manager, 800–801
ComponentEvent class, 827, 831
composition, 230, 230–231, 495
computer files, 666, 666–667

checking accessibility, 671–673
closing, 679
determining attributes, 674–677
opening, 679
organization, 678–680
random access (direct access; instant access). See random

access files
reading from, 685–687
sequential access, 679, 687–693
writing to, 683–685

computer-generated random numbers, 942
computer programs, 2

applications, 2. See also application(s)
development process, 4
event-driven. See event-driven programs
interactive, 694
object-oriented, 6, 6–7
types, 12–13

computer simulations, 7
concatenation, 58, 58–60, 366
concrete classes, 538
conditional operator (?:), 280, 280–281, 283
confirm dialog boxes, 91, 91–93
console applications, 12, 13–23

classes, 15–18
indent style, 18–19
main() method, 19–21
saving classes, 21
string producing output, 14–15

const keyword, 16
constants, 54

automatically imported, 220–221
BorderLayout manager, 798–799
comparing variables, 251
enum, 472

final keyword, 215–216
literal, 54
named. See named constants
numeric, 54
PI, 221
prewritten, 220
related, interfaces to store, 570–571
scope, 58
StandardOpenOption argument, 684
unnamed, 54

constructors, 155, 159–162
adding to instance methods, 285–288
calling during inheritance, 507–513
default, 159, 159–160
Dimension class, 893
Exception class, 630–634
JLabel class, 739
JPanels, 813–814
JScrollPanes, 821
JTextFields, 749
overloading. See overloading constructors
with parameters, creating and calling, 200–205
superclass, requiring arguments, 508–509

consumed entries, 82
container(s), 730
Container class, 730, 794
ContainerEvents, listener and handlers, 827
containment hierarchies, 792
content pane, 792, 792–794
controls, 730
copyArea() method, 883
copying, areas of graphics, 883, 889–890
correcting syntax errors, 24–25
cos(x) method, 222
counter-controlled loops, 307, 307–308
counting, 314
crashes, 596
creationTime() method, 674
CSVs (comma-separated values), 679
curly braces ({}), 18, 22, 40
cyclic gradients, 889, 889–890

D
data fields, 145
data files, 666
data hiding, 156
data representation, 926–929
data types, 54. See also specific data types

abstract, 163
automatic promotion in method calls, 184–196
classes as, 163–167
enumerated, 472
integer, 64, 64–69
order of promotion, 194
parameters accepted by methods, 130
primitive, 54, 163
programmer-defined, 163
reference, 54
type conversion, 101, 101–106
unifying type, 101

982

I N D E X

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dead code, 137
debugging, 3, 32
decimal numbering system, 926
DecimalFormat Class, 939–940
decision(s), adding to instance methods, 285–288
decision making, 245–300

accurate range checks, 269–272
adding decisions and constructors to instance methods, 285
AND operator, 263–265, 266–269, 273, 283–284
conditional operator, 280, 280–281, 283
efficient range checks, 272–273
if and if...else structures, 248–254
multiple statements in if and if...else clauses,

254–260
nesting if and if...else statements, 260–263
NOT operator, 281–282
operator precedence, 282–284
OR operator, 265, 266, 273, 283–284
planning logic, 246–248
short-circuit evaluation, 266
switch statement, 274–280

decision structures, 246
declarations, 123. See also method headers
declaring

arrays, 394–399
classes, 154
named constants, 56–58
objects, 154–155
String objects, 359
variables, 55–56, 60–64
variables in try...catch blocks, 606–607

decrementing variables, 307
default constructors, 159, 159–160
default keyword, 275
default packages, 575
definite loops, 303, 303–305, 323–325

altering loop control variables, 307–308
delete() method, 673
deleteIfExists() method, 674
derived classes, 495
deriveFont() method, 742
descending order, 440
descent, 894
development environment, 11
dialog boxes, 35, 35–38

confirm, 91, 91–93
input, 87, 87–91

Dimension class, 893
direct access files, 694
directories, 666, 666–667
display() method, 230–231, 460, 469, 513–514
divide and assign operator (/=), 314
division

floating-point, 94
integer, 94

Division class, 595–598, 600
division operator (/), 94, 95, 283
documentation. See Javadoc
documentation comments, 33

do-nothing loops, 323
double arrays, 400
double buffering, 815
Double class, 372
double data type, 71, 71–72

type conversion, 101, 102
double quotation mark (“), escape sequence, 75
Double.parseDouble() method, 90
double-precision floating-point numbers, 72
do...while loops, 302, 325, 325–328
drawArc() method, 880–881
drawing strokes, Graphics2D class, 901–902,

905–906
drawLine() method, 874–875, 885
drawOval() method, 879–880
drawPolygon() method, 881–882
drawRect() method, 875, 878
drawRoundRect() method, 879–880
drawString() method, 865–874
draw3DRect() method, 878
dual-alternative if, 251
dual-alternative selection, 251
dummy values, 465
dynamic method binding, 547–551, 549
dynamic resizability, 467

E
-ea option, 636–637
echoing the input, 80
editing

JTextField editability, 750
efficient range checks, 272–273
elements, arrays, 394
Ellipse2D.Double class, 903
Ellipse2D.Float class, 903
else clause, 251
else...if clauses, 274
Elvis operator, 281
empty body, 306, 306–307
empty statements, 250
empty Strings, 363–364
encapsulation, 9
endcap styles, 901
endsWith() method, 366
enhanced for loops, 403, 403–404, 408
enum, 472, 473
enumerated data type, 472, 472–479
enumeration, 225
equal sign (=)

assignment operator, 55, 250, 283
equal to operator, 70, 251, 283
greater than or equal to operator, 70, 71, 283
less than or equal to operator, 70, 71, 283
not equal to operator, 70, 71, 251, 283

equal to operator (==), 70, 71, 251, 283
equals() method, 361, 361–364, 460, 473, 555, 559,

559–563
equalsIgnoreCase() method, 363
equivalency operator (==), 248, 249, 283, 361

983

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

error(s)
class. See Error class; Exception class
compile-time, 25
logic. See logic errors
run-time, 32
syntax. See syntax errors

Error class, 594, 595
error messages, 24, 25–27

list, 597
escape sequences, 75

list, 75
event(s), 755

hierarchy of event classes, 824–825
listeners associated with, 826–827

event handlers, 766
creating, 826
list, 827

event listeners, 825
list, 827
Swing components, 764–767

event-controlled loops, 308
event-driven programs, 755, 755–764

preparing classes to accept event messages, 756
setEnabled() method, 761, 761
telling classes how to respond to events, 757
telling classes to expect events to happen, 757

EventObject class, 824, 831
exception(s), 594

automatically throwing, 638–639
catching, 599–609, 641–643
checked, 623
extending classes that throw, 644–645
multiple, throwing and catching, 609–615
runtime, 594
specification, 621, 621–625
tracing through call stack, 626–630
unchecked, 623

Exception catch blocks, 611
Exception class, 594, 595, 596

constructors, 630–631
creating, 630–634, 646–649
passing on, 640–641

exception handling, 593–653, 594
advantages, 618–621

exception specification, 621, 621–625
Exception types, 633
exclamation point (!), NOT operator, 281, 283
executing

statements, 2
exp(x) method, 222
explicit casting, 104–106
explicit type conversion, 102, 102–103, 104–106
extended classes, 145
extending classes, 496–502
extends clause, 567
extends keyword, 746

F
factory methods, 668
false value, 247, 400

FAQs (Frequently Asked Questions), 38
fault-tolerant applications, 598
fields, 678

key, 697
MouseEvent class, 834

file(s). See computer files
file channel objects, 694

seekability, 694
FileChannel class, 694
FileInputStream class, 681
FileOutputStream class, 681
Files class, 667, 667–668, 685, 694–697, 695
FileSystem class, 569
fill() method, 460
fill patterns, 899
fillArc() method, 880–881
fillOval() method, 879
fillPolygon() method, 882
fillRect() method, 875
fillRoundRect() method, 878, 879
fill3DRect() method, 878
final constants, 56
final keyword

constants, 215–216
method ambiguity, 200
static and nonstatic fields, 217–220

final methods, inability of subclasses to override in
superclasses, 523–524

final superclasses, inability of subclasses to override,
523–524

finalize() method, 555
finally blocks, 615, 615–618
flag, 415
float arrays, 400
Float class, 370
float data type, 71, 71–72

type conversion, 101, 102
floating-point arithmetic, 411
floating-point division, 94
floating-point numbers, 71

imprecision, 96–97
floor(x) method, 222
flow layout managers, 744
flowcharts, 246
FlowLayout class, 744–745, 797, 800, 800–801,

809–810
flush() method, 682, 689
flushing, 680
FocusEvents, listener and handlers, 827
FocusListener class, 765, 766
folders, 666, 666–667
font(s), 891–898

available, finding, 891–892
comparing, 896–898
font statistics, 894–895
FontMetrics methods, 895–898
height of, 894
screen statistics, 894–895

Font class, 740, 740–742

984

I N D E X

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FontMetrics methods, 895–898
for loops, 302, 319, 319–323

enhanced, 403, 408
foreach loops, 404
formal parameters, 135
format specifier, 935
format string, 935
formatting output, 932–933, 938–940
forward slash (/)

comments, 33
division operator, 94, 95, 283
path delimiter, 667

fragile classes, 518
Frequently Asked Questions (FAQs), 38
fully qualified identifiers, 126
functions. See method(s)
fundamental classes, 220

G
garbage collector, 360
garbage value, 56
GeneralPath class, 904
generic programming, 774
get() method, 156, 468, 569
getArray() method, 426
getAscent() method, 894
getAvailableFontFamilyNames() method, 891–892
getButton() method, 834, 836
getBytes() method, 682, 695
getClass() method, 555
getClickCount() method, 831, 834
getComponent() method, 831
getContentPane() method, 792–794
getDayOfMonth() method, 225
getDayOfWeek() method, 225
getDefaultToolkit() method, 893–894
getDescent() method, 894
getFileName() method, 669
getFontMetrics() method, 894
getHeight() method, 894
getItem() method, 770, 771, 831
getItemAt() method, 774
getItemCount() method, 774
getKeyChar() method, 831
getLeading() method, 894
getLocalGraphicsEnvironment() method, 891
getMaximumRowCount() method, 774
getMessage() method, 631, 632, 634
getModifiers() method, 831
getMonthValue() method, 225
getName() method, 669
getNameCount() method, 669
getPath() method, 668
getPoint() method, 831
getScreenResolution() method, 893
getScreenSize() method, 894
getSelectedIndex() method, 774, 775
getSelectedItem() method, 774
getSelectedObjects() method, 774

getSeparator() method, 668
getSource() method, 831
getStateChange() method, 770–771, 831
getText() method, 740, 769
getTitle() method, 732
getWhen() method, 831
getWindow() method, 831
getX() method, 831, 834, 836
getY() method, 831, 834, 836
getYear() method, 225
glass panes, 792
goes out of scope, 184
goto keyword, 16
gradient fills, 899, 899
GradientPaint() constructor, 899
graphical user interfaces (GUIs), 7, 792–848

accepting input with JOptionPane class, 87–93
applications producing GUI output, 35–38
color, 795–797
content pane, 792–794
events. See event(s); event handlers
JPanel class, 813–821
JScrollPanes, 821, 821–824
layout managers. See layout managers
menus, 837, 837–848
x- and y-coordinates, 832

graphics, 861–910
copying areas, 883, 889–890
creating polygons, 881–883, 904
creating shadowed rectangles, 878–879
drawing arcs, 880–881, 903–904
drawing lines, 874–875, 885, 902–903
drawing ovals, 879–880, 903
drawing rectangles, 875–879, 903
drawing strings, 865–867
drawString() method, 865–874
fonts. See font(s)
Graphics2D class. See Graphics2D class
paint() methods, 862, 865
paintComponent() method with JPanels, 883–884
repaint() method, 862, 865
repainting, 867–869
setting a font, 869–870
using color, 870–871

Graphics class, 862, 865
parameters, 862

GraphicsEnvironment class, 891–892
Graphics2D class, 898, 898–910

drawing strokes, 901–902, 905–906
rendering attributes, 899–901
shapes, 902–903, 906–908

greater than operator (>), 70, 71, 361
greater than or equal to operator (>=), 70, 71, 283
Gregorian calendar, 223
GregorianCalendar class, 224–229
GridBagLayout manager, 797, 805, 805
GridLayout manager, 797, 802, 802–803, 810–811, 819
GUIs. See graphical user interfaces (GUIs)

985

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

H
hardware, 2
has-a relationships, 230
hash codes, 557
hashCode() method, 555, 559
heavyweight components, 730
height of a font, 894
help sources, 38–39
hexadecimal numbering system, 929
high-level programming language, 2
HTML (Hypertext Markup Language), 950
Hypertext Markup Language (HTML), 950

I
identifiers, 15, 15–18
if clause, 251
if statements, 248, 248–251

equal sign, 250
nested, 260, 260–263
relational operators, 251
semicolon placement, 249–250

if...else statements, 251, 251–254
multiple statements in, 254–260
nested, 262–263

immutability, 360
implementation, methods, 123
implementation hiding, 9, 129
implements clause, 567
implements keyword, 756
implicit casting, 104–106
implicit conversion, 101
implicit type conversion, 101, 104–106
import statements, 36, 224
importing

packages, 224
prewritten classes, 220–221

import.java.awt.Color statement, 795
imprecision, floating-point numbers, 96–97
inclusion polymorphism, 549
incrementing variables, 307
indefinite loops, 303, 308–310
indent style, 18–19
indexes, arrays, 396. See also subscripts
indexOf() method, 365
IndexOutOfBoundsException, 617
infinite loops, 303, 303–304
information hiding, 9, 146, 516–518, 517
inheritance, 9, 9–10, 491–524, 492, 537–581

abstract classes, 538–547
accessing superclass methods, 513–515
achieving good software design, 564–565
arrays of subclass objects, 551–554
calling constructors, 507–513
diagramming using UML, 492–494
dynamic method binding, 547–551
extending classes, 496–502
information hiding, 516–518
interfaces, 565–574
methods that cannot be overridden, 518–524

multiple, 565
Object class and its methods, 554–564
overriding superclass methods, 502–506
packages, 574–579
terminology, 495–496

initialization, 55
arrays, 399–401
parallel arrays, 417
variables in try...catch blocks, 606–607

initialization lists, 400
inlining code, 523
inner block, 184
inner classes, 232
inner loops, 328, 328–332
input dialog boxes, 87, 87–91
InputEvent class, 831
InputMismatchException, 609, 610, 612
input/output (IO) classes, 680–687

reading from files, 685–687
writing to files, 683–685

InputStream class, 680, 681, 685, 690
insert() method, 378
insertion sort(s), 448
insertion sort algorithm, 448–451
inside (inner) blocks, 184, 185
instance(s), 7
instance methods, 147

adding decisions and constructors, 285–288
instance variables, 146
instanceof keyword, 497, 760
instant access files, 694
instantiation, 8

classes, 143
int data type, 64, 65

returning array of, 426
type conversion, 101, 102, 103

Integer class, 370, 374
integer data types, 64, 64–69
integer division, 94
Integer.parseInt() method, 90
interactive programs, 694
interfaces, 129, 565, 565–574. See also graphical user interfaces (GUIs)

methods, 826
storing related constants, 570–571

interpreters, 3
invalidate() method, 740
invoking methods, 120
IO classes. See input/output (IO) classes
IOException, 617
is-a relationships, 142, 142–143
isAltDown() method, 831
isControlDown() method, 831
isDigit() method, 356
isEven() method, 635, 636
isLetter() method, 356
isLetterOrDigit() method, 356
isLowerCase() method, 356
isResizable() method, 732
isSelected() method, 769, 770, 841

I N D E X

986

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

isShiftDown() method, 831
isUpperCase() method, 355, 356
isWhiteSpace() method, 356
ItemEvent class, 825, 827, 831
ItemListener class, 765, 766
itemStateChanged() method, 770, 771
iteration, loops, 302

J
JApplet class, 792
JAR (Java ARchive) files, 575
Java, 11, 11–13

case sensitivity of terms, 15
program types, 12–13
reserved keywords, list, 16

Java API, 38. See also Application Programming Interface (API)
Java applications, 13–23

producing console output, analysis, 13–23
Java ARchive (JAR) files, 575
java command, 30
Java Development Kit (JDK), 33, 38
Javadoc, 950, 950–956
Javadoc tag, 950
Java Enterprise Edition (EE), 920
Java Foundation Classes (JFCs), 730
Java interpreter, 11
Java Micro Edition (ME), 920
Java SE Development Kit, 920, 920–923
Java Virtual Machine (JVM), 11
Java Web site, 38, 39
java.awt package, 730, 889
java.awt.Container class, 730
java.awt.event package, 756, 758, 824
javac command, 23–24
Javadoc

comments, 33
java.lang package, 36, 220–221, 223
java.util package, 223, 224
javax.swing package, 221, 730
javax.swing.JOptionPane package, 36
JButton class, 750, 750–752, 762–763
JCheckBox class, 767, 776–777
JCheckBoxMenuItem class, 841
JComboBox class, 772, 772–775
JComponents, 730
JDialog class, 792
JDK (Java Development Kit), 33, 38
JFCs (Java Foundation Classes), 730
JFrame class, 730, 731–738, 792

constructing, 732
constructors, 731–732
customizing JFrame appearance, 734–735
extending, 746–748, 754–755
layout managers, 743–745
methods, 732

JFrame component, 731
jGRASP, 11, 23
JLabel class, 738, 738–742
JMenu class, 837–839

JMenuBar objects, 837–839
JMenuItem class, 841, 842
JOptionPane class, 35–38, 220, 221

accepting GUI input, 87–93
showConfirmDialog() method, 91

JOptionPane component, 730
JPanel class, 813, 813–821, 844–848

components, 813–814
constructors, 815
paintComponent() method, 883–884

JRadioButton class, 771
JRadioButtonMenuItem class, 841
JScrollPanes, 821, 821–824

constructor, 821
JTextFields, 748, 748–750

constructors, 749
editability, 750

juncture styles, 901
JVM (Java Virtual Machine), 11

K
K & R style, 18
key codes, virtual, 828
key fields, 697
keyboard buffer, 82
keyboard input, accepting using Scanner class, 78–87
KeyEvent class, 825, 827, 831
KeyListener class, 765, 766, 827, 827–830
keyPressed() method, 827–828, 832
keyReleased() method, 827–828, 832
keyTyped() method, 827–829, 832
keywords, 2, 16. See also specific keywords

L
Landin, Peter J., 624
lastModifiedTime() method, 674
late method binding, 547–551, 549
layout managers, 743, 743–745, 797–813

advanced, 805
list, 797
with fewer than five components, 808–809

leading, 894
leaf menu items, 843
length field, 403

two-dimensional arrays, 457
length() method, 365
less than operator (<), 70, 71, 361
less than or equal to operator (<=), 70, 71, 283
lessons, downloadable, 38
lexicographical comparison, 362
libraries of classes, 220, 220–221
lightweight components, 730
line(s), drawing, 874–875, 885, 902–903
line comments, 33
lineTo() method, 904
Line2D.Double class, 902
Line2D.Float class, 902
listeners, 756

associated with events, 825

987

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

literal constants, 54
literal strings, 14
local classes, 232
local variables, 131
LocalDate class, 224–228
LocalDateTime class, 228–230
log(x) method, 222
logic, 2

decision-making, planning, 246–248
logic errors, 31

correcting, 31–32
logical AND operator (&&), 263, 263–265, 266–269, 273, 283–284
logical OR operator (||), 265, 265–266, 273, 283–284
Long class, 370
long data type, 64

type conversion, 101
look and feel, 734
loop(s), 301–341, 302

avoiding unnecessary operations, 333
combining, 336
comparing execution times for separate and fused loops,

339–341
comparing to zero, 334–336
counter-controlled, 307, 307–308
definite. See definite loops
do-nothing, 323
do...while, 302, 325, 325–328
enhanced for, 403, 408
event-controlled, 308
for, 302, 319, 319–323
foreach, 404
indefinite, 303, 308–310
infinite, 303, 303–304
inner, 328, 328–332
iterations, 302
nested, 328–332
outer, 328, 328–332
posttest, 325
prefix versus postfix incrementing, 337–338
pretest, 325
short-circuit evaluation, 334
shortcut arithmetic operators, 314–319
while. See while loops

loop body, 302
empty, 306–307
failing to alter loop control variables within, 305–306

loop control variables, 303
definite loops, altering, 307–308
failing to alter within loop body, 305–306

loop fusion, 336
lossless conversion, 67
lossy conversion, 67, 67–68
low-level programming language, 2
lvalues, 55

M
machine code, 2
machine language, 2
magic numbers, 57

main() method, 18, 19–21, 22–23, 120, 125, 747, 836
application classes, 144
calling methods, 121, 122, 133, 147
declaring and using variables, 61–64
return types, 124
static keyword, 124

Math class, 221–222
Math.random() method, 943–944
matrix, 452
max(x, y) method, 222
member-level Javadoc comments, 951, 951–952
memory, random access, 666
menu(s), 837, 837–848

addSeparator() method, 843
JCheckBoxMenuItem class, 841
JRadioButtonMenuItem class, 841–
setMnemonic() method, 843–844

menu bars, 792, 844–848
messages, methods returning, 144
method(s), 9, 120, 147–153. See also specific methods

abstract, 538
access specifiers, 123–124
accessory, 147
adding parameters, 129–135
ambiguity, 199, 199–200
Arrays class, 459–467
associated with objects, 143
automatically imported, 220–221
AWTEvent classes, 830–832
black boxes, 129, 142
BufferedWriter class, 689
called, 120
calling, 130–131
class, 213
client, 120
Color class, 796
constructors. See constructors
dynamic (late) method binding, 547–551, 549
empty, 123
ending, 136
factory, 668
FileChannel class, 694
implementation, 123
instance. See instance methods
interfaces, 826
invoking (calling), 120
JCheckBox class, 769
JComboBox class, 773–774
JFrame class, 732
KeyListener interface, 827–830
Math class, 221–222
MouseEvent class, 834
MouseMotionListener interface, 834
mutator, 147
names, 125
nonstatic, 147, 147–148
OutputStream class, 682
overloading. See overloading methods
overriding, 505

I N D E X

988

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

parentheses, 125–126
passing a two-dimensional array to, 454–455
passing arrays to and returning arrays from, 422–428
Path class, 667
placement within a class, 121
receiving a single parameter, 130–133
requiring multiple parameters, 133–135
return types, 124
returning messages or values, 143–144
returning values, 136–142
signature, 134
static. See static method(s)
static method binding, 549
structure, 123
superclasses, 513–515
type, 136, 136–137
void, 130

method body, 123
method calls, 120

automatic type promotion, 184–196
chaining, 138–139
from println() method, 138
virtual, 523

method headers, 123, 125–126
min(x, y) method, 222
minus sign (-)

class diagrams, 493
postfix decrement operator, 315–316, 316, 317–319,

337–338
prefix decrement operator, 315–316, 316, 317–319, 337–338
subtract and assign operator, 314
subtraction operator, 94, 95, 283

minusDays() method, 226
minusMonths() method, 226
minusWeeks() method, 226
minusYears() method, 226
mission critical, 597
mnemonics, 843, 843–844
modules. See method(s)
modulus operator [mod] (%), 94, 95, 283
mouseClicked() method, 832, 836
mouseDragged() method, 832, 834
mouseEntered() method, 832, 836
MouseEvent class, 825, 830, 831, 834
mouseExited() method, 832, 836
MouseInputListener interface, 832
MouseListener, 765, 766, 832
MouseMotionListener interface, 765, 832, 834
mouseMoved() method, 832, 834
mousePressed() method, 832, 836
mouseReleased() method, 832, 836
MouseWheelEvent class, listener and handlers, 827
moveTo() method, 904
multidimensional arrays, 452–459, 456

two-dimensional, 452–457
multiple inheritance, 565
multiplication operator (*), 94, 95, 283
multiply and assign operator (*=), 314
mutator methods, 147

N
name variable, 79
named constants, 56

adding to programs, 63–64
declaring, 56–58

nested blocks, 184
nested classes, 232, 232–233
nested if statements, 260, 260–263
nested if...else statements, 262–263
nested loops, 328–332
new keyword, 400, 548
new operator, 154
newByteChannel() method, 695
newInputStream() method, 685
newLine() method, 689
newOutputStream() method, 684
next() method, 79, 82

nextLine() method following, 81–86
nextByte() method, 79
nextDouble() method, 79, 82, 604
nextFloat() method, 79
nextInt() method, 79, 80, 81, 82, 596, 604
nextLine() method, 79, 604, 605

following another Scanner input method, 81–83
nextLong() method, 79
nextShort() method, 79
nonabstract method, 538
nonstatic fields, final keyword, 217–220
nonstatic member classes, 232
nonstatic methods, 147, 147–148, 206
nonvolatile storage, 666
not equal to operator (!=), 70, 71, 251, 283
NOT operator, 281, 283
notify() method, 555
notifyAll() method, 555
null Strings, 59, 363–364
null value, 400
NullPointerException, 630
numbering systems, 926–927
numeric values, 927–928
number(s)

magic, 57
NumberFormatException, 370
NumbersDialog class, 59–60
NumbersPrintln class, 58
numeric constants, 54

O
object(s), 7–9, 8

anonymous, 359
arrays, 406–414. See also array(s)
blocks, 184, 184–192
concept, 142–144
declaring and using, 154–155, 157–159
instantiation, 8, 143
methods associated, 143
properties, 403
reference to, 154
scope, 190–192
state, 8

Object class, 554, 554–564, 669, 680

989

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

object references, 553–554
object-oriented program(s), 6, 6–7
object-oriented programming (OOP), 6–7

classes, 7
encapsulation, 9
inheritance, 8–9, 9
objects, 7–9, 8
polymorphism, 10
procedural programming compared, 10

octothorpe, 939
one-dimensional arrays, 452
OOP. See object-oriented programming (OOP)
open() method, 694
opening files, 679
operands, 93
operator precedence, 95, 282–284
optional classes, 221
OR operator, 265, 265–266, 273, 283–284
ordinal() method, 473
out object, 15
out of bounds subscripts, 396
outer block, 184
outer loops, 328, 328–332
OutputStream class, 680, 681, 682, 683, 684
outside (outer) blocks, 184
ovals, drawing, 879–880, 903
overloading constructors, 160, 201–202, 203–205

efficiency, this reference, 209–213
overloading equals() method, 560–561
overloading methods, 135, 192, 192–198

automatic type promotion, 194–196
override annotation, 504
override tag, 504
overriding

final superclass methods, 523–524
methods, 505
superclass methods, 502–506
variables, 187–188

overriding equals() method, 561–562

P
package(s), 36, 220, 220–221, 574–579. See also specific packages

default, 575
importing, 223

package access specifier, 123
paint() method, 862, 882, 899
paintComponent() method, 883–884
painting, 862
parallel arrays, 414–422, 415

initializing, 417
parameters, 129

actual, 135
adding to methods, 129–135
formal, 135
Graphics objects, 862
superclasses as method parameter types, 549–550

parent classes, 495
parentheses (()), 40

method headers, 125–126

parseDouble() method, 370, 370, 691
parseFloat() method, 370
parseInt() method, 370, 370–371, 691, 700, 706
parseLong() method, 370
parsing, 28, 90
Pascal casing, 16
passed by reference, 424
passed by value, 424, 424–425
passing arguments, 14
path(s), 667

absolute, 669, 670–671
relative, 669, 670–671

Path class, 667, 667–677, 685
creating objects, 668–669
relative, converting to absolute, 670–671
retrieving information about, 669–670

path delimiters, 667
Pattern String, 939
percent sign (%)

remainder and assign operator, 314
remainder (modulus) operator, 94, 95, 283

permanent storage devices, 666
PI constant, 221
pipe (|), logical OR operator, 265, 265–266, 273, 283–284
pixels, 733
plus sign (+)

add and assign operator, 314
addition operator, 94, 95, 283
class diagrams, 493
concatenation, 59, 367
postfix increment operator, 314, 315–316, 316, 317–319,

337–338
prefix increment operator, 314, 315–316, 316, 317–319,

337–338
plusDays() method, 226
plusMonths() method, 226
plusWeeks() method, 226
plusYears() method, 226
point size argument, 741
Point2D.Double class, 903
Point2D.Float class, 903
polygons, creating, 881–883, 904
polymorphism, 10, 59, 502, 541

ad-hoc, 549
pure (inclusion), 549
subtype, 504

populating an array, 400
position() method, 694
postfix decrement operator (postfix −−), 315–316, 316, 317–319,

337–338
postfix increment operator (postfix ++), 314, 315–316, 316,

317–319, 337–338
posttest loops, 325
pow(x, y) method, 222
precedence

arithmetic operators, 95, 282–284
Boolean operators, 272–284

preferred size, Components, 800

I N D E X

990

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

prefix decrement operator (prefix −−), 315–316, 316, 317–319,
337–338

prefix increment operator (prefix ++), 312, 315–316, 316,
317–319, 337–338

pretest loops, 325
prewritten classes, importing, 220–221
primary key, 150
primary surface, 815
priming input, 311
priming reads, 311
primitive data types, 54, 163

converting to Strings, 366
print() method, 15, 367

arguments, 62
displaying variables or constants, 58
literal Strings contained in, 80

println() method, 15, 18, 30, 75–76, 120, 367, 933–936
arguments, 62, 68
displaying characters, 73
displaying variables or constants, 58
field size with, 937–938
method calls from, 138
number of decimal places to display with, 936–937
optional argument index with, 938

printStackTrace() method, 629, 630
PrintStream class, 15, 68, 681, 682
private access, 146
private access specifier, 123, 146
private classes, 232–233
private keyword, 516–517
private methods, 148, 149
private protected access specifier, 146
procedural programming, 6

object-oriented programming compared, 10
procedures, 6. See also method(s)
program(s). See computer programs
program comments, 32, 32–35
program files, 666
program statements, 2
programmer-defined data types, 163
programming

object-oriented. See object-oriented programming (OOP)
procedural, 6

promotions, 101
prompt, 80
properties, 7, 403

objects, 403
protected access, 517
protected access specifier, 123
protected keyword, 517
pseudocode, 246
public access specifier, 123, 124
public keyword, 17, 20, 517
public methods, 148, 149
pure polymorphism, 549

Q
question mark (?), conditional operator, 280–281, 283

R
ragged arrays, 456
RAM (random access memory), 666
random access files, 693–697, 694, 704–718

accessing randomly, 705–707
displaying statistics, 716
multiple, creating, 708–710
reading records sequentially, 704–705, 716–718
writing records to, 697–703

random access memory (RAM), 666
Random class, 944–947
random() method, 222
random numbers, 942, 947
range checks, 270

accurate, 269–272
efficient, 272–273

range matches, 419
searching arrays, 418–420

read() method, 685, 687, 694
readAttributes() method, 674
Reader class, 680, 682
ReadFile class, 685, 686
readLine() method, 686, 687, 689
real-time applications, 694
records, 678, 678–679
rectangles

drawing, 875–879, 903
shadowed, creating, 878–879

Rectangle2D.Double class, 903
Rectangle2D.Float class, 903
redeclaring variables, 186
reference(s), 206, 354. See also methods

arrays passed by, 424
to the object, 154

reference types, 54, 154, 424
list, 54

regionMatches() method, 369
register, 756
relational operators, 70

if statements, 251
relative paths, 689

converting to absolute paths, 670–671
remainder and assign operator (%=), 314
remainder (modulus) operator (%), 94, 95, 283
remove() method, 468, 740, 792
removeAllItems() method, 774
removeItem() method, 774
render, 862
rendering attributes, Graphics2D class, 899–901
repaint() method, 740, 862, 867, 868
replace() method, 366
rerendering, 862
reserved keywords, list, 16
return clauses, multiple, 138
return statements, 136, 136–138, 426

void methods, 137
return types, 124
return types, 625
returning values, 124
rewind() method, 695
rint(x) method, 222
robustness, 598

991

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

root directory, 666
rounding numbers, 932–933
round(x) method, 222
running applications, 29–30
run-time errors, 32
runtime exceptions, 594
RuntimeExceptions, 625
rvalues, 55

S
saving

classes, 21
Scanner class, accepting keyboard input, 78–87
scientific notation, 71
scope, 58, 184, 184–192

variables closer in, 190
variables coming into, 184
variables going out of, 184

screen statistics, 894–895
scroll pane, 821
searching arrays, 414, 414–422

for range matches, 418–420
seekability, file channels, 694
semantic errors, 5
semicolons (;), if statements, 249–250
sequence structures, 246
sequential access files, 679, 687–693
set() method, ArrayList class, 468
set methods, 156
setAlignment() method, 800–801
setBackground() method, 794, 795
setBounds() method, 732, 747
setCharAt() method, 378
setColor() method, 870, 874, 899
setDefaultCloseOperation() method, 734, 746
setDefaultLookAndFeelDecorated() method, 734–735
setEditable() method, 750, 774, 775
setEnabled() method, 761, 761
setFont() method, 740, 869–870, 869
setForeground() method, 795
setJMenuBar() method, 839
setLayout() method, 794, 800
setLayoutManager() statement, 792
setLength() method, 375, 377
setLocation() method, 747
setMaximumRowCount() method, 774
setMnemonic() method, 843–844
setPaint() method, 899
setResizable() method, 732
setSelected() method, 769, 770, 841
setSelectedIndex() method, 774
setSelectedItem() method, 774
setSize() method, 732, 746
setStroke() method, 901, 902–903
setText() method, 740, 769, 770
setTitle() method, 732, 746
setToolTipText() method, 752
setVisible() method, 732, 733, 746–747
shadowed rectangles, creating, 878–879
shadowing, 188, 188–189

shapes, Graphics2D class, 902–903, 906–908
short data type, 64, 65

type conversion, 102
short-circuit evaluation, 266

order, 334
show() method, 734
showConfirmDialog() method, 91
showInputDialog() method, 87, 87–90, 369
showMessageDialog() method, 15, 36, 59
signatures, methods, 134
significant digits, 71
simulations, 7
sin(x) method, 222
single quotation mark (‘), escape sequence, 75
single-alternative if, 248
single-alternative selection, 248
single-dimensional arrays, 452
single-precision floating-point numbers, 72
size() method, 468, 674, 694
skip() method, 687
sleep() method, 323
software, 2. See also computer programs
software development, inheritance to achieve, 564–565
software development kits (SDKs), 38, 920
sort() method, 460, 462, 463
sorting, 440

bubble sort algorithm, 440–447, 440
insertion sort algorithm, 448, 448–451

source, events, 756
source code, 11
split() method, 691
sqrt(x) method, 222
square brackets ([]), 40
stack backtrace, 598
stack trace (stack trace history list), 597
stack traceback, 598
standard arithmetic operators, 93, 93–100

associativity and precedence, 95, 282–284
standard input devices, 78
standard output devices, 15
StandardOpenOption argument, 684
startsWith() method, 366
state, 8
statements, 14–15. See also specific statements

commenting out, 33
empty, 250
unreachable, 137

static access specifier, 146
static fields, 206, 213–220

constants, 215–216
final keyword, 217–220

static import feature, 672
static keyword, 20, 90, 124

data fields, 145–146
static member classes, 232
static method(s), 90, 147–148, 149, 460

accepting arguments and returning values, 140–142
inability of subclasses to override in superclasses, 518–522
requiring no arguments and returning no values, 126–128

static method binding, 549

I N D E X

992

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

storage
nonvolatile, 666
volatile, 666

streams, 679, 679–680
String argument, 362
String class, 20, 74, 355, 355–356, 359–374, 690, 691

args identifier, 20
comparing, 354–355, 359–363
comparing Strings, 251

concatenating with numeric values, 58–60
converting to double values, 370
converting to numbers, 373–374
declaring, 359
empty and null Strings, 363–364
immutability, 360
manipulating arrays, 408–409
null elements, 400

String input, 85–87
String variables, 359
StringBuffer class, 355, 374, 374–375
StringBuilder class, 355, 374, 374–381
stringWidth() method, 895
strokes, 901, 902–903
strongly typed language, 55
stubs, 123
style argument, 741
subclasses, 495, 500–501

arrays of subclass objects, 551–554
inability to override static methods in superclasses, 522–523

subroutines. See method(s)
subscripts

arrays, 395, 395–396
out of bounds, 396
variable, 402–406

substring() method, 367
subtract and assign operator (-=), 314
subtraction operator (-), 94, 95, 283
subtype polymorphism, 504
super keyword, 509

this keyword compared, 515
super() method, 509, 746
superclasses, 495, 497–498

as method parameter types, 549–551
constructors requiring arguments, 508–509
methods, 513–515
overriding methods, 502–506
that cannot be overridden, 518–524

Swing class, 730
Swing components, 730–779, 730

adding JButtons, 750–752
adding JTextFields, 748–750
associated listener-registering methods, 766
ButtonGroup class, 771–772
event listeners, 764–767
event-driven programming, 764–767
extending JFrame class, 746–748, 754–755
JCheckBox class, 767–771, 776–779
JComboBox class, 772–775
JFrame class, 731–738

JLabel class, 738–742
layout managers, 743, 743–745
tool tips, 752–753

Swing containers, Application Programming Interface, 819
switch keyword, 275
switch statements, 274–280, 275
symbolic constants, 56. See also named constants
syntactic salt, 624
syntactic sugar, 624
syntax, 2
syntax errors, 3

correcting, 24–25
error messages, 24–29

System class, 15, 36, 144, 220, 682
system software, 2
System.err object, 682
System.exit() statements, 36, 616, 618
System.getProperty() method, 689, 699
System.in object, 78, 685
System.out object, 78, 682, 683
system-triggered painting, 862

T
tables, 452
tan(x) method, 222
temporary variables, 666
ternary operators, 281
text files, 666
TextEvents, 825

listener and handler, 827
this keyword, super keyword compared, 515
this() method, 205–213, 206

calling, 210
overloaded constructor efficiency, 209–213

threads of execution, 375
throw statements, 599, 599–600
Throwable class, 628, 630
ThrowableException, 602
throws clause, 624, 625
toAbsolutePath() method, 670–671
TOCTTOU bug, 673
tokens, 78
toLowerCase() method, 356, 365
tool tips, 752, 752–753
Toolkit class, 893
ToolTipDemo.java file, 753
top-level classes, 232
top-level containers, 792
toString() method, 366, 367, 473, 556–559, 564, 566, 669
toUpperCase() method, 355, 356, 365
true value, 247
try blocks, 599, 604–605, 617, 618, 628, 682

multiple exceptions, 610–611
try...catch blocks, declaring and initializing variables, 606–607
try...catch code, 603
try...catch sequences, 600

end, 616–618
two-dimensional arrays, 452, 452–457

length field, 455–456
passing to a method, 454–455
ragged, 456

993

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

type casting, 102
type conversion, 101, 101–103

automatic, 101–102
explicit, 102, 102–103, 104–106
implicit, 101, 104–106

type-ahead buffer, 82
typeface argument, 740, 740–741
type-safe values, 477
type-wrapper classes, 89

U
UI components, 730. See also Swing components
UML. See Unified Modeling Language (UML)
unary cast operators, 102
unary operators, 102
unchecked exceptions, 623
Unicode, 16, 929

values, list, 73–74
Unified Modeling Language (UML), 492

diagramming inheritance, 492–494
unifying type, 101
uninitialized variables, 56, 63
unique identifiers, 150, 151
unnamed constants, 54
unreachable statements, 137
upcasting, 497
upper camel casing, 16
users, class, 144

V
validate() method, 740, 742
validating data, 310

loops, 310–313
value(s)

array elements passed by, 424, 424–425
Boolean, 247
comma-separated, 679
denominator, 603
dummy, 465
false, 247, 400
garbage, 56
lvalues, 55
methods returning, 136–142, 143–144
null, 400
passed by, 424–425
returning, 124
rvalues, 55
true, 247
type-safe, 477
Unicode, list, 73–74

valueOf() method, 473, 474
values() method, 473
variable(s), 6, 54. See also specific variables

boolean, 70, 70–71
class, 214
closer in scope, 190
comparing to constants, 251
declaring, 55–56, 61–64
declaring and initializing in try...catch blocks, 606–607

decrementing, 307
incrementing, 307
instance, 146
local, 131
overriding, 187, 187–188
redeclaring, 186
scope. See scope
shadowing, 188, 188–189
temporary, 666
uninitialized, 56, 63
using names multiple times, 187

variable declarations, 55
viewports, 821
virtual classes, 538
virtual keyboard, 650, 650–651
virtual key codes, 828
virtual method calls, 523
void keyword, 20
void methods, 130, 137
void return type, 124
volatile storage, 666

W
while loops, 302, 303, 303–313

altering loop control variable, 305–306, 307–308
definite, 303–305
empty body, 306, 306–307
indefinite, 308–310
validating data, 310–313

whitespace, 18
widgets, 730
wildcard symbol (*), 223
Window class, 730–731
window decorations, 734
windowed applications, 12, 12–13
WindowEvent class, 825, 827, 831
WindowListener interface, 765
Windows configuring, JDK, 921–923
WORA (“write once, run anywhere”), 11
work() method, 567–568
wrap() method, 694
wrapped arrays, 694
wrappers, 370
write() method, 682, 689, 698
“write once, run anywhere” (WORA), 11

X
x-axis, 832
x-coordinate, 832

Y
y-axis, 832
y-coordinate, 832

Z
zero, comparing to, 334–336

I N D E X

994

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Cover
	Half Title
	Title
	Statement
	Copyright
	Brief Contents
	Contents
	Preface
	Read this Before You Begin
	Features
	Assessment
	Ch 1: Creating Java Programs
	Learning Programming Terminology
	Comparing Procedural and Object-Oriented Programming Concepts
	Features of the Java Programming Language
	Analyzing a Java Application that Produces Console Output
	Compiling a Java Class and Correcting Syntax Errors
	Running a Java Application and Correcting Logic Errors
	Adding Comments to a Java Class
	Creating a Java Application that Produces GUI Output
	Finding Help
	Ch 1: Don’t Do It
	Ch 1: Key Terms
	Ch 1: Chapter Summary
	Ch 1: Exercises

	Ch 2: Using Data
	Declaring and Using Constants and Variables
	Learning About Integer Data Types
	Using the boolean Data Type
	Learning About Floating-Point Data Types
	Using the Char Data Type
	Using the Scanner Class to Accept Keyboard Input
	Using the JOptionPane Class to Accept GUI Input
	Performing Arithmetic
	Understanding Type Conversion
	Ch 2: Don’t Do It
	Ch 2: Key Terms
	Ch 2: Chapter Summary
	Ch 2: Exercises

	Ch 3: Using Methods, Classes, and Objects
	Understanding Method Calls and Placement
	Understanding Method Construction
	Adding Parameters to Methods
	Creating Methods that Return Values
	Learning About Classes and Objects
	Creating a Class
	Creating Instance Methods in a Class
	Declaring Objects and Using their Methods
	An Introduction to Using Constructors
	Understanding that Classes Are Data Types
	Ch 3: Don’t Do It
	Ch 3: Key Terms
	Ch 3: Chapter Summary
	Ch 3: Exercises

	Ch 4: More Object Concepts
	Understanding Blocks and Scope
	Overloading a Method
	Learning About Ambiguity
	Creating and Calling Constructors with Parameters
	Learning About the this Reference
	Using Static Fields
	Using Automatically Imported, Prewritten Constants and Methods
	Understanding Composition and Nested Classes
	Ch 4: Don’t Do It
	Ch 4: Key Terms
	Ch 4: Chapter Summary
	Ch 4: Exercises

	Ch 5: Making Decisions
	Planning Decision-Making Logic
	The if and if...else statements
	Using Multiple Statements in if and if...else Clauses
	Nesting if and if...else Statements
	Using Logical AND and OR Operators
	Making Accurate and Efficient Decisions
	Using the Switch Statement
	Using the Conditional and NOT Operators
	Understanding Operator Precedence
	Adding Decisions and Constructors to Instance Methods
	Ch 5: Don’t Do It
	Ch 5: Key Terms
	Ch 5: Chapter Summary
	Ch 5: Exercises

	Ch 6: Looping
	Learning About the Loop Structure
	Creating While Loops
	Using Shortcut Arithmetic Operators
	Creating a for Loop
	Learning How and When to Use a do...while Loop
	Learning About Nested Loops
	Improving Loop Performance
	Ch 6: Don’t Do It
	Ch 6: Key Terms
	Ch 6: Chapter Summary
	Ch 6: Exercises

	Ch 7: Characters, Strings, and the StringBuilder
	Understanding String Data Problems
	Using Character Class Methods
	Declaring and Comparing String Objects
	Using Other String Methods
	Learning About the StringBuilder and StringBuffer Classes
	Ch 7: Don’t Do It
	Ch 7: Key Terms
	Ch 7: Chapter Summary
	Ch 7: Exercises

	Ch 8: Arrays
	Declaring Arrays
	Initializing an Array
	Using Variable Subscripts with an Array
	Declaring and Using Arrays of Objects
	Searching an Array and Using Parallel Arrays
	Passing Arrays to and Returning Arrays from Methods
	Ch 8: Don’t Do It
	Ch 8: Key Terms
	Ch 8: Chapter Summary
	Ch 8: Exercises

	Ch 9: Advanced Array Concepts
	Sorting Array Elements Using the Bubble Sort Algorithm
	Sorting Array Elements Using the Insertion Sort Algorithm
	Using Two-Dimensional and Other Multidimensional Arrays
	Using the Arrays Class
	Using the ArrayList Class
	Creating Enumerations
	Ch 9: Don’t Do It
	Ch 9: Key Terms
	Ch 9: Chapter Summary
	Ch 9: Exercises

	Ch 10: Introduction to Inheritance
	Learning About the Concept of Inheritance
	Extending Classes
	Overriding Superclass Methods
	Calling Constructors During Inheritance
	Accessing Superclass Methods
	Employing Information Hiding
	Methods You Cannot Override
	Ch 10: Don’t Do It
	Ch 10: Key Terms
	Ch 10: Chapter Summary
	Ch 10: Exercises

	Ch 11: Advanced Inheritance Concepts
	Creating and Using Abstract Classes
	Using Dynamic Method Binding
	Creating Arrays of Subclass Objects
	Using the Object Class and Its Methods
	Using Inheritance to Achieve Good Software Design
	Creating and Using Interfaces
	Creating and Using Packages
	Ch 11: Don’t Do It
	Ch 11: Key Terms
	Ch 11: Chapter Summary
	Ch 11: Exercises

	Ch 12: Exception Handling
	Learning About Exceptions
	Trying Code and Catching Exceptions
	Throwing and Catching Multiple Exceptions
	Using the finally Block
	Understanding the Advantages of Exception Handling
	Specifying the Exceptions that a Method Can Throw
	Tracing Exceptions Through the Call Stack
	Creating Your Own Exception Classes
	Using Assertions
	Displaying the Virtual Keyboard
	Ch 12: Don’t Do It
	Ch 12: Key Terms
	Ch 12: Chapter Summary
	Ch 12: Exercises

	Ch 13: File Input and Output
	Understanding Computer Files
	Using the Path and Files Classes
	File Organization, Streams, and Buffers
	Using Java’s IO Classes
	Creating and Using Sequential Data Files
	Learning About Random Access Files
	Writing Records to a Random Access Data File
	Reading Records from a Random Access Data File
	Ch 13: Don’t Do It
	Ch 13: Key Terms
	Ch 13: Chapter Summary
	Ch 13: Exercises

	Ch 14: Introduction to Swing Components
	Understanding Swing Components
	Using the JFrame Class
	Using the JLabel
	Using a Layout Manager
	Extending the JFrame Class
	Adding JTextFields, JButtons, and Tool Tips to a JFrame
	Learning About Event-Driven Programming
	Understanding Swing Event Listeners
	Using the JCheckBox, ButtonGroup, and JComboBox Classes
	Ch 14: Don’t Do It
	Ch 14: Key Terms
	Ch 14: Chapter Summary
	Ch 14: Exercises

	Ch 15: Advanced GUI Topics
	Understanding the Content Pane
	Using Color
	Learning More About Layout Managers
	Using the JPanel Class
	Creating JScrollPanes
	A Closer Look at Events and Event Handling
	Using AWTEvent Class Methods
	Handling Mouse Events
	Using Menus
	Ch 15: Don’t Do It
	Ch 15: Key Terms
	Ch 15: Chapter Summary
	Ch 15: Exercises

	Ch 16: Graphics
	Learning About Rendering Methods
	Drawing Strings
	Drawing Lines and Shapes
	Learning More About Fonts
	Drawing with Java 2D Graphics
	Ch 16: Don’t Do It
	Ch 16: Key Terms
	Ch 16: Chapter Summary
	Ch 16: Exercises

	Appendix A: Working with the Java Platform
	Appendix B: Data Representation
	Appendix C: Formatting Output
	Appendix D: Generating Random Numbers
	Appendix E: Javadoc
	Glossary
	Index

		2015-02-06T16:35:34+0000
	Preflight Ticket Signature

